Short range interaction in $\pi J/\psi - D\bar{D}^*$ channel

Yasuhiro Yamaguchi 1

¹RIKEN, Japan

International workshop "New aspects of the Hadron and Astro/Nuclear Physics"

National University of Uzbekistan, Tashkent 5-10 Nov. 2018

Outline

- Introduction
 - Exotic hadrons
 - Z_c(3900)
- Interaction model
 - Meson exchange model
 - Quark exchange model
- Summary

	D*	
Q 4 ~		$ar{D}$
	\overline{Q}^{q}	

Exotic	hadron

Description of Hadron structure

• Ordinary Hadrons: Baryon (qqq) and Meson $(q\bar{q})$

• Exotic Hadrons ($\neq qqq, q\bar{q}$): Multiquark? Multihadron?

Constituent quark picture and beyond Introduction

N. Brambilla, et al. Eur. Phys. J.C 71(2011)1534, S. Godfrey and N. Isgur, PRD32(1985)189

・ロッ ・ 一 ・ ・ ・ ・

Constituent quark picture and beyond Introduction

N. Brambilla, et al. Eur. Phys. J.C 71(2011)1534, S. Godfrey and N. Isgur, PRD32(1985)189

• Exotics $\neq c\bar{c}$ have been observed in the Experiments (BaBar, Belle, BESIII, LHCb,...) \Rightarrow Q. Structure? Physics?

Many exotic candidate!! Many models!! Introduction

T. Hyodo, D. Jido, PPNP67(2012)55, N. Brambilla et al., Eur. Phys. J.C (2011)71, 1534

H.X.Chen, et al.,	Phys.Rept.639(2016)1,	
6 Nov. 2018	Yasuhiro Yamaguchi(RIKEN)	New as

< ロ > < 同 > < 回 > < 回 >

Charged Charmonium: $Z_c(3900)$

- Charged Charmonium??
- $Y(4260) \rightarrow Z_c(3900)\pi \rightarrow J/\psi\pi\pi$

Belle, PRL110(2013)252002

$M=3899.0\pm3.6_{sta}\pm$	4.9_{sys}	MeV
$\Gamma = 46 \pm 10_{\textit{sta}} \pm 20_{\textit{sys}}$	MeV	

 $M = 3894.5 \pm 6.6_{sta} \pm 4.5_{sys}$ MeV $\Gamma = 63 \pm 24_{sta} \pm 26_{sys}$ MeV

CLEO-c,PLB727(2013)366(2013), DØ,PRD98(2018)052010

▲ 同 ▶ → 三 ▶

Charged Charmonium: $Z_c(3900)$

- Charged Charmonium??
- $Y(4260) \rightarrow Z_c(3900)\pi \rightarrow J/\psi\pi\pi$

Belle, PRL110(2013)252002

$M = 3899.0 \pm 3.6_{sta} \pm 4.$	9 _{sys} MeV
$\Gamma = 46 \pm 10_{\textit{sta}} \pm 20_{\textit{sys}} \ \text{M}$	eV

 $M = 3894.5 \pm 6.6_{sta} \pm 4.5_{sys}$ MeV $\Gamma = 63 \pm 24_{sta} \pm 26_{sys}$ MeV

CLEO-c,PLB727(2013)366(2013), DØ,PRD98(2018)052010

▷ Ordinal Charmonium $c\bar{c}$: no electric charge. $\Rightarrow Z_c^+(3900)$: Genuine Exotic State!? $c\bar{c}u\bar{d}$

What is the structure of $Z_c(3900)$?

Introduction

• Molecules? — $Z_c(3900)$ close to the $D\bar{D}^*$ threshold (~ 3875)

< 同 > < 三 > <

What is the structure of $Z_c(3900)$?

Introduction

A. Hosaka et al. PTEP 2016 (2016) no.6, 062C01, D.-Y. Chen et al. PRD88(2013)036008,...

- Molecules? $Z_c(3900)$ close to the $D\bar{D}^*$ threshold (~ 3875)
- ⇒ Exotic state may be a loosely bound state (resonance) of the meson-meson.

 \rightarrow Analogous to atomic nuclei (Deuteron: $B \sim 2.2$ MeV)

< 回 > < 回 > < 回

What is the structure of $Z_c(3900)$?

Introduction

- Molecules? $Z_c(3900)$ close to the $D\bar{D}^*$ threshold ($\sim 3875)$
- ⇒ Exotic state may be a loosely bound state (resonance) of the meson-meson.
 - ightarrow Analogous to atomic nuclei (Deuteron: B ~2.2 MeV)
- ⇔ Kinematical effect? No bound state explanation

D.-Y. Chen, X.Liu, T.Matsuki, PRD88 (2013) 036008, J.He, D.-Y. Chen, EPJC78 (2018) 94,...

< ロ > < 同 > < 回 > < 回 >

$Z_c(3900)$: Lattice QCD (Numerical Experiments)

- Lattice QCD simulation by HALQCD at $m_{\pi}=410-700$ MeV
- \Rightarrow Coupled-channel $\pi J/\psi \rho \eta_c D\bar{D}^*$

・ 同 ト ・ ヨ ト ・ ヨ ト

$Z_c(3900)$: Lattice QCD (Numerical Experiments) Introduction

- Lattice QCD simulation by HALQCD at $m_{\pi} = 410 700$ MeV
- \Rightarrow Coupled-channel $\pi J/\psi \rho \eta_c DD^*$

Ikeda, et al., PRL117(2016)242001

(MeV) 4000

-200

- 4 同 ト 4 ヨ ト 4 ヨ ト

7

$Z_c(3900)$: Lattice QCD (Numerical Experiments)

• Lattice QCD simulation by HALQCD at $m_{\pi} = 410 - 700$ MeV \Rightarrow Coupled-channel $\pi J/\psi - \rho \eta_c - D\bar{D}^*$

Ikeda, et al., PRL117(2016)242001

・ロト ・同ト ・ヨト ・ヨト

Bound state? Threshold cusp? \rightarrow Hadron int. Introduction

Exotic structure: Bound state? Cusp?

□ > < = > <

Bound state? Threshold cusp? \rightarrow Hadron int. Introduction

 Hadron-hadron interaction is important to understand the nature of exotic states! not only Z_c but also others.

Model of Hadron-hadron interaction

• Long-range force: one π exchange potential (OPEP) Lightest meson π , Importance in the nuclear force, Heavy Quark Spin Symmetry (0⁻ - 1⁻ mixing)

・ 同 ト ・ ヨ ト ・ ヨ ト

Model of Hadron-hadron interaction

- Long-range force: one π exchange potential (OPEP) Lightest meson π , Importance in the nuclear force, Heavy Quark Spin Symmetry (0⁻ - 1⁻ mixing)
- Short-range force: Charm (c) exchange
- ▷ How can we understand strong $\pi J/\psi D\bar{D}^*$ potential?

(4月) (日) (日)

Model of Hadron-hadron interaction

- Long-range force: one π exchange potential (OPEP) Lightest meson π , Importance in the nuclear force, Heavy Quark Spin Symmetry (0⁻ - 1⁻ mixing)
- Short-range force: Charm (c) exchange
- ▷ How can we understand strong $\pi J/\psi D\bar{D}^*$ potential?

Meson exchange model

Coupled channel: πJ/ψ − DD̄* − D*D̄*
 D^(*)D̄^(*) − D^(*)D̄^(*): π exchange
 πJ/ψ − D^(*)D̄^(*): D^(*) exchange

Yasuhiro Yamaguchi (RIKEN), Yukihiro Abe (RCNP, Osaka Univ.), Kenji Fukukawa (Suma Gakuen), Atsushi Hosaka (RCNP, Osaka Univ.), in preparation

・ロト ・同ト ・ヨト ・ヨト

Heavy Quark Spin Symmetry and Mass degeneracy Meson exchange model

Heavy Quark Spin Symmetry (HQS) N.Isgur, M.B.Wise, PLB232(1989)113

- Suppression of Spin-spin force in $m_Q \to \infty$.
 - \Rightarrow Mass degeneracy of hadrons with the different J
- e.g. Qq
 meson

11

Mass degeneracy of heavy hadrons Meson exchange model

• Mass difference between vector and pseudoscalar mesons. $(Q\bar{q}, q = u, d)$

 $\triangleright \Delta m$ decreases when the quark mass increases.

12

Mass degeneracy of heavy hadrons Meson exchange model

• Mass difference between vector and pseudoscalar mesons. $(Q\bar{q}, q = u, d)$

- $\triangleright \Delta m$ decreases when the quark mass increases.
 - ⇒ Degeneracy of Heavy hadrons!

For $Z_c(3900)$, $D - D^*$ mixing $\Rightarrow D\bar{D}^* - D^*_*\bar{D}^*_*$ coupled-channel

Heavy hadron- π coupling Meson exchange model

• Effective Lagrangians: Heavy hadron and π

R. Casalbuoni et al., Phys.Rept.281 (1997)145, T. M. Yan, et al., PRD46(1992)1148

/⊒ ► < ∃ ►

13

Heavy hadron- π coupling Meson exchange model

• Effective Lagrangians: Heavy hadron and π

R. Casalbuoni et al., Phys.Rept.281 (1997)145, T. M. Yan, et al., PRD46(1992)1148

▷ Heavy meson: $\bar{D}^{(*)}\bar{D}^{(*)}\pi$ (*DD* π : Parity violation)

$$\mathcal{L}_{\pi HH} = -\frac{\mathbf{g}_{\pi}}{2f_{\pi}} \text{Tr} \left[H \gamma_{\mu} \gamma_{5} \partial^{\mu} \hat{\pi} \bar{H} \right], \quad \mathbf{H} = \frac{1 + i}{2} \left[\mathbf{D}_{\mu}^{*} \gamma^{\mu} - \mathbf{D} \gamma_{5} \right]$$

- One coupling const. $g_{\pi}=0.59$ (from $D^*
 ightarrow D\pi$ decay)
- Form factor (Hadron has finite size)

$${\cal F}(q^2)=rac{\Lambda^2-m_\pi^2}{\Lambda^2-q^2}, \hspace{1em} \Lambda_{ar D}\sim 1130$$
 MeV (by Quark model)

One pion exchange potential in $D^{(*)}\overline{D}^{(*)}$ Meson exchange model

• One boson exchange potential (OBEP)

 $DD^*\pi$ vertex induces OPEP ($DD\pi$ vertex violates the parity conservation)

$$\underbrace{\mathsf{OPEP}}_{V^{\pi}} = -\frac{1}{2} \left(\frac{g_{\pi}}{f_{\pi}} \right)^2 \left[\vec{S}_1 \cdot \vec{S}_2 C(r) + S_{12}(\hat{r}) T(r) \right] \vec{\tau}_1 \cdot \vec{\tau}_2$$

Comments

• HQS induces $D(0^-) - D^*(1^-)$ coupling \rightarrow OPEP works!

One pion exchange potential in $D^{(*)}\overline{D}^{(*)}$ Meson exchange model

• One boson exchange potential (OBEP) with Tensor force!

 $DD^*\pi$ vertex induces OPEP ($DD\pi$ vertex violates the parity conservation)

$$\underbrace{\mathsf{OPEP}}_{V^{\pi}} = -\frac{1}{2} \left(\frac{g_{\pi}}{f_{\pi}}\right)^2 \left[\vec{S}_1 \cdot \vec{S}_2 C(r) + \mathbf{S_{12}(\hat{r})T(r)}\right] \vec{\tau}_1 \cdot \vec{\tau}_2$$

Comments

- HQS induces $D(0^-) D^*(1^-)$ coupling \rightarrow OPEP works!
- Tensor force $T(r) \Rightarrow$ the driving force in atomic nuclei $S_{12}(\hat{r}) = 3(\vec{S}_1 \cdot \hat{r})(\vec{S}_2 \cdot \hat{r}) \vec{S}_1 \cdot \vec{S}_2 \rightarrow S-D$ mixing

Heavy meson exchange potential Meson exchange model

• $D^{(*)}$ meson exchange potential in $\pi J/\psi - D^{(*)}\bar{D}^{(*)}$

Comments

- Spin-spin $(\vec{S}_1 \cdot \vec{S}_2)$ and Tensor (S_{12}) terms
- Energy-dependence $(1/\sqrt{E_{\pi}})$

6 Nov. 2018

< ロ > < 同 > < 回 > < 回 >

э

Numerical results: Phase shift

Meson exchange model

• We found...

э

Numerical results: Phase shift

Meson exchange model

• We found... No Bound state, No Resonance Very Small phase shift $|\delta| < 0.09$ [rad]

• $D^{(*)}\bar{D}^{(*)}$ channel: **Small** contribution from OPEP

• $\pi J/\psi$ channel: $D^{(*)}$ exchange is Negligible

16

Numerical results: Phase shift

Meson exchange model

• We found... No Bound state, No Resonance Very Small phase shift $|\delta| < 0.09$ [rad]

- $D^{(*)}\overline{D}^{(*)}$ channel: **Small** contribution from OPEP Why?: Isospin factor $\vec{\tau}_1 \cdot \vec{\tau}_2$, -3 (l = 0), but Z_c :+1 (l = 1)
- $\pi J/\psi$ channel: $D^{(*)}$ exchange is **Negligible** Why?: Volume Integral $V_C^D(\vec{q}\,^2 = 0) = 3.14 \text{ GeV}^{-2}$ $\leftrightarrow V_{NN}^\sigma \sim 3.00 \times 10^2 \text{ GeV}^{-2}$

D meson exchange Meson exchange model

• No resonance is found

 \Leftrightarrow The strong $\pi J/\psi - D\bar{D}^*$ contribution is not explained.

- (同) - (目) - (目)

17

D meson exchange Meson exchange model

• No resonance is found

 \Leftrightarrow The strong $\pi J/\psi - D\bar{D}^*$ contribution is not explained.

 \Downarrow Another Short range force

- (同) - (目) - (目)

Quark exchange model

Meson-meson scattering by the quark exchange

• Only
$$\pi J/\psi - D\bar{D}^*$$
 channel

Yasuhiro Yamaguchi (RIKEN), Yukihiro Abe (RCNP, Osaka Univ.), Kenji Fukukawa (Suma Gakuen), Atsushi Hosaka (RCNP, Osaka Univ.), in preparation Born-order quark-exchange diagram

T. Barnes and E. S. Swanson, PRD46(1992)131. Swanson, Ann. Phys. 220(1992)73.

• $AB \rightarrow CD$ scattering $\mathcal{M}_{fi} \propto \langle C, D | H_I | A, B \rangle$

 Ingredients: Meson Wavefunctions(A, B, C, D) Quark interaction (Quark Model)

• Born amplitude \Rightarrow Meson-meson Potential can be obtained

6 Nov. 2018

- 4 同 6 4 日 6 4 日 6

- 3

• Quark Hamiltonian (One gluon exchange + Linear potentials)

Barnes and Swanson, PRD46(1992)131.; Swanson, Ann. Phys. 220(1992)73.

$$H_{ij}^{q} = K_{q} + \left(-\frac{3}{4}br + \frac{\alpha_{s}}{r} - C\right)\vec{F}_{i}\cdot\vec{F}_{j}$$
$$-\frac{8\pi\alpha_{h}}{3m_{i}m_{j}}\left(\frac{\sigma^{3}}{\pi^{3/2}}e^{-\sigma^{2}r_{ij}^{2}}\right)\vec{S}_{i}\cdot\vec{S}_{j}\vec{F}_{i}\cdot\vec{F}_{j}$$

> Parameters are fixed to reproduce the mass of mesons

Table: Quark Model Parameters from Ann.Phys.220(1992)73.

$$m_q = 0.375 \text{ GeV}$$
 $m_c = 1.9 \text{ GeV}$
 $\alpha_s = 0.857$
 $\alpha_h = 0.840$
 $b = 0.154 \text{ GeV}^{-2}$
 $C = -0.4358 \text{ GeV}$
 $\sigma = 0.70 \text{ GeV}$
 $C = -0.4358 \text{ GeV}$

Meson Wavefunction

Quark exchange interaction

• Single Gaussian Approximation (Simple)

$$\psi(r) = (4\pi\lambda)^{-3/4} \exp\left(-\frac{r^2}{8\lambda}\right)$$

• λ is determined to minimize $E(\lambda) = \langle \psi | H^q | \psi \rangle$

	$ig({\it m} ext{[GeV]}, \lambda ext{[GeV^{-2}]} ig)$		$(m$ [GeV], λ [GeV ⁻²] $)$		$(m$ [GeV], λ [GeV ⁻²] $)$
π	(0.258, 0.854)	D	(1.876, 0.965)	η_c	(2.826, 0.261)
ρ	(0.782, 2.549)	D*	(2.016, 1.298)	J/ψ	(2.910, 0.290)

▷ π wavefunc.⇒ Single Gaussian is not enough

| 4 同 1 4 三 1 4 三 1

Meson Wavefunction

Quark exchange interaction

• Single Gaussian Approximation (Simple)

$$\psi(r) = (4\pi\lambda)^{-3/4} \exp\left(-\frac{r^2}{8\lambda}\right)$$

• λ is determined to minimize $E(\lambda) = \langle \psi | H^q | \psi \rangle$

	$\left({m} \left[{ ext{GeV}} ight] , \lambda \left[{ ext{GeV}}^{-2} ight] ight)$		$(m$ [GeV], λ [GeV ⁻²] $)$		$\left(m\left[ext{GeV} ight],\lambda\left[ext{GeV}^{-2} ight] ight)$
π	(0 . 258 , 0.854)	D	(1.876, 0.965)	η_c	(2.826, 0.261)
ρ	(0.782, 2.549)	<i>D</i> *	(2.016, 1.298)	J/ψ	(2.910, 0.290)

▷ π wavefunc. ⇒ Single Gaussian is not enough

→ We use $\lambda = 2.20 \text{ GeV}^{-2}$ by T. Barnes and E. S. Swanson ($\pi\pi$ phase shift is reproduced)

Single Gaussian Wavefunc. is obtained \rightarrow Amplitude

Scattering Amplitude Quark exchange interaction

B

• Born quark exchange diagrams T. Barnes and E. S. Swanson, PRD46, 131 (1992). Quark interaction between Mesons \Rightarrow Four diagrams

 $\mathcal{M}_{\textit{fi}}^{\textit{tot}} = \mathcal{M}_{\textit{fi}}^{\textit{capture1}} + \mathcal{M}_{\textit{fi}}^{\textit{capture2}} + \mathcal{M}_{\textit{fi}}^{\textit{transfer1}} + \mathcal{M}_{\textit{fi} = }^{\textit{transfer2}} + \mathcal{M}_{\textit{fi} = }^{\textit{transfer2}}$

B

D

6 Nov. 2018

D

Scattering Amplitude

Quark exchange interaction

- ▷ Meson momenta: A, B, C, D
- Quark momenta: $a, \bar{a}, b, \bar{b}, c, \bar{c}, d, \bar{d}$
- ▷ Conservation: A + B = C + D, $\bar{a} = \bar{d}$, b = d

Amplitude

 $\rightarrow \int \int d^{3}a d^{3}c \phi_{C}^{*}(2\vec{c}-\vec{C})\phi_{D}^{*}(2\vec{a}-2\vec{A}-\vec{C})V(\vec{a}-\vec{c})\phi_{A}(2\vec{a}-\vec{A})\phi_{B}(2\vec{a}-\vec{A}-2\vec{C})$

Scattering Amplitude

Quark exchange interaction

- ▷ Meson momenta: A, B, C, D
- Quark momenta: $a, \bar{a}, b, \bar{b}, c, \bar{c}, d, \bar{d}$
- ▷ Conservation: A + B = C + D, $\bar{a} = \bar{d}$, b = d

Amplitude

$$\rightarrow \int \int d^{3}a d^{3}c \phi_{C}^{*}(2\vec{c}-\vec{C})\phi_{D}^{*}(2\vec{a}-2\vec{A}-\vec{C})V(\vec{a}-\vec{c})\phi_{A}(2\vec{a}-\vec{A})\phi_{B}(2\vec{a}-\vec{A}-2\vec{C})$$

• Potentials (momentum space) **Coulomb:** $V^{Coul}(q) = -\frac{\alpha_s}{2\pi^2} \frac{1}{\vec{q}^2}$, **Hyperfine:** $V^{Hyp}(q) = -\frac{8\pi\alpha_h}{3m_im_j}e^{-\vec{q}^2/4\sigma^2}$ Linear (Regularized):

$$V^{Lin}(r) = br \times \mathbf{e}^{-\varepsilon r} \to V^{Lin}(q) = b \left[\frac{-8\pi}{(\vec{q}^2 + \varepsilon_{\Box}^2)^2} + \frac{32\pi\varepsilon^2}{(\vec{q}^2 + \varepsilon_{\Box}^2)^3} \right]_{\varepsilon} \to \varepsilon_{\Box}$$

Cross Section (Born term): $\pi J/\psi - D\bar{D}^*$

Numerical Result

• $\pi J/\psi - D\bar{D}^*$: Amplitude

 \Rightarrow Cross section $\propto |(Coulomb) + (Confine) + (Hyperfine)|^2$

< 回 > < 回 > < 回 >

Cross Section (Born term): $\pi J/\psi - D\bar{D}^*$

Numerical Result

• $\pi J/\psi - D\bar{D}^*$: Amplitude

 \Rightarrow Cross section $\propto |(Coulomb) + (Confine) + (Hyperfine)|^2$

Dominant role of the Hyperfine (Spin-spin) term
 ⇔ Minor role of the Coulomb term.

Comparing results of Quark exchange and D^(*) exchange
 (a) D^(*) meson exchange
 (b) Quark exchange

< 同 > < 回 > < 回 >

• Comparing results of Quark exchange and $D^{(*)}$ exchange (a) $D^{(*)}$ meson exchange (b) Quark exchange

• Comparing results of Quark exchange and $D^{(*)}$ exchange

(i) Quark ex vs $D^{(*)}$ ex

• Comparing results of Quark exchange and $D^{(*)}$ exchange

• $D^{(*)}$ exchange:

• Comparing results of Quark exchange and $D^{(*)}$ exchange

- $D^{(*)}$ exchange: $\sigma < 3.5 \times 10^{-8}$ mb
- Large difference between Quark exchange and $D^{(*)}$ exchange

b) 4 (E) b)

Summary

- Many exotic states near the threshold.
 - \rightarrow Understanding the hadron-hadron interaction is needed.
- Charged charmonium $Z_c(3900)$ has been discussed as the Hadronic molecules or the threshold cusp.
- OPEP contribution is not strong. $D^{(*)}$ meson exchange is **negligible**.
- Quark exchange interaction is introduced as Short range $\pi J/\psi D^{(*)}D^{(*)}$ potential.

We find Large difference between results from Quark exchange and $D^{(*)}$ meson exchange.

- Single Gaussian \rightarrow Multi-Gaussian (Especially π)
- Beyond Born-order \rightarrow T = V + VGT
 - \Rightarrow To compare the Exp. and Lattice result
- Introducing $\rho \eta_c$, $\psi' \pi$,...
- Bottom Sector: $Z_b(10610)$ and $Z_b(10650) \Rightarrow \pi \Upsilon B\bar{B}^*$

Thank you for your kind attention.

6 Nov. 2018

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >