International Workshop on "New Aspects of the Hadron and Astro/Nuclear Physics" National University of Uzbekistan, Tashkent, November 5-10, 2018

Status of LAMPS at RAON for Nuclear Symmetry Energy

Byungsik Hong (Korea University)

Location of New RIB Complex RAON

05-10 November 2018

05-10 November 2018

Expected RIBs at RAON

RAON aims to provide an access to unexplored regions of nuclear chart.

J. W. Shin et al., NIMB349, 221 (2015)

Accelerator Systems

05-10 November 2018

28GHz ECR test results

Successful extraction

– O⁷⁺ of 30euA, Ar¹¹⁺ of \sim 70euA

After cryo-cooler maintenance, cooling capacity margin improved

	Purchasing process	Manufacturing	Installation & Commissioning	Operation	
14.5 GHz	2018	~2019	~2020.5	2020.6~	

14.5 GHz ECRIS and 28 GHz ECRIS will supply a stable isotope beam to SCL3 alternately.

14.5 GHz ECRIS will be a main ion source when 28 GHz ECRIS moves to SCL1

CEN	ШΜ

Conceptual design	Prototype	Test & Upgrade	Installation	Commissioning	Operation
2011~2012	~2015	~2018	2019	2020	2021

Installation & Test of injector @ SCL demo

Completion of manufacturing and tuning of RFQ (Quad. Field < $\pm 2\%$, Dipole Field < $\pm 5\%$) Installation of injector and test for beam acceleration performance of RFQ (> 500 keV/u)

05-10 November 2018

Superconducting Linear Accelerators

Superconducting cavity test

] SRF test facility @ KAIST Munji Campus

Manufacturing and Performance test for QWR x 4, HWR x 6, SSR1 x 1 is under way ('18)

Cavity test pit, Cryostat, Control room

05-10 November 2018 Hadron & A

CENuM Superconducting Linear Accelerators

Cryomodule test

- Cryomodule test facility set up
- Completion of performance tests for QWR module and HWR module A (two cavities)

QWR module

35

40

HWR module A

Q (Static)	Q (Dynamic)	Q (Total)
C C M	1.4 W (cavity#1)	12.0 \\/
0.0 W	4.8 W (cavity#2)	12.8 VV

Target total thermal load @ 2.92 MV : 14.1 W

Development of SSR2 (b=0.51)

Prototype of SSR2 cavity designed by the RISP accelerator team is in procurement process.

Two-track strategy to minimize the risk in the development

a Isotope nce Project	Cyclo	otro	on & 19	50	L					CEN
Cyclotron (Canada) i		with	n "Best Cyclotron" in April 8, 2017		Proc	urement	Manufact	uring & delivery	Install. & com	mi. beam to ISOL
		ada) ir			201	6~2017.4	2017	.4~2019.3	2019.4~2020	.3 2020~
Conceptua	al design	F	Prototype]	N	lanufacturi	ng	Installation	Commissioning	Operation
SO <mark>L 2011~</mark> 2) 2011~2012		~2017			~2019.3		~2020.7	2021.6	2021
	System		Specific	ation				Current	Status	
Target io	n source		• UCx fission targ • SIS, RILIS, FE	get (10 BIAD	kW)	• Manuf	acturing (pa	rtly)	Contraction of the second seco	
Beamling, handling, (incl. A/q	Beamline, Remote handling, Hot cell system (incl. A/q separator) $\cdot R_{A/q}$: ~200 (for EBIS $\cdot E+B$ CombinationRFQ cooler & buncher $\cdot Cooling time : < 100$ $\cdot Transmission \varepsilon > 50\cdot Output emittance: <\cdot Capacity: < 10^8 ions/s$			EBIS) on		• Purch	asing proces	SS		Re t
RFQ coo				: 100 m > 50% ce: < 3 ions/bu	is 5 (Sn) inch	• Under	design		HV probes Beam diagnostics Extraction Section	Helical resonator RFQ electrodes
EBIS cha	arge breeder		 E/A : 10 keV/u A/q : 10 keV/u ε = 15% (¹³³Cs²) Breeding time: Capacity: <10⁸/ 	²⁷⁺) 50~100 bunch) ms	 Start in e-g SC Drif Breed 	ntegration of un/collector solenoid t tube ing test ('18.	12~)		

05-10 November 2018

05-10 November 2018

(KOrea Broad acceptance Recoil spectrometer and Apparatus)

-] The first part of stage1 (stage1 part1) was contracted with foreign & domestic companies in April 2018. (Presently, parts are being produced.)
- ☐ The design of second part of stage1 (stage1 part2) was finally done among the various options in June, 2018 after consultation with potential domestic users.
 - The stage1 will be installed in the Low Energy Expt. room (E1) by the end of June 2020.
 - The commissioning of Stage1 will start in the beginning of 2021 with stable ion beams.

05-10 November 2018

PPAC

- Two 10x10 cm², two 20x20 cm², and one 40x20 cm² active area PPACs were built.
- Four 10x10 cm² and one 40x20 cm² PPACs will be built in addition.

SSD

- Two 16 Channel detectors with 5x5 cm^2 active area and 50 μm thickness
- Energy resolution~0.7% and S/N~272 for 5.5 MeV α in vacuum

Plastic scintillator detector

- Two detectors read out both ends with 10x10 cm^2 active area and 100 μm thickness
- Time resolution < 42 ps for 5.5 MeV α in vacuum

LAMPS (Large Acceptance Multi-Purpose Spectrometer) Conceptual design **Prototype & Test** Manufacturing Commissioning Installation Operation 2011~2012 ~2020.12 ~2021.7 ~2018.12 2021.12 2022~ Neutron detector array Beam energy: 250 MeV/u for ¹³²Sn Solenoid spectrometer Solenoid Spectrometer oid magnet Maximum 1 T solenoid magnet

Time Projection Chamber (TPC)

Vacuum Shielding 42K LHe

Superconducting magnet Coil radius: 0.8 m Specifications

- Nominal operation B-field: 0.5 T
- Maximum B-field: 1 T, Δ B/B < ±1% in the TPC region

Fulfill the requirement

Specifications

Test completed with prototype TPC

Forward Neutron Detector Array

- TPC ($\sim 3\pi$ sr coverage for tracking)

Barrel scintillation counter (trigger & ToF)

Forward neutron wall (neutron energy spectrum)

Completed extensive R&D Detector construction is in progress Construction will be completed by the end of 2018

Conceptual designManufacturing & TestInstallationCommissioningOperation2011~2012~2020.1~2020.102022~

- R&D performed by the WNSC MRTOF group (Leader: Prof. Wada).
- Additional beamline to the MRTOF-MS system was constructed in 2017.
- Differential pumping system, gas cell (or catcher), trap system, and MRTOF analyzer were assembled, waiting for the offline ion-source test.
- ☐ Test of the differential pumping system with the gas cell filled with 1 mbar helium gas was performed at 3.4x10⁻⁴ Pa upstream side (acceptable).
- Optimizing the beam transmission through the φ=2 mm gas cell hole was performed:
 72% efficiency achieved (It will be improved by additional beam steerer.)

05-10 November 2018

RISP Milestones

Imps: large-Acceptace MultiPurpose Spectrometer

05-10 November 2018

Prototype TPC: Design

Prototype TPC: Components

[Readout Pads] Tested pads with the two different dimensions $3 \times 10 \text{ mm}^2$: 357 Ch./Oct. $4 \times 15 \text{ mm}^2$: 175 Ch./Oct. Multi-layer PCB board

05-10 November 2018

[GEM Foil] Trapezoidal shape Thickness: 75 μ m Area: 166 × 118 mm² Triple layers for each plane

[Field Cage]

35 μ m thick and 2 mm wide Cu strips 500 μ m gap between adjacent strips Mirror strips on the back 1 M Ω resistors with 0.1% var. TPC body: G10 + Aramid honeycomb

Prototype TPC: Assembly Rare Isotope Science Project

Inner Field Cage installed Outer Field Cage installed

05-10 November 2018

Prototype TPC assembled

Prototype TPC: Test at ELPH

- ELPH: Research Center for Electron Photon Science at Tohoku University, Japan
- Dates: November 2016
 Beams: e⁺ beams at 500 MeV
 Gas: Ar(90%)+CH₄(10%) (P10) Ar(90%)+CO₂(10%) (ArCO₂)
 Purpose: To study the detailed characteristics, such as v_{drift} , diffusion and σ_x , of LAMPS TPC

Prototype TPC: Event Displays

Prototype TPC: Drift Velocity

Maximum distance: 512 timing bins × 0.04 μ s/bin × 5 cm/ μ s \approx 100 cm

Tested P20 with cosmic muons: $v_{drift} > 6 \text{ cm}/\mu \text{s}$ that will be suitable for LAMPS TPC if read out from only one endcap side.

Prototype TPC: Diffusion

P10, 155 V/cm

 χ^2 / ndf

 σ_0^2 (cm²)

0.3

0.25

- の変化を 0.2 $\sigma^2_{track}~(cm^2)$ 0.1 0.05 20 25 30 35 50 55 40 45 Drift distance with offset (cm) $\sigma_{track}^2 = D^2 z + \sigma_0^2$ where z: drift length σ_{track} : width of hit distributions w.r.t. the fitted track
 - D: diffusion coefficient
 - σ_0 : coefficient depending on the amplification system

Prototype TPC: Position Resolution

CENuM

Beam Test at RCNP

CENUM

- E479 approved in B-PAC in March 2016
-] Date: May 2016
- Beam specifications
 - Protons on Li production target (p+⁷Li \rightarrow n + ⁷Be)
 - Neutron energies: 65 and 392 MeV in N0 beamline
 - 10 nA flux \times 1/9 chopping
 - Background neutron above 3MeV is less than 1% [NIMA629, 43 (2011)]

Distance from target to the detector: 15 m
Gap between stations: 60 cm
Dim. of each S1 detector: 10 × 10 × 100 cm³
Dim. of each S2 detector: 10 × 10 × 200 cm³
Beam size at S1: 25 × 30 cm²

Energy Resolution for Neutrons

Preliminary

Energy resolution (FWHM/E) = 3.3 %

Position Resolution

Preliminary

• Hit position difference between *D*1 and *D*2 for neutrons:

 $\Delta x_{S1} \equiv x_{D1} - x_{D2}$ for 10 MeV threshold and $\delta t < 3$ ns Relative position resolution for neutrons for one bar:

$$\sigma_n = \frac{\sigma(\Delta x_{S1})}{\sqrt{2}} = 3.1 \text{ cm}$$

 Position difference between the projected hit position and the hit position for D3 for cosmic muons: Δx_{S2} ≡ x_{D3,proj} - x_{D3,hit}

 Relative position resolution for cosmic muons for one bar: σ(Δx_{c2})

$$\sigma_{\mu} = \frac{\sigma(\Delta x_{S2})}{1.87} = 3.1 \text{ cm}$$

Curing UV glue

Fixing light guide with vice

CENUM Closeup view of the interface between scintillator & lightguide

Clamps for installing PMTs

↓ Frames in the assembly site at the Sejong
 Campus of Korea Univ. close to RAON complex

-300

-200

-100

0

100

detector

Deviation [mm]

300

200

We invite more collaborators, especially, from foreign countries.
 Contact me (<u>bhong@korea.ac.kr</u>) if you're interested in the project.

Summary

- The Rare Isotope Science Project (RISP) at IBS is the first large-scale nuclear physics project in Korea.
- The civil engineering, accelerator development, and detector construction for RAON have been aggressively progressed.
- LAMPS is a dedicated spectrometer for nuclear symmetry energy at RAON.
- Various components for LAMPS, including TPC, neutron detector array, magnet, are making a very good progress.
- Expect to finish the detector construction in about
 2-3 years for early nuclear physics experiment.