# Three-nucleon force effects on the proton elastic scattering with ${ }^{10} \mathrm{C}$ 

Alisher Sanetullaev<br>Inha University in Tashkent, Uzbekistan<br>New aspects of the Hadron and Astro/Nuclear Physics<br>November 9, 2018

## ${ }^{\circ}$

## Nuclear Force Imprints Revealed on the Elastic Scattering of Protons with ${ }^{10} \mathrm{C}$

A. Kumar, ${ }^{1}$ R. Kanungo, ${ }^{1 *}$ A. Calci, ${ }^{2}$ P. Navrátil, ${ }^{2+}$ A. Sanetullaev, ${ }^{1,2}$ M. Alcorta, ${ }^{2}$ V. Bildstein, ${ }^{3}$ G. Christian, ${ }^{2}$ B. Davids, ${ }^{2}$ J. Dohet-Eraly, ${ }^{2,4}$ J. Fallis, ${ }^{2}$ A. T. Gallant, ${ }^{2}$ G. Hackman, ${ }^{2}$ B. Hadinia, ${ }^{3}$ G. Hupin, ${ }^{5,6}$ S. Ishimoto, ${ }^{7}$ R. Krücken, ${ }^{2,8}$ A. T. Laffoley, ${ }^{3}$ J. Lighthall, ${ }^{2}$ D. Miller, ${ }^{2}$ S. Quaglioni, ${ }^{9}$ J. S. Randhawa, ${ }^{1}$ E. T. Rand, ${ }^{3}$
A. Rojas, ${ }^{2}$ R. Roth, ${ }^{10}$ A. Shotter, ${ }^{11}$ J. Tanaka, ${ }^{12}$ I. Tanihata, ${ }^{12,13}$ and C. Unsworth ${ }^{2}$
${ }^{1}$ Astronomy and Physics Department, Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada TRIUMF, Vancouver, British Columbia V6T2A3, Canada
${ }^{3}$ Department of Physics, University of Guelph, Guelph, Ontario NIG 2W1, Canada
${ }^{4}$ Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 1-56127 Pisa, Italy ${ }^{5}$ Institut de Physique Nucléaire, Université Paris-Sud, IN2P3/CNRS, F-91406 Orsay Cedex, France ${ }^{6}$ CEA, DAM, DIF, F-91297 Arpajon, France
${ }^{7}$ High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan
${ }^{8}$ Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T IZI, Canada ${ }^{9}$ Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA
${ }^{10}$ Institut fur Kernphysik, Technische Universitat Darmstadt, 64289 Darmstadt, Germany
${ }^{11}$ School of Physics and Astronomy, University of Edinburgh, JCMB, Mayfield Road, Edinburgh EH9 3.JZ, United Kingdom ${ }^{12}$ RCNP, Osaka University, Mihogaoka, Ibaraki, Osaka 567 0047, Japan
${ }^{13}$ School of Physics and Nuclear Energy Engineering and IRCNPC, Beihang University, Beijing 100191, China (Received 8 March 2017; published 28 June 2017)
How does nature hold together protons and neutrons to form the wide variety of complex nuclei in the Universe? Describing many-nucleon systems from the fundamental theory of quantum chromodynamics has been the greatest challenge in answering this question. The chiral effective field theory description of the nuclear force now makes this possible but requires certain parameters that are not uniquely determined. Defining the nuclear force needs identification of observables sensitive to the different parametrizations. From a measurement of proton elastic scattering on ${ }^{10} \mathrm{C}$ at TRIUMF and $a b$ initio nuclear reaction


## Introduction

- Understanding the strong nuclear force is of fundamental importance
- Chiral effective field theory (EFT) helps in understanding of the low-energy nuclear interactions of protons and neutrons
- How to best implement the theory and constrain with experiment?


APS/Alan Stonebraker

- Important to identify experimental observables that are sensitive to different parameterizations of the chiral forces
- Proton-rich and neutron-rich nuclei located at the edges of nuclear stability (drip-lines), can amplify less-constrained features of the nuclear force (e.g. asymmetry)
- Experimental data are lacking


## Motivation



- The nucleon-nucleus scattering differential cross section is highly sensitive to the details of the nuclear force
- It should reveal the spectroscopic properties of the reacting system, as well as the effect of exotic nucleon distributions
- The study of elastic scattering for drip-line nuclei is challenging because of the low-beam intensities and formulation of the ab-initio structure and reaction theory


## Motivation



- First investigation probing the nuclear force through proton scattering from ${ }^{10} \mathrm{C}$ (at drip-line)
- Ideal system to test the effect of nuclear force
- Existence of bound ${ }^{10} \mathrm{C}$ whose isotonic neighbours ${ }^{9} \mathrm{~B},{ }^{8} \mathrm{Be}$ and 11 N are unbound, is a testament of the complicated strong interaction
- Ab initio Green's function Monte Carlo and no-core shell model (NCSM) calculations have shown 3 N forces to be important for explaining the structure of mass number $\mathrm{A}=10$ nuclei
- Low-energy re-accelerated beam available at TRIUMF, our investigation was carried out at low center-of-mass energies
- No-transfer reaction channels are open at low-energy for this system, simplifying ab-initio reaction calculations


## Experiment at TRIUMF



- The experiment was performed in inverse kinematics at the ISAC rare isotope beam facility at TRIUMF by bombarding a proton target with a ${ }^{10} \mathrm{C}$ beam
- The beam, re-accelerated using the ISAC-II superconducting linear accelerator, with an average intensity of 2000 particles per second impinged on a solid hydrogen target at the IRIS reaction spectroscopy station
- Energy-loss measured in a low-pressure ionization chamber allowed for clean identification of ${ }^{10} \mathrm{C}$ from the 10 B contaminant
- The beam energies at mid-target were 4.54 A MeV and 4.82A MeV corresponding to $\mathrm{p}+{ }^{10} \mathrm{C}$ center of mass energies of $\mathrm{Ecm}=4.15 \mathrm{MeV}$ and 4.4 MeV , respectively


## Experimental Setup for ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p})$ at IRIS Facility at TRIUMF

- ${ }^{10} \mathrm{C}$ beam, 5 A MeV
- IRIS uses solid hydrogen target
- Maximizes the reaction yield with low-intensity beams
- It was commissioned in 2012 with
stable beams and radioactive ${ }^{11} \mathrm{Li}$ beam
- The setup can work with solid $\mathrm{H}_{2}$ as well as solid $D_{2}$ target


## Experimental Setup for ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p})$ at IRIS Facility at TRIUMF

- ${ }^{10} \mathrm{C}$ beam, 5 A MeV
- IRIS uses solid hydrogen target
- Maximizes the reaction yield with low-intensity beams
- It was commissioned in 2012 with stable beams and radioactive ${ }^{11} \mathrm{Li}$ beam
- The setup can work with solid $\mathrm{H}_{2}$ as well as solid $D_{2}$ target
- The low pressure lonization Chamber (IC) is used for identifying beam contamination before reaction
- Beam particle energy loss is measured event-by-event
- Target and Reaction Vacuum Chamber
- Solid Hydrogen and target


## Overview of the Facility: Solid Hydrogen Target




- 30-300 $\mu \mathrm{m}$ solid hydrogen target at 4 K , with 6 mm diameter
- Placed inside the Target and Reaction Vacuum chamber in $\sim 1 \times 10^{-7}$ Torr vacuum
- Hydrogen gas is sprayed and condensated onto $5 \mu \mathrm{~m} \mathrm{Ag}$ foil at 4 K through a diffuser
- Heat shield used for reducing the radiative
A. Sanetullaev

Three-nucleon force effects on the proton elastic scattering with ${ }^{10} \mathrm{C}$

## Overview of the Facility: Detectors




- Beam is a cocktail of ${ }^{10} \mathrm{C}$ (right) and isobaric contaminant ${ }^{10} \mathrm{~B}$ (left)
- The contaminant was identified using the energy-loss measured with IC filled with isobutane gas
- The total intensity of the incident beam is measured in the IC


## ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p})$ elastic scattering events



- Protons identified using $\Delta E-E$ method
- The selected proton events show a very clear locus of elastic scattering
- The inelastic scattering locus is only slightly visible


- Our theoretical description of the ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p})$ scattering is based on the ab initio no-core shell model with continuum (NCSMC)
- This approach describes the reacting system using a basis expansion with two key components:
- ${ }^{11} \mathrm{~N}$
- ${ }^{10} \mathrm{C}+\mathrm{p}$
- The chiral two-nucleon (NN) and three-nucleon (3N) forces served as input for the NCSMC calculations
- The NN interaction is tuned to nucleon-nucleon phase shifts and the deuteron properties
- Traditionally, the fit of the NN parameters was performed first, and the 3 N parameters adjusted later (NN+3N400)
- Recently, simultaneous NN+3N fit was performed ( $N^{2}$ LOsat)
- Describes well the proton radius of the stable nucleus
- and the nuclear radii of neutron-rich carbon isotopes


## Results: Differential cross section

- The experimental data contain both statistical and systematic uncertainties
- The systematic uncertainties are as follows: 5\% from the target thickness, $5 \%$ from determination of the detection efficiency, and $4 \%$ from the beam contamination
- The cross-sections have similar shape and magnitude at the two different beam energies
- Ab initio reaction theory calculations with three different choices of the nuclear force are
 shown by the curves
- We test 2 parameterizations of chiral NN+3N
- Compare 3N force with a chiral NN interaction alone
- Addition of 3 N forces produces dramatic change
- This shows the strong influence of the three-nucleon interaction on the angular distribution


Measured differential cross section for (a) $E_{c m}=4.15 \mathrm{MeV}$ and (b) $E_{c m}=$ 4.4 MeV

## Summary

- The first measurement of ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p})^{10} \mathrm{C}$ at $E_{c m}=4.15 \mathrm{MeV} E_{c m}=$ 4.4 MeV


## Summary

- The first measurement of ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p})^{10} \mathrm{C}$ at $E_{c m}=4.15 \mathrm{MeV} E_{c m}=$ 4.4 MeV
- We have demonstrated for the first time a strong sensitivity of this scattering to the nuclear force prescription
- The first measurement of ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p})^{10} \mathrm{C}$ at $E_{c m}=4.15 \mathrm{MeV} E_{c m}=$ 4.4 MeV
- We have demonstrated for the first time a strong sensitivity of this scattering to the nuclear force prescription
- The low-level density and neutron-proton asymmetry in drip-line nuclei like ${ }^{10} \mathrm{C}$ bring in new and greater sensitivity to the nuclear force, allowing for discriminating between the different chiral interactions and finding further constraints for them
- The first measurement of ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p})^{10} \mathrm{C}$ at $E_{c m}=4.15 \mathrm{MeV} E_{c m}=$ 4.4 MeV
- We have demonstrated for the first time a strong sensitivity of this scattering to the nuclear force prescription
- The low-level density and neutron-proton asymmetry in drip-line nuclei like ${ }^{10} \mathrm{C}$ bring in new and greater sensitivity to the nuclear force, allowing for discriminating between the different chiral interactions and finding further constraints for them
- The measured ${ }^{10} \mathrm{C}(p, p){ }^{10} \mathrm{C}_{g s}$ differential cross section shows that only the $N^{2} L O_{\text {sat }}$ interaction provides an angular distribution shape consistent with the experiment but fails to reproduce its magnitude.
- The first measurement of ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p})^{10} \mathrm{C}$ at $E_{c m}=4.15 \mathrm{MeV} E_{c m}=$ 4.4 MeV
- We have demonstrated for the first time a strong sensitivity of this scattering to the nuclear force prescription
- The low-level density and neutron-proton asymmetry in drip-line nuclei like ${ }^{10} \mathrm{C}$ bring in new and greater sensitivity to the nuclear force, allowing for discriminating between the different chiral interactions and finding further constraints for them
- The measured ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p}){ }^{10} \mathrm{C}_{g s}$ differential cross section shows that only the $N^{2} L O_{s a t}$ interaction provides an angular distribution shape consistent with the experiment but fails to reproduce its magnitude.
- This suggests that $N^{2} L O_{\text {sat }}$ is improved compared to the other forces but is still not an adequate description of the nuclear force
- The first measurement of ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p})^{10} \mathrm{C}$ at $E_{c m}=4.15 \mathrm{MeV} E_{c m}=$ 4.4 MeV
- We have demonstrated for the first time a strong sensitivity of this scattering to the nuclear force prescription
- The low-level density and neutron-proton asymmetry in drip-line nuclei like ${ }^{10} \mathrm{C}$ bring in new and greater sensitivity to the nuclear force, allowing for discriminating between the different chiral interactions and finding further constraints for them
- The measured ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p}){ }^{10} \mathrm{C}_{g s}$ differential cross section shows that only the $N^{2} L O_{s a t}$ interaction provides an angular distribution shape consistent with the experiment but fails to reproduce its magnitude.
- This suggests that $N^{2} L O_{\text {sat }}$ is improved compared to the other forces but is still not an adequate description of the nuclear force
- Extreme systems, such as the ${ }^{11} \mathrm{~N}$ and ${ }^{10} \mathrm{C}(\mathrm{p}, \mathrm{p})$ investigated here both experimentally and theoretically, thus provide one of the most stringent tests of the quality of the present and new generations of nuclear forces.
R. Kanungo ${ }^{1}$, A. Kumar ${ }^{2}$, P. Navratil ${ }^{2}$, A. Calci ${ }^{2}$, J. Tanaka ${ }^{4}$, M. Alcorta ${ }^{2}$, G. Christian ${ }^{2}$, B. Davids ${ }^{2}$, A. T. Gallant ${ }^{2,10}$, G. Hackman ${ }^{2}$, B. Hadinia ${ }^{8}$, S. Ishimoto ${ }^{9}$, M. Keefe ${ }^{1}$, R. Krücken ${ }^{2,10}$, J. Lighthall ${ }^{2}$, D. Miller ${ }^{2}$, J. S. Randhawa ${ }^{1}$, T.Roger $^{11}$, A. Rojas ${ }^{2}$, A. Shotter ${ }^{12}$, I. Tanihata ${ }^{4,13}$, C. Unsworth ${ }^{2}$
${ }^{1}$ Department of Astronomy and Physics, Saint Mary's University, Halifax, NS ${ }^{2}$ TRIUMF, Vancouver, BC
${ }^{4}$ RCNP, Osaka University, Ibaraki, Osaka, Japan
${ }^{5}$ Department of Chemistry, Simon Fraser University, Burnaby, Canada
${ }^{6}$ Department of Physics and Astronomy, McMaster University, Hamilton, ON
${ }^{7}$ University of Laval, Quebec City, Quebec
${ }^{8}$ Department of Physics, University of Guelph, Ontario
${ }^{9}$ High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan ${ }^{10}$ Department of Physics and Astronomy, University of British Columbia, BC ${ }^{12}$ School of Physics and Astronomy, University of Edinburgh, Edinburgh, U.K.
${ }^{13}$ School of Physics and Nuclear Energy Engineering and IRCNPC, Beihang University, Beijing, China


## Thanks for attention!

