

INSTITUTE OF NUCLEAR PHYSICS ACADEMY OF SCIENCES OF REPUBLIC UZBEKISTAN

MODIFICATED ACTIVATION METHOD FOR MEASUREMENT OF THE YIELD OF THE ASTROPHYSICAL REACTIONS

O.R. Tojiboyev

Background

- Presently a great attention is drawn to renew the existing experimental database on the low-energy nuclear reactions of astrophysical importance.
- More precise values of reaction rates are demanded: absolute experimental errors not higher than 4–5% are frequently required for verification of astrophysical models.
- Major experimental predicament is the exponential drop of cross section with energy decrease, which results in impetuous increase of experimental errors.

Therefore, it is desirable

- to develop a new experimental methods
- to modify existing experimental technique;
- to apply different methods for obtaining the same data.

Experimental methods

Several methods are usually used for the direct experimental studies of the astrophysical important processes at very low energies to obtain total cross sections $\sigma(E)$ (or S(E)), yields Y(E)

and, finally, reaction rate $< \sigma v > (T)$.

 \Box on-line detection of products formed directly in a reaction (in-beam γ spectrometry, charge particle detection etc.)

off-line reaction product detection
(activation, mass-spectrometric or X-ray fluorescence etc.)

Experimental Set-up at the Electrostatic Accelerator EG-II (Tashkent, NUU)

Accelerated particles: proton, Helium-4Energy of the proton beams0.15 – 1.5 MeVEnergy of the alpha beams0.2 - 3.5 MeVBeam currents (external)up to 25 MKAMonochromaticity~ 0.1%

Beam transportation system and experimental setup

Setup «MAIS» created by NUUz and INP AS Uz scientists allows one to measure the "prompt" and/or "activation" γ-quanta and β-particles

Topic of this presentation: Activation method with annihilation γ – quanta detection based at «MAIS»

Advantage:

- Good registration geometry (close to 4π);
- simple counting mode of accumulated information;
- directly final nuclei are registered ($\sigma_{tot}(E)$, Y(E));
- •. suppression of background events.

Disadvantages:

- only β + decayed nuclei are detected
- absence of identification of the reaction channel;
- relatively small detection efficiency;
- loss of nuclear decay statistics during irradiation.

Examples of the reactions for which the method is useful

(p,γ) reactions with stable nuclei:

		T1/2	decay
•	¹⁰ B(p,γ) ¹¹ C	20.4 min,	β+
•	¹² C(p,γ) ¹³ N	10 min,	β+
•	¹⁴ N(p,γ) ¹⁵ O	2 min,	β+
•	¹⁶ Ο(p,γ) ¹⁷ F	1 min,	β+
•	¹⁷ O(p,) ¹⁸ F	110 min,	β+
•	²⁴ Mg(p,γ) ²⁵ Al	7.2 sec	β+
•	²⁹ Si(p,γ) ³⁰ P	2.5 min,	β+
•	⁴² Ca(p,γ) ⁴³ Sc	233 min,	β+
•	⁴³ Ca(p,γ) ⁴⁴ Sc	236 min,	β+
	RI beams,	inverse geomet	:ry:
•	¹ H(¹³ N,γ) ¹⁴ O	71 sec	β+
	² H(¹⁰ C,p) ¹¹ C	20.4 min,	β+
•	² H(¹³ O,p) ¹⁴ O	71 sec,	β+
•	² H(¹⁴ O,p) ¹⁵ O	2 min,	β+
•	² H(¹⁷ F,p) ¹⁸ F	110 min,	β+

Procedure of data acquisition

The duration of the beam at the target in one cycle $\sim T_{1/2}$

During this time, the spectrum of "instant" γ quanta continues

Procedure of data acquisition

The duration of the pauses between the feeds of the beam is usually $\leq T_{1/2}$

During this time there is a set of the number of $\gamma\gamma$ - coincidence

The file structure of the experimental data.

Determination of the reaction yield through the number of counts

$$Y(E) = n_A \int_0^E dE' / S(E') \times \sigma(E')$$
(1)

S(E) - stopping power of protons

 $\mathbf{\Gamma}$

$$N_B(t_{irr}) = N_B = Y(E) \cdot (I_a / \lambda) \cdot [1 - e^{-\lambda \cdot t_{irr}}]$$
(2)

$$N_{j} = \boldsymbol{\xi} \cdot \boldsymbol{\varepsilon} \cdot \boldsymbol{a}_{B} \cdot \int_{(j-1) \cdot t_{m}}^{j \cdot t_{m}} e^{-\lambda t} dt \qquad (3)$$

(4)

$$a_{B} = C \cdot Y_{B} \cdot (1 / \delta t_{irr}) \cdot (1 - e^{-\lambda \cdot \delta t_{irr}}) \cdot e^{-\lambda \cdot t_{irr}}) \times$$

$$\times \sum_{i=1}^{i_{\max}} \sum_{m=1}^{i} \left[e^{-\lambda \cdot \Delta t \cdot (i-m)} \cdot \sum_{k=1}^{k_{\max}} \left\{ N_{m,k}^{I} \cdot e^{k \cdot \lambda \cdot \delta t_{irr}} \right\} \right]$$

The screenshot of the program MAIS

S.B. Igamov, O.R. Tojiboyev, et al., Int. Sci. Forum 12-15 Sep. 2017. Almaty

Yield and rate of the reaction ¹²C(p,γ)¹³N
1) open circles- N.A.Roughton, et al., Astrophysical Journal, 205 (1976) 302.
red circles- our measurements (S.V. Artemov, et al., Nucl. Insr. Meth. A825 (2016) 17)
2) triangle - J. D. Seagrave. Phys. Rev. 84 (1951) 1219.

Choice of measurement time

increase installation efficiency

Comparison of the characteristics of scintillation and semiconductor (HPGe) double-arm spectrometers

The count rate of backg	f γγ – coincidence round	The count rate of γγ – coincidence β ⁺ source	
~0.1 pu	lse / sec	~130 pulse / sec	
~0.002 p	ulse / sec	18 pulse / sec	
The ratio	50	7.2	

THANK YOU FOR ATTANTION!!!