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Are quantum field models analytic in coupling
constant?

Are vacuum expectations or effective action analytic in coupling
constant? Expanding amplitude of any process in perturbation
series over coupling constant we implicitly suppose analyticity
of this amplitude in this coupling constant. But it is well known
that perturbation series in quantum field models are asymptotic
ones. We want to investigate perturbation series in QED from
the following viewpoint: is there any singularity in this series at
e = 0, where e is electric charge (coupling constant). I.e., can
we "switch off" the electromagnetic interaction in Quantum
Electrodynamics?



General definitions

We will use the following notations: the effective action
W [η, η̄, Jµ] which is generator of all weakly connected Green
functions, is connected with the generator of all Green functions
Z [η, η̄, Jµ] (partition function) as follows:

Z [η, η̄, Jµ] = exp (iW [η, η̄, Jµ]) .

Here Jµ, η, η̄ are external classical sources. Consequently, the
vacuum expectations (in the presence of external sources) for
quantum fields are

ψi =
δW
δη̄i , ψ̄i = −δW

δηi and Aµ
i =

δW
δJ i

µ

.



Equations

Applying the DeWitt operator

Λ = 1− i~
2

δ2W

δJ i
µδJ

j
ν

δ2

δAµ
i δA

ν
j

+ i~
δ2W
δJ i

µδη
j

δ2

δAµ
i δψ̄j

−

− i~
δ2W
δJ i

µδη̄
j

δ2

δAµ
i δψj

+ i~
δ2W
δηiδη̄j

δ2

δψjδψi
+ · · ·

to the

Λ
δS
δAi

µ

= −Jµ
i , Λ

δS
δψi = η̄i , Λ

δS
δψ̄i

= −ηi

where S is classical action for QED



we get following functional equations for the QED effective
action W (here all the fields are vacuum expectations of
quantum fields):

−eψ̄γµψ + D−1µνAν + ie~Tr
(
γµ
δ2W
δηδη

)
= −Jµ;

[
ψ̄(x)

(
i
←−
∂̂ + eÂ + m

)]
α

+ ie~

(
δ2W
δJ i

µδη
i γµ

)
α

= ηα;

[(
i ∂̂ − eÂ−m

)
ψ
]
α

+ ie~

(
γµ

δ2W
δJ i

µδη̄
i

)
α

= −ηα.

B.Fayzullaev, M.Musakhanov. Annals of Physics, (1995).



Due to

δ2W
δJ i

µδη
j = − δψ̄

j

δJ i
µ

=
δAµ

i
δηj ;

δ2W
δJ i

µδη̄
j =

δψj

δJ i
µ

=
δAµ

i
δη̄j ;

δ2W
δηαδηβ

= −δψ
β

δηα
= −δψ

α

δηβ

the equations may be bringed to the more convenient for
further consideration form:

ie~Tr
(
δψ̄i

δη̄i γµ

)
= ie~Tr

(
δψi

δηi γµ

)
= J i

µ − eψ̄γµψ + D−1
µν Aν ;

−ie~
δψ̄i

δJ i
µ

γµ = ie~
δÂ
δη

= η̄i
α −

[
ψ̄(x)

(
i
←−
∂̂ + eÂ + m

)]
α

;

ie~γµ
δψi

δJ i
µ

= ie~
δÂ
δη̄

= −ηi
α −

[(
i ∂̂ − eÂ−m

)
ψ
]
α
.

I.e., they are equations for vacuum expectations of quantum
fields.



Usual way to solve these equations is perturbative expansion
over small coupling constant e. I.e., at first step we put coupling
constant e = 0, thereby turning these equations into equations
for free particles which can be solved easily. Further,
interactions between free particles are taken into account
iteratively over small parameter e (really, e2/4π) getting
perturbative power series:

W = W0 + eW1 + e2W2 + · · · . (1)

This is usual way. But there is one circumstance must be taken
into account. It is obvious that in front of each derivative term
there is coupling constant e, this means if we put e = 0 then
our (variational) differential equations transform to algebraic
ones. In the following section we show that in this case a full
solution to equations of such type (with small parameter)
should contains not only regular but singular (in e) part too.



A simple example

The formulation of problem under consideration may be
explained in the following simple example: find solution to
equation

µ
dx(t)

dt
= a(t)x(t) + b(t), x(0) = x0, 0 ≤ t <∞

in the form of perturbative expansion over small µ. It is very
easy to find exact solution to this equation obeying given
boundary condition:

x(t) = x0 exp

1
µ

t∫
0

a(s)ds

+
1
µ

t∫
0

b(s) exp

−1
µ

s∫
t

a(z)dz

ds.



A problem arise

It is obvious that µ = 0 is essential singular point for solution to
our eqs., and, consequently, regular perturbative expansion for
small µ can not exist. The reason for such situation can be
seen from the equation itself: if we put µ = 0 in this equation
then it fails to be differential equation and becomes to be
algebraic one

a(t)x̃(t) + b(t) = 0. (2)

But solution to this (algebraic) equation x̃(t) = −b(t)/a(t) in
general can not obey given boundary condition:
a(0)/b(0) 6= x0. It happens loss of boundary condition. This
means that solution to (2) can not be considered even as first
approximation to exact solution of our equations. This
consideration underlies the reason for singularity at µ = 0.



Algorithm I

Derivation of a singular perturbation series according to
A.B.Vasileva and V.F.Butuzov (1973) consist of the following
steps. First, take the second term in the exact solution and
integrate it by parts to get the following series:

1
µ

t∫
0

b(s) exp

−1
µ

s∫
t

a(z)dz

ds = −
[

b(t)
a(t)

+ µ

(
b(t)
a(t)

)′ 1
a(t)

+ · · ·
]

+

+

[
b(0)

a(0)
+ µ

(
b(0)

a(0)

)′ 1
a(0)

+ · · ·
]

exp

1
µ

t∫
0

a(s)ds

 .



Algorithm II

As a result the following series is obtained:

x(t) = −
[

b(t)
a(t)

+ µ

(
b(t)
a(t)

)′ 1
a(t)

+ · · ·
]

+

+

[
x0 +

b(0)

a(0)
+ µ

(
b(0)

a(0)

)′ 1
a(0)

+ · · ·
]

exp

1
µ

t∫
0

a(s)ds

 .



Algorithm III

Let’s to make substitution t = µτ, s = µζ in the integrand of the
exponent. Then

1
µ

t∫
0

a(s)ds =

τ∫
0

a(µζ)dζ = a(0)τ +µ
a′(0)

2
τ2 +µ2 a′′(0)

6
τ3 + · · ·

or,

exp

1
µ

t∫
0

a(s)ds

 = ea(0)τ
[
1 + µ

a′(0)

2
τ2+

+µ2 a′′(0)

6
τ3 + µ2 τ

4

4
a′2(0) + · · ·

]



Algorithm IV
So it has been derived the following series over µ :

x(t , µ) = x̃(t) + Πx(τ),

where

x̃(t) = x̃0(t) + µx̃1(t) + · · · = −b(t)
a(t)

− µ
(

b(t)
a(t)

)′ 1
a(t)

+ · · · (3)

is a regular part of the solution and

Πx(τ) = Π0x(τ) + µΠ1x(τ) + µ2Π2x(τ) + · · · (4)

is a singular one with

Π0x(τ) =

(
x0 +

b(0)

a(0)

)
ea(0)τ ;

Π1x(τ) =

[(
x0 +

b(0)

a(0)

)
a′(0)

τ2

2
+

(
b(0)

a(0)

)′ 1
a(0)

]
ea(0)τ (5)

etc. The terms Πkx(τ) are called boundary layer terms.



Algorithm V

Now we can present the algorithm of singular perturbative
solution in the following form. Given above mentioned equation
with boundary condition for x(t). Then the solution should be
divided into two parts as follows: x(t) = x̃(t) + Πx(τ) and then
the equation can be presented in a form:

µ
dx̃
dt

+
dΠx(τ)

dτ
= a(t)x̃(t)+a(µτ)Πx(τ)+b(t), τ = t/µ. (6)

Further one should to expand each term in both sides of this
equation in series over µ. Equating coefficients in front of the
same powers of µ, separately for terms depending on t and
terms depending on τ , one obtains equations for determination
of terms of the expansions (3) and (4).



Back to the QED

Let’s to introduce new scaled variables ρ = η/e, ρ̄ = η̄/e and
jµ = Jµ/e. And then present each field in our main eqs. for
QED in the form, divided into regular and singular parts:

ψ = ψR(J, η, η̄; e) + Πψ(ej ,eρ, eρ̄; e),

ψ = ψ
R

(J, η, η̄; e) + Πψ(ej ,eρ, eρ̄; e),

Aµ = AR
µ (J, η, η̄; e) + ΠAµ(ej ,eρ, eρ̄; e).

Further acting in accordance with above mentioned method
one should to divide the QED eqs. into part depending on
J, η, η̄ and part, depending on j , ρ, ρ̄. Let’s for simplification of
equations denote the sources as follows: J, η, η̄ ⇔ s and scaled
sources as follows: j , ρ, ρ̄⇔ σ.



Equations for singular parts

Equations for singular (boundary layer) parts are more
complicated, I will demonstrate you only one of them:

−i~Tr
(
δΠψ(eσ; e)

δρ
γµ

)
= −i~Tr

(
δΠψ(eσ; e)

δρ
γµ

)
=

= eΠψ(eσ; e)γµψ(eσ; e)+

+eψ(eσ; e)γµΠψ(eσ; e) + eΠψ(eσ; e)γµΠψ(eσ; e)− D−1
µν ΠAν(eσ; e);



Zeroth order equations

At first step we should to extract zeroth order (in e) equations
from above mentioned ones:

i~Tr
(
δΠ0ψ(σ)

δρ
γµ

)
= i~Tr

(
δΠ0ψ(σ)

δρ
γµ

)
= D−1

µν Π0Aν(σ);

−i~
δΠ0ψ(σ)

δjµ
γµ = i~

δΠ0Â(σ)

δρ
= −Π0ψ(σ)

(
i
←−
∂̂ + m

)
;

i~γµ
δΠ0ψ(σ)

δjµ
= i~

δΠ0Â(σ)

δρ
= −

(
i ∂̂ −m

)
Π0ψ(σ).



Solution to singular part

We have following expression for singular part of the spinor
field:

Π0ψ(σ) = c
[
1− exp

[
i

4~
ĵ(i ∂̂ −m)

]]
ψD+

+ exp
[

i
4~

ĵ(i ∂̂ −m)

] ∞∑
n=0

cn(ρ̄ρ)n+sρ =

= exp
[

i
4e~

Ĵ(i ∂̂ −m)

] ∞∑
n=0

cn(ρ̄ρ)n+sρ

and conjugate expression for Π0ψ(σ). These expressions has
essential singularity at zero coupling limit e→ 0 (don’t forget
ρ = η/e).



Summary

The singularity at e = 0 is very interesting - its existence means
that in general we can’t "switch off" electromagnetic interaction
and go to "free electron". It is the time to remember Dyson’s
proof (1952) that perturbation series in QED is asymptotic one.
Our consideration shows that QED effective action can’t be an
analytic function in the neighborhood of e = 0 , consequently,
any series in this region can’t be convergent one. In the light of
this singularity the notion of "free electron" should be revised -
because it is impossible to "switch off" the electromagnetic
interaction the existence of free, noninteracting electrically
charged particle is questionable. But this point is very hard one
and more accurate studies required to be conclusively
established.
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