Hadronic

Paschen-Back Effect

 in
P-wave Charmonia under

the strong magnetic field

S. Iwasaki ${ }^{A, B}$, M. Oka B, K. Suzuki C, T. Yoshida ${ }^{A}$ Tokyo Inst. of Tech. ${ }^{A}$, JAEA ${ }^{B}$, KEK C
[1] "Hadronic Paschen-Back effect," arXiv:1802.04971
[2] "Quarkonium radiative decays from the Hadronic Paschen-Back effect," Phys. Rev. D98, 054017 (2018)

Index

- Introduction
- HIC and magnetic field / PB effect
- Motivation \& Purpose
- Relative Hamiltonian in MF
-Calculation method
- CGEM
-Results
- mass for $J_{z}= \pm 1 /$ mass for $J_{z}=0$ / Comparing with another research
- Anisotropic decay
- Summary \& Prospect

Introduction 1/2-Relativistic Heavy Ion Collision and Magnetic Field -

1,000,000 times stronger

 than MF on surface of neutron $\operatorname{star}{ }^{[1,2]}$$\uparrow$ Large Hadron Collider (LHC) and
Relativistic Heavy Ion Collider (RHIC)
[1] M Oharaحulinaor M M Nav arXiv•1711.09975
Next page :Effect about MF
oneev,
925 (2009)

Introduction 2/2 - Paschen-Back effect (PBE)-

Zeeman effect $\left\{\right.$ anomalous Zeeman eff. : split by S_{Z} normal Zeeman eff. : split by L_{z}

Paschen-Back effect : these in strong MF region \uparrow
Eigenstates are separated by L_{z} and S_{z} in PB effect as MF gets stronger than the scale of $L S$ coupling.

```
\downarrowWF's of an electron In a charmonium with }\mp@subsup{J}{z}{}=\mp@subsup{L}{z}{}+\mp@subsup{S}{z}{}=+1\mathrm{ ,
```

in hydrogen in vacuum

(1) they are separated
(2) eigenfunctions drastically deform
(3) Observables should change, too

Motivation

Extremely strong magnetic field is predicted in heavy ion collision (HIC) but its strength has not been measured

Charmonium ($\bar{c} c$) would be quickly produced in HIC \longrightarrow appropriate to measure quickly disappearing MF P-wave system is expected to show PBE

Calculation

We calculate spectra, deformed wave functions (WF), and mixing ratios of P -wave charmonia in strong MF, neglecting thermal effects etc in HIC as first step for realistic calculation

Steps:

Constant magnetic field

+ time dependence
+ thermal effects
+ electrical field

Realistic calculation

Hamiltonian $1 / 3$

Started from the form:

$$
H=\sum_{i=1}^{2}\left[\frac{1}{2 m_{i}}\left(\boldsymbol{p}_{i}-q_{i} \boldsymbol{A}\left(\boldsymbol{r}_{i}\right)\right)^{2}-\boldsymbol{\mu}_{i} \cdot \boldsymbol{B}+m_{i}\right]+V(r)
$$

Chose symmetric gauge:

$$
A(r)=\frac{1}{2} B \times r
$$

Used Cornell potential with SS, LS, and tensor coupling:

$$
\begin{aligned}
V(r) & =\sigma r-\frac{4}{3} \frac{\alpha_{s}}{r}+V_{\mathrm{SS}}(r)+V_{\mathrm{LS}}+V_{\mathrm{T}}, \\
V_{\mathrm{SS}}(r) & =\frac{32 \pi \alpha_{s}}{9 m_{e}^{2} \delta(r) \boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2},} \\
V_{\mathrm{LS}} & =\frac{1}{m_{c}^{2}}\left(\frac{2 \alpha_{s}}{r^{3}}-\frac{\sigma}{2 r}\right) \boldsymbol{L} \cdot \boldsymbol{S}, \\
V_{\mathrm{T}} & =\frac{1}{m_{2}^{2}} \frac{4 \alpha_{s}}{3 r^{3}} 3\left(3\left(\boldsymbol{S}_{1} \cdot \hat{\boldsymbol{r}}\right)\left(\boldsymbol{S}_{2} \cdot \hat{\boldsymbol{r}}\right)-\boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}\right],
\end{aligned} \quad \text { from relativistic correction }
$$

Reducing total Hamiltonian into relative one ... (next page)

Hamiltonian 2/3

$$
\begin{aligned}
& H_{\mathrm{rel}}=H_{\mathrm{diag}}+H_{\mathrm{m} . \mathrm{m} .}+V_{\mathrm{LS}}+V_{\mathrm{T}}+2 m_{c}, \\
& H_{\mathrm{diag}}=\left[-\frac{1}{2 \mu} \nabla^{2}+\frac{q^{2} B^{2}}{8 \mu} \rho^{2}\right]+\sigma r-\frac{4}{3} \frac{\alpha_{s}}{r}+\frac{32 \pi \alpha_{s}}{9 m_{c}^{2}} \delta(r)\left(\boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}\right), \\
& H_{\mathrm{m} . \mathrm{m} .}=-\sum_{i=1}^{2}\left(\boldsymbol{\mu}_{i} \cdot \boldsymbol{B}\right), \\
& V_{\mathrm{LS}}=\frac{1}{m_{c}^{2}}\left(\frac{2 \alpha_{s}}{r^{3}}-\frac{\sigma}{2 r}\right) \boldsymbol{L} \cdot \boldsymbol{S}, \\
& V_{\mathrm{T}}=\frac{1}{m_{c}^{2}} \frac{4 \alpha_{s}}{3 r^{3}}\left[3\left(\boldsymbol{S}_{1} \cdot \hat{\boldsymbol{r}}\right)\left(\boldsymbol{S}_{2} \cdot \hat{\boldsymbol{r}}\right)-\boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}\right], \\
& \text { where we assumed } \boldsymbol{B}=(0,0, B), \\
& \text { and use cylindrical coordinate }(\rho, Z, \boldsymbol{\phi})
\end{aligned}
$$

But we can't start calculation!!
$\frac{1}{r^{3}}$ and $\delta(r)$ terms overcome $\nabla^{2} \square$ "collapse" solutions appear We have to smear potentials

$$
\begin{aligned}
\delta(r) & \rightarrow\left(\frac{\Lambda}{\sqrt{\pi}}\right)^{3} e^{-\Lambda^{2} r^{2}} \\
\frac{1}{r^{3}} & \rightarrow A \frac{1-e^{-\Lambda^{2} r^{2}}}{r^{3}}
\end{aligned}
$$

Hamiltonian 3/3

In summary, the relative Hamiltonian we solve in this study is as follows:

$$
\begin{aligned}
H_{\mathrm{rel}} & =H_{\mathrm{diag}}+H_{\mathrm{m} . \ldots}+V_{\mathrm{LS}}+V_{\mathrm{T}}+2 m_{c} \\
H_{\mathrm{diag}} & =\left[-\frac{1}{2 \mu} \nabla^{2}+\frac{q^{2} B^{2}}{8 \mu} \rho^{2}\right)+\sigma r-\frac{4}{3} \frac{\alpha_{s}}{r}+\frac{32 \pi \alpha_{s}}{9 m_{c}^{2}}\left(\frac{\Lambda}{\sqrt{\pi}}\right)^{3}\left(\boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}\right) e^{-\Lambda^{2} r^{2}}, \\
H_{\mathrm{m} . \mathrm{m} .} & =-\sum_{i=1}^{2}\left(\boldsymbol{\mu}_{i} \cdot \boldsymbol{B}\right) \\
V_{\mathrm{LS}} & =\frac{1}{m_{c}^{2}}\left(2 \alpha_{s} A_{\mathrm{LS}} \frac{1-e^{-\Lambda_{\mathrm{LS}}^{2} r^{2}}}{r^{3}}-\frac{\sigma}{2 r}\right) \boldsymbol{L} \cdot \boldsymbol{S}, \\
V_{\mathrm{T}} & =\frac{1}{m_{c}^{2}} 4 \alpha_{s} A_{\mathrm{T}} \frac{1-e^{-\Lambda_{\mathrm{T}}^{2} r^{2}}}{3 r^{3}}\left[3\left(\boldsymbol{S}_{1} \cdot \hat{\boldsymbol{r}}\right)\left(\boldsymbol{S}_{2} \cdot \hat{\boldsymbol{r}}\right)-\boldsymbol{S}_{1} \cdot \boldsymbol{S}_{2}\right]
\end{aligned}
$$

$\mu=m_{c} / 2$:reduced mass, $\boldsymbol{S}=\boldsymbol{S}_{\mathbf{1}}+\boldsymbol{S}_{2}$
$\left(\sigma, \alpha_{s}, \Lambda, m_{c}\right)=\left(0.1425 \mathrm{GeV}^{2}, 0.5461,1.0946 \mathrm{GeV}, 1.4794 \mathrm{GeV}\right)$ $\left(\Lambda_{L S}, A_{L S}, \Lambda_{T}, A_{T}\right)=(0.2 \mathrm{GeV}, 7.3,1.2 \mathrm{GeV}, 1.2)$
q : electrical charge of charm quarks Phys. Rev. D 72, 054026(2005) Barnes, Godfrey, Swanson

Calculation method :

Cylindrical Gaussian Expansion Method (CGEM)

Conventional GEM uses spherical Gaussian basis:

$$
\Psi_{\text {spherical }}(r)=N e^{-\alpha r^{2}}
$$

cf.) E. Hiyama, Y.Kino and M. Kamimura, Prog.Part.Nucl.Phys. 51223 (2003).
Therefore ... But now spherical symmetry violates by MF
Previous studies uses cylindrically symmetric one for S-wave:

$$
\Psi_{\text {cylindrical }}^{\mathrm{S}}(\rho, z, \phi)=N e^{-\beta \rho^{2}-\gamma z^{2}}
$$

K. Suzuki and T.Yoshida, Phys.Rev.D93, 051502 (2016). $※ \beta, \gamma$: range parameters, spin functions omitted,
Furthermore ...
N : normalization factor,
This study: cylindrically symmetric one for P -wave:

$$
\Psi_{\mathrm{cyl}}^{\mathrm{P}}\left(\rho, z, \phi ; L_{z}\right)=\left\{\begin{array}{c}
N z e^{-\beta \rho^{2}-\gamma z^{2}} \quad \text { for } L_{z}=0 \\
N(\mp \rho) e^{ \pm i \phi} e^{-\beta \rho^{2}-\gamma z^{2}} \quad \text { for } \mathrm{L}_{\mathrm{z}}= \pm 1
\end{array}\right.
$$

Solving the Hamiltonian with CGEM, we see ...

Results - mass for $J_{z}= \pm 1$

$$
\begin{gathered}
\text { Particle: |J; LS }\rangle \\
\chi_{c 2}:|2 ; 11\rangle \\
h_{c}:|1 ; 10\rangle \\
\chi_{c 1}:|1 ; 11\rangle
\end{gathered}
$$

State: $\left|\mathrm{L}_{\mathrm{z}} ; \mathrm{S}_{1 \mathrm{z}} \mathrm{S}_{2 \mathrm{z}}\right\rangle$
"3rd": $| \pm 1 ; \downarrow \uparrow\rangle$
"2nd": |0; $\uparrow \uparrow$ or $\downarrow \downarrow\rangle$
" 1 st ": $| \pm 1 ; \uparrow \downarrow\rangle$

Results - mass for $J_{z}=0$

So what?:-

$\uparrow\rangle$
$\uparrow\rangle$

Comparing with another research

T. Yoshida and K. Suzuki, Phys. Rev. D94, 074043 (2016)

Comparing with another research ...

LHC

Results ($\mathrm{J}_{\mathrm{z}}= \pm 1$, PB effect)

P-wave $\bar{c} \mathrm{c}, \mathrm{J}_{\mathrm{z}}= \pm 1$ (2nd), eB=$=0.00 \mathrm{GeV}^{2}$

- WF's start to deform from $e B \sim 0.01 \mathrm{GeV}^{2}$
- Max strength of MF in LHC: $|e B| \sim 1.0 \mathrm{GeV}^{2}$

RHIC: $|e B| \sim 0.1 \mathrm{GeV}^{2}$
SPS: $|e B| \sim 0.01 \mathrm{GeV}^{2}$
Deformations of wave functions can be detectable

anisotropic decay - to observe PB effect -

Photon radiation
E1 decay operator : $r \cdot \epsilon^{ \pm}$
$\epsilon^{ \pm}= \pm \frac{1}{\sqrt{2}}(1, \pm i, 0)$: polarization vector with z-axis along photon momentum
(Take z-axis parallel to the magnetic field)

For $L_{z}=0$ state, we have

$$
\langle S| r \cdot \epsilon^{ \pm}\left|P ; L_{z}=0\right\rangle \propto \sin \alpha
$$

For $L_{z}= \pm 1$ state, we have

$$
\begin{aligned}
& \langle S| r \cdot \epsilon^{ \pm}\left|P ; L_{z}=+1\right\rangle \propto \cos \alpha \pm 1 \\
& \langle S| r \cdot \epsilon^{ \pm}\left|P ; L_{z}=-1\right\rangle \propto \cos \alpha \mp 1
\end{aligned}
$$

As $|e B|$ gets large, states are purified into $\left|\mathrm{L}_{z} ; \mathrm{S}_{1 \mathrm{z}} \mathrm{S}_{2 z}\right\rangle$ ones
There's possibility to see such anisotropic decay from each state

Summary

- Motivation: to measure MF in HIC
- Calculation: P-wave charmonia in strong MF

$$
\hat{H}_{\mathrm{rel}}=\hat{H}_{\mathrm{diag}}+\hat{H}_{\mathrm{m} . \mathrm{m} .}+\hat{V}_{\mathrm{LS}}+\hat{V}_{\mathrm{T}}
$$

- We prepared basis for P-wave:

$$
\Psi_{c y 1}^{P}(\rho, z, \phi)=N r Y_{L_{z}}^{L=1}(\theta, \phi) e^{-\beta \rho^{2}-\gamma z^{2}}
$$

- We confirmed PBE occurs also in hadronic system
- HPBE leads to anisotropic decay

Prospect

- Go toward the realistic calculation
- To consider time-dependence, electrical field, thermal effects, ...

Index

- Introduction
- HIC and magnetic field / PB effect
- Motivation \& Purpose
- Relative Hamiltonian in MF
-Calculation method
- CGEM
-Results
- mass for $J_{z}= \pm 1 /$ mass for $J_{z}=0$ / Comparing with another research
- Anisotropic decay
- Summary \& Prospect

Calculation method $4 / 5$

Generalized eigenvalue problem

Usual eigenvalue problem : $H \boldsymbol{c}=E \boldsymbol{c}$
When we use orthogonal basis functions $\Psi_{i}(i=1, \cdots, n)$,

$$
\left(\begin{array}{ccc}
\left\langle\Psi_{1}\right| \mathcal{H}\left|\Psi_{1}\right\rangle & \cdots & \left\langle\Psi_{1}\right| \mathcal{H}\left|\Psi_{n}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle\Psi_{\mathrm{n}}\right| \mathcal{H}\left|\Psi_{1}\right\rangle & \cdots & \left\langle\Psi_{\mathrm{n}}\right| \mathcal{H}\left|\Psi_{n}\right\rangle
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=E\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)
$$

But now we use non-orthogonal basis: $\left\langle\Psi_{\mathrm{i}} \mid \Psi_{\mathrm{j}}\right\rangle \neq \delta_{i j}$,

$$
\left(\begin{array}{ccc}
\left\langle\Psi_{1}\right| \mathcal{H}\left|\Psi_{1}\right\rangle & \cdots & \left\langle\Psi_{1}\right| \mathcal{H}\left|\Psi_{n}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle\Psi_{\mathrm{n}}\right| \mathcal{H}\left|\Psi_{1}\right\rangle & \cdots & \left\langle\Psi_{\mathrm{n}}\right| \mathcal{H}\left|\Psi_{n}\right\rangle
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=E\left(\begin{array}{ccc}
\left\langle\Psi_{1} \mid \Psi_{1}\right\rangle & \cdots & \left\langle\Psi_{1} \mid \Psi_{\mathrm{n}}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle\Psi_{\mathrm{n}} \mid \Psi_{1}\right\rangle & \cdots & \left\langle\Psi_{\mathrm{n}} \mid \Psi_{\mathrm{n}}\right\rangle
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)
$$

The form of $H \boldsymbol{c}=E N c$: generalized eigenvalue problem
We use Cholesky decomposition

Calculation method 5/5
Cholesky decomposition

- If we have $N^{-1} H|\Psi\rangle=E|\Psi\rangle$,
then $N^{-1} H$ is not symmetric matrix technically difficult to diagonalize

Norm matrix N :real, symmetric, and positive so that we can decompose N as

$$
N=U^{T} U
$$

U:upper triangular matrix only w/ positive diagonal components - Here,

- Eigenvalues by $H^{\prime}:=\left(U^{T}\right)^{-1} H U^{-1}$ is same as those by $H|\Psi\rangle=E N|\Psi\rangle$
- H : symmetric
H^{\prime} : symmetric
We can separate the calculation

Slide in case : PB effect on $J_{z}= \pm 1,3^{\text {rd }}$

P-wave $\bar{c} c, J_{z}= \pm 1(3 \mathrm{rd}), e B=0.00 \mathrm{GeV}^{2}$

P波チャーモニウムの観測
$\chi_{c 1, c 2} \rightarrow J / \Psi \mu^{+} \mu^{-}$の崩壊ははつきり観測できる

LHC，RHIC，SPS での磁場の詳細

く磁場の時間発展 （衝突パラメー夕固定）
Int．J．Mod．Phys．
A24（2009）5925－5932

衝突時の磁場の衝突パラメータ依存性 \rightarrow Phys．Rev．C 85， 044907 （2012）

个RHIC の磁場

予備スライド ：$J_{Z}= \pm 1,3$ rdでの パッシエンバック効果

P－wave $\bar{c} c, J_{z}= \pm 1(3 \mathrm{rd}), e B=0.00 \mathrm{GeV}^{2}$

Slide in case : results on $J_{z}= \pm 1$
 $0.0,0.1, \ldots, 1.0 \mathrm{GeV}$ のGIF($\left.1^{\text {st }} 3^{\text {rd }}\right)$

P-wave $\bar{c} c, J_{z}= \pm 1$ (2nd), eB=0.0GeV ${ }^{2}$

Slide in case : results on $J_{z}= \pm 1$ GIF of $0.0,0.1, \ldots, 1.0 \mathrm{GeV}\left(4^{\text {th }}\right)$

P-wave $\bar{c} c, J_{z}= \pm 1(4 \mathrm{th}), \mathrm{eB}=0.0 \mathrm{GeV}^{2}$

