Hadronic Paschen-Back Effect In P-wave Charmonia under the strong magnetic field

S. Iwasaki^{*A,B*}, M. Oka^{*B*}, K. Suzuki^{*C*}, T. Yoshida^{*A*} Tokyo Inst. of Tech.^{*A*}, JAEA^{*B*}, KEK^{*C*}

[1] "Hadronic Paschen-Back effect," arXiv:1802.04971
[2] "Quarkonium radiative decays from the Hadronic Paschen-Back effect," Phys. Rev. D98, 054017 (2018)

Index

- Introduction
 - HIC and magnetic field / PB effect
- Motivation & Purpose
- Relative Hamiltonian in MF
- Calculation method
 - CGEM
- Results
 - mass for $J_z = \pm 1$ / mass for $J_z = 0$ / Comparing with another research
- Anisotropic decay
- Summary & Prospect

Introduction 1/2 – Relativistic Heavy Ion Collision and Magnetic Field -

1,000,000 times stronger than MF on surface of neutron star^[1,2]

 \uparrow Large Hadron Collider (LHC) and

Relativistic Heavy Ion Collider (RHIC)

[1] M Oborgaulinger M Aloy arXiv:1711.09975 pneev, Next page :Effect about MF

925 (2009)

Introduction 2/2 – Paschen-Back effect (PBE)–

Motivation

Extremely strong magnetic field is predicted in heavy ion collision (HIC) but its strength **has not been measured**

Charmonium ($\bar{c}c$) would be quickly produced in HIC appropriate to measure quickly disappearing MF **P-wave** system is expected to show PBE

Calculation

We calculate spectra, deformed wave functions (WF), and mixing ratios of **P-wave** charmonia in **strong** MF, neglecting thermal effects etc in HIC as *first step* for realistic calculation

Hamiltonian 1/3

Started from the form:

$$H = \sum_{i=1}^{2} \left[\frac{1}{2m_i} \left(\boldsymbol{p_i} - q_i \boldsymbol{A}(\boldsymbol{r}_i) \right)^2 - \boldsymbol{\mu_i} \cdot \boldsymbol{B} + m_i \right] + V(r)$$

Chose symmetric gauge:

$$oldsymbol{A}(oldsymbol{r}) = rac{1}{2}oldsymbol{B} imes oldsymbol{r}$$

Used Cornell potential with SS, LS, and tensor coupling:

$$\begin{split} V(r) &= \sigma r - \frac{4}{3} \frac{\alpha_s}{r} + V_{\rm SS}(r) + V_{\rm LS} + V_{\rm T}, \\ V_{\rm SS}(r) &= \frac{32\pi\alpha_s}{9m_c^2} \delta(r) \boldsymbol{S}_1 \cdot \boldsymbol{S}_2, \\ V_{\rm LS} &= \frac{1}{m_c^2} \left(\frac{2\alpha_s}{r^3} - \frac{\sigma}{2r} \right) \boldsymbol{L} \cdot \boldsymbol{S}, \\ V_{\rm T} &= \frac{1}{m_c^2} \frac{4\alpha_s}{3r^3} \left[3(\boldsymbol{S}_1 \cdot \hat{\boldsymbol{r}}) (\boldsymbol{S}_2 \cdot \hat{\boldsymbol{r}}) - \boldsymbol{S}_1 \cdot \boldsymbol{S}_2 \right], \end{split}$$

Reducing total Hamiltonian into relative one ... (next page)

Hamiltonian 2/3

$$\begin{split} H_{\rm rel} &= H_{\rm diag} + H_{\rm m.m.} + V_{\rm LS} + V_{\rm T} + 2m_c, \\ H_{\rm diag} &= \left[-\frac{1}{2\mu} \nabla^2 + \frac{q^2 B^2}{8\mu} \rho^2 \right] + \sigma r - \frac{4}{3} \frac{\alpha_s}{r} + \frac{32\pi\alpha_s}{9m_c^2} \delta(r) \left(\boldsymbol{S}_1 \cdot \boldsymbol{S}_2 \right), \\ H_{\rm m.m.} &= -\sum_{i=1}^2 \left(\boldsymbol{\mu}_i \cdot \boldsymbol{B} \right), \\ V_{\rm LS} &= \frac{1}{m_c^2} \left(\frac{2\alpha_s}{r^3} - \frac{\sigma}{2r} \right) \boldsymbol{L} \cdot \boldsymbol{S}, \\ V_{\rm T} &= \frac{1}{m_c^2} \frac{4\alpha_s}{3r^3} \left[3(\boldsymbol{S}_1 \cdot \hat{\boldsymbol{r}}) (\boldsymbol{S}_2 \cdot \hat{\boldsymbol{r}}) - \boldsymbol{S}_1 \cdot \boldsymbol{S}_2 \right], \\ \text{where we assumed } \boldsymbol{B} = (0, 0, B), \\ \text{and use cylindrical coordinate } \left(\rho, z, \phi \right) \end{split}$$

But we can't start calculation!! $\frac{1}{r^3}$ and $\delta(r)$ terms overcome ∇^2 \longrightarrow "collapse" solutions appear We have to smear potentials

$$egin{array}{rcl} \delta(r) & o & \left(rac{\Lambda}{\sqrt{\pi}}
ight)^3 e^{-\Lambda^2 r^2}, \ rac{1}{r^3} & o & Arac{1-e^{-\Lambda^2 r^2}}{r^3}, \end{array}$$

Hamiltonian 3/3

In summary, the relative Hamiltonian we solve in this study is as follows:

$$\begin{split} H_{\rm rel} &= H_{\rm diag} + H_{\rm m.m.} + V_{\rm LS} + V_{\rm T} + 2m_c, \\ H_{\rm diag} &= \left[-\frac{1}{2\mu} \nabla^2 \left(+ \frac{q^2 B^2}{8\mu} \rho^2 \right) + \sigma r - \frac{4}{3} \frac{\alpha_s}{r} + \frac{32\pi\alpha_s}{9m_c^2} \left(\frac{\Lambda}{\sqrt{\pi}} \right)^3 (\boldsymbol{S}_1 \cdot \boldsymbol{S}_2) \, e^{-\Lambda^2 r^2}, \\ H_{\rm m.m.} &= \left(-\sum_{i=1}^2 (\boldsymbol{\mu}_i \cdot \boldsymbol{B}) \right) \\ V_{\rm LS} &= \frac{1}{m_c^2} \left(2\alpha_s A_{\rm LS} \frac{1 - e^{-\Lambda_{\rm LS}^2 r^2}}{r^3} - \frac{\sigma}{2r} \right) \boldsymbol{L} \cdot \boldsymbol{S}, \\ V_{\rm T} &= \frac{1}{m_c^2} 4\alpha_s A_{\rm T} \frac{1 - e^{-\Lambda_{\rm T}^2 r^2}}{3r^3} \left[3(\boldsymbol{S}_1 \cdot \hat{\boldsymbol{r}}) (\boldsymbol{S}_2 \cdot \hat{\boldsymbol{r}}) - \boldsymbol{S}_1 \cdot \boldsymbol{S}_2 \right], \end{split}$$

 $\mu = m_c/2: \text{reduced mass}, S = S_1 + S_2$ $(\sigma, \alpha_s, \Lambda, m_c) = (0.1425 \text{ GeV}^2, 0.5461, 1.0946 \text{ GeV}, 1.4794 \text{ GeV})$ $(\Lambda_{LS}, \Lambda_{LS}, \Lambda_T, \Lambda_T) = (0.2 \text{ GeV}, 7.3, 1.2 \text{ GeV}, 1.2)$ $q: \text{electrical charge of charm quarks} \quad \text{Phys. Rev. D 72, 054026(2005) Barnes, Godfrey, Swanson}$ Next page: How to solve the Hamiltonian

Calculation method : <u>Cylindrical Gaussian Expansion Method (CGEM)</u> Conventional GEM uses spherical Gaussian basis: $\Psi_{spherical}(r) = Ne^{-\alpha r^2}$ cf.) E. Hiyama, Y.Kino and M. Kamimura, Prog.Part.Nucl.Phys.51 223 (2003). Therefore ... But now spherical symmetry violates by MF

Previous studies uses cylindrically symmetric one for S-wave:

$$\Psi_{\text{cylindrical}}^{\text{S}}(\rho, z, \phi) = N e^{-\beta \rho^2 - \gamma z^2}$$

K. Suzuki and T.Yoshida, Phys.Rev.D93, 051502 (2016). $\bigotimes \beta, \gamma$: range parameters,
spin functions omitted,
N: normalization factor,Furthermore ...N: normalization factor,

This study: cylindrically symmetric one for P-wave:

$$\Psi_{\text{cyl}}^{\text{P}}(\rho, z, \phi; L_z) = \begin{cases} N \ z e^{-\beta \rho^2 - \gamma z^2} & \text{for } L_z = 0\\ N(\mp \rho) e^{\pm i\phi} e^{-\beta \rho^2 - \gamma z^2} & \text{for } L_z = \pm 1 \end{cases}$$

Solving the Hamiltonian with CGEM, we see ...

```
Results – mass for J_z = \pm 1
```



```
Results – mass for J_z = 0
```


Uh-huh. so ... 🔅

So what?

Comparing with another research ...

T. Yoshida and K. Suzuki, Phys. Rev. D94, 074043 (2016)

Comparing with another research ...

S-wave

Results ($J_z = \pm 1$, PB effect)

- WF's start to deform from $eB \sim 0.01 \text{GeV}^2$
- Max strength of MF in LHC: |*eB*|~1.0GeV² RHIC: |*eB*|~0.1GeV² SPS: |*eB*|~0.01GeV²

Deformations of wave functions can be detectable

anisotropic decay – to observe PB effect –

Photon radiation E1 decay operator : $r \cdot \epsilon^{\pm}$

$$\epsilon^{\pm} = \pm \frac{1}{\sqrt{2}} (1, \pm i, 0)$$
: polarization vector
with z-axis along photon momentum
(Take z-axis parallel to the magnetic fie

For
$$L_z = 0$$
 state, we have $\langle S | r \cdot \epsilon^{\pm} | P; L_z = 0 \rangle \propto \sin \alpha$

For
$$L_z = \pm 1$$
 state, we have
 $\langle S | r \cdot \epsilon^{\pm} | P; L_z = +1 \rangle \propto \cos \alpha \pm 1$
 $\langle S | r \cdot \epsilon^{\pm} | P; L_z = -1 \rangle \propto \cos \alpha \mp 1$

As |eB| gets large, states are purified into $|L_z; S_{1z}S_{2z}\rangle$ ones There's possibility to see such anisotropic decay from each state

Summary

- Motivation: to measure MF in HIC
- Calculation: P-wave charmonia in strong MF

$$\hat{H}_{\mathrm{rel}} = \hat{H}_{\mathrm{diag}} + \hat{H}_{\mathrm{m.m.}} + \hat{V}_{\mathrm{LS}} + \hat{V}_{\mathrm{T}},$$

- We prepared basis for P-wave: $\Psi_{cyl}^{P}(\rho, z, \phi) = NrY_{L_{z}}^{L=1}(\theta, \phi)e^{-\beta\rho^{2}-\gamma z^{2}}$
- We confirmed PBE occurs also in hadronic system
- HPBE leads to anisotropic decay

Prospect

- Go toward the realistic calculation
 - To consider time-dependence, electrical field, thermal effects, ...

Index

- Introduction
 - HIC and magnetic field / PB effect
- Motivation & Purpose
- Relative Hamiltonian in MF
- Calculation method
 - CGEM
- Results
 - mass for $J_z = \pm 1$ / mass for $J_z = 0$ / Comparing with another research
- Anisotropic decay
- Summary & Prospect

Calculation method 4/5 Generalized eigenvalue problem

Usual eigenvalue problem : Hc = Ec

When we use orthogonal basis functions $\Psi_i (i = 1, \dots, n)$, $\begin{pmatrix} \langle \Psi_1 | \mathcal{H} | \Psi_1 \rangle & \cdots & \langle \Psi_1 | \mathcal{H} | \Psi_n \rangle \\ \vdots & \ddots & \vdots \\ \langle \Psi_n | \mathcal{H} | \Psi_1 \rangle & \cdots & \langle \Psi_n | \mathcal{H} | \Psi_n \rangle \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = E \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$

But now we use non-orthogonal basis: $\langle \Psi_i | \Psi_j \rangle \neq \delta_{ij}$,

 $\begin{pmatrix} \langle \Psi_{1} | \mathcal{H} | \Psi_{1} \rangle & \cdots & \langle \Psi_{1} | \mathcal{H} | \Psi_{n} \rangle \\ \vdots & \ddots & \vdots \\ \langle \Psi_{n} | \mathcal{H} | \Psi_{1} \rangle & \cdots & \langle \Psi_{n} | \mathcal{H} | \Psi_{n} \rangle \end{pmatrix} \begin{pmatrix} c_{1} \\ \vdots \\ c_{n} \end{pmatrix} = E \begin{pmatrix} \langle \Psi_{1} | \Psi_{1} \rangle & \cdots & \langle \Psi_{1} | \Psi_{n} \rangle \\ \vdots \\ \langle \Psi_{n} | \Psi_{1} \rangle & \cdots & \langle \Psi_{n} | \Psi_{n} \rangle \end{pmatrix} \begin{pmatrix} c_{1} \\ \vdots \\ c_{n} \end{pmatrix}$

The form of Hc = ENc: generalized eigenvalue problem

We use Cholesky decomposition

Calculation method 5/5 Cholesky decomposition

If we have N⁻¹H|Ψ⟩ = E|Ψ⟩, then N⁻¹H is not symmetric matrix technically difficult to diagonalize

Norm matrix *N*:real, symmetric, and positive so that we can decompose *N* as $N = U^T U$

U:upper triangular matrix only w/ positive diagonal components

Here,

• Eigenvalues by $H' \coloneqq (U^T)^{-1}HU^{-1}$ is same as those by $H|\Psi\rangle = EN|\Psi\rangle$

• H : symmetric \longrightarrow H' : symmetric

We can separate the calculation

Slide in case : PB effect on $J_z = \pm 1$, 3^{rd}

P波チャーモニウムの観測

 $\chi_{c1,c2} \rightarrow J/\Psi \mu^+ \mu^-$ の崩壊ははっきり観測できる

LHC, RHIC, SPS での磁場の詳細

个SPS の磁場

个RHICの磁場

Slide in case : results on $J_z = \pm 1$ 0.0, 0.1, ..., 1.0 GeV \mathcal{O} GIF(1st~3rd)

