Ξ^0_c production in pp collision at $\sqrt{s} = 13$ TeV

Jinjoo Seo

2018.12.05
Motivation

- **QGP probe of Heavy quarks**
 - Charm and beauty quarks are heavier than light quarks (u,d,s) and are produced in initial hard-scattering processes with high Q^2, transported through the full medium created in the collisions.
 - Production cross sections calculable with perturbative QCD.
 - Traversing the medium while interacting with its constituents.
 - Study charm and beauty hadronization mechanisms using meson and Baryon production $D, \Lambda_c, \Xi_c, \ldots$

- **pp collisions**
 - Reference for p-Pb and Pb-Pb collisions.
 - Testing ground for perturbative QCD calculations.
Analysis flow

STEP. 1
Select e and Ξ and Make pair of Right Sign and Wrong Sign

STEP. 2
Subtract the Wrong Sign spectra from Right Sign Spectra

STEP. 3
Using Unfolding technique to correct missing neutrino momentum

STEP. 4
Efficiency correction and event normalization
Detector

- ALICE Detector

Inner Tracking System (ITS)
- Vertexing, tracking
 - $|\eta| < 0.9$

Time Projection Chamber (TPC)
- Tracking, PID via dE/dx
 - $|\eta| < 0.9$

V0
- Trigger
 - $2.8 < \eta < 5.1$ (V0A)
 - $3.7 < \eta < -1.7$ (V0C)

Time Of Flight Detector (TOF)
- PID via time-of-flight
 - $|\eta| < 0.9$
- Dataset

- Dataset

Data : LHC16k, pass1 (pp collision, 13 TeV, 189M events, 165 runs)

258537, 258499, 258477, 258456, 258426, 258393, 258391, 258387, 258359, 258336, 258332, 258307, 258306, 258303, 258302, 258301, 258299, 258278, 258274, 258273, 258271, 258270, 258258, 258257, 258256, 258204, 258203, 258202, 258198, 258197, 258178, 258117, 258114, 258113, 258109, 258108, 258107, 258063, 258062, 258060, 258059, 258053, 258049, 258045, 258042, 258040, 258039, 258019, 258017, 258014, 258012, 258008, 258003, 257992, 257989, 257986, 257963, 257960, 257957, 257939, 257937, 257936, 257892, 257855, 257853, 257851, 257850, 257849, 257848, 257847, 257846, 257844, 257841, 257822, 257819, 257817, 257814, 257812, 257808, 257807, 257805, 257804, 257803, 257800, 257799, 257798, 257797, 257773, 257765, 257757, 257754, 257737, 257735, 257734, 257733, 257730, 257727, 257725, 257724, 257697, 257694, 257692, 257691, 257689, 257688, 257687, 257685, 257684, 257682, 257644, 257642, 257636, 257635, 257632, 257630, 257606, 257605, 257604, 257601, 257595, 257594, 257592, 257590, 257588, 257587, 257566, 257562, 257560, 257541, 257540, 257539, 257537, 257531, 257530, 257492, 257491, 257490, 257488, 257487, 257474, 257468, 257457, 257433, 257364, 257358, 257330, 257322, 257320, 257318, 257260, 257224, 257209, 257206, 257204, 257144, 257139, 257138, 257137, 257136, 257100, 257095, 257092, 257086, 257084, 257082, 257080, 257077, 257028, 257026, 257021, 257012, 257011, 256944, 256942, 256941

Data : LHC16l, pass1 (pp collision, 13 TeV, 55M events, 58 runs)

259888, 259868, 259867, 259866, 259860, 259842, 259841, 259822, 259789, 259788, 259781, 259756, 259752, 259751, 259750, 259748, 259747, 259477, 259396, 259395, 259394, 259389, 259388, 259382, 259378, 259342, 259341, 259340, 259339, 259336, 259334, 259307, 259305, 259303, 259302, 259274, 259273, 259272, 259271, 259270, 259269, 259264, 259263, 259261, 259257, 259204, 259164, 259162, 259118, 259117, 259099, 259096, 259091, 259090, 259088, 258964, 258962
Cut list

- Cut list

Event cut

<table>
<thead>
<tr>
<th>Cut variables</th>
<th>Cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Selection</td>
<td>kINT7</td>
</tr>
<tr>
<td>Primary vertex</td>
<td>Within 10cm</td>
</tr>
<tr>
<td>Pile up</td>
<td>Rejection</td>
</tr>
</tbody>
</table>

eID cut

<table>
<thead>
<tr>
<th>Cut variables</th>
<th>Cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOD Filter Bit</td>
<td>4</td>
</tr>
<tr>
<td>Number of TPC clusters</td>
<td>>100</td>
</tr>
<tr>
<td>Number of TPC PID clusters</td>
<td>>80</td>
</tr>
<tr>
<td>Ratio to findable cluster</td>
<td>>0.6</td>
</tr>
<tr>
<td>ITS/TPC refit</td>
<td>TRUE</td>
</tr>
<tr>
<td>Number of ITS cluster</td>
<td>>=4</td>
</tr>
<tr>
<td>pt</td>
<td>>0.5</td>
</tr>
<tr>
<td></td>
<td>η</td>
</tr>
<tr>
<td>SPD hit</td>
<td>Both</td>
</tr>
<tr>
<td></td>
<td>TOF ησ</td>
</tr>
<tr>
<td>TPC ησ</td>
<td>-1.5 ~ 3</td>
</tr>
</tbody>
</table>

Ξ cut

<table>
<thead>
<tr>
<th>Cut variables</th>
<th>Cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of TPC cluster</td>
<td>>80</td>
</tr>
<tr>
<td>Λ Mass tolerance (MeV/c²)</td>
<td>7.5</td>
</tr>
<tr>
<td>Ξ Mass tolerance (MeV/c²)</td>
<td>8</td>
</tr>
<tr>
<td>DCAof V0 to PV(cm)</td>
<td>>0.03</td>
</tr>
<tr>
<td>DCA f V0 daughters PV (cm)</td>
<td>>0.073</td>
</tr>
<tr>
<td>V0 cosine pointing angle to Ξ vertex</td>
<td>>0.983</td>
</tr>
<tr>
<td>DCA of bachelor track to PV (cm)</td>
<td>>0.0204</td>
</tr>
<tr>
<td>V0 decay length (cm)</td>
<td>>2.67</td>
</tr>
<tr>
<td>Ξ decay length (cm)</td>
<td>>0.38</td>
</tr>
<tr>
<td>TPC ησ (proton)</td>
<td><4</td>
</tr>
<tr>
<td>TPC ησ (pion)</td>
<td><4</td>
</tr>
</tbody>
</table>
- Event cut

- **All** : All events in period
- **PS** : Physics selection + kINT7
- **PSpileup** : PS+ pile up rejection
- **Goodz** : PSpileup + Passed the SPD
- **Goodzcut** : Goodz + SPD primary vertex < 10cm.
- Event cut

<table>
<thead>
<tr>
<th>Energy</th>
<th>5 TeV</th>
<th>13 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>LHC17p : 1063M (kINT7, FAST)</td>
<td>LHC16k : 189M (kINT7, CENT)</td>
</tr>
<tr>
<td></td>
<td>LHC17q : 66M (kINT7, FAST)</td>
<td>LHC16l : 55M (kINT7, CENT)</td>
</tr>
<tr>
<td>Total event number</td>
<td>819M (after cuts)</td>
<td>48M (after cuts)</td>
</tr>
</tbody>
</table>

- 5TeV results is used in Andrea’s results.
 (https://indico.cern.ch/event/766082/contributions/3222028/attachments/1756106/2847189/20_11_2018_Xic.pdf)
- Compare the event number, at 13TeV, the number of events after the cut is too small.
- The lack of event number occurs the statistics problem.
- Select electrons

- Time-Of-Flight (TOF) and Time Projection Chamber (TPC) detector are used to identify the electron.
- The $n\sigma_{TOF}$ and $n\sigma_{TPC}$ distributions of electrons get from real data.
- eID Cuts applied in this analysis

TOF $n\sigma$ as function of p_T. The black line is the cut values.

TPC $n\sigma$ as function of p_T. The black line is the cut values.
- Select the Ξ

 • The Ξ^{-} baryons are reconstructed from the decay chain $\Xi^{-} \rightarrow \pi^{-}\Lambda$, followed by $\Lambda \rightarrow p\pi^{-}$.

 • The Ξ^{-} and Λ candidates were selected based on AliAODcascade, where the pion produced from Ξ^{-} and Λ can be identified using mother particle's lifetimes ($c\tau$ of about 4.91 cm and 7.89 cm).

 • Ξ cuts are applied to remove the background.
- Remove background electrons

- There are the background electrons that come from gamma conversion and Dalitz decay in the selected electron (photonic electron) after the cuts.

- The background electrons can be identified using a technique based on the invariant mass of e^+e^- pairs.

- The electron tracks are paired with opposite-sign tracks from the same event passing “loose selection criteria” ($|\ln \sigma_{TPC}| < 5$ without TOF requirement) and are identified as photonic electrons if there is at least one pair with an invariant mass smaller than 50 MeV/c2.

![Graph showing electron pair mass distribution](image)

- Photonic electron

- $e^+ e^-$ (unlike sign)

- $e^\pm e^\pm$ (like sign)
Analysis status

- Make eΞ pair and subtraction

 • Make pairs of e±Ξ∓(RS), e±Ξ∓(WS), e±Ξ∓(WS) when they satisfy the following two conditions
 1) The opening angle between e and Ξ is less than 90 degrees
 2) The invariant mass of pair is less than 2.5 GeV/c².

 • Due to the missing momentum of neutrino, the invariant mass distribution of the e±Ξ∓ and e±Ξ∓ pair does not have a peak at the Ξ⁰ c mass.

 • The background in the e±Ξ∓ pair distribution is estimated by exploiting the fact that Ξ⁰ c baryons decay into RS, but not into WS, while the most of the background sources contribute equally to RS and WS pairs. (RS-WS)
- Correct for the efficiency loss caused by prefilter

- The prefilter can reject the photonic electrons and also reject the non-background electrons.

- This efficiency correction is done separately from other efficiency corrections because it is expected to depend on the event multiplicity and topology, which could be different in data and MC.
Further step

- **Correct for the efficiency loss caused by prefilter**

 - The prefilter can reject the photonic electrons and also reject the non-background electrons.
 - This efficiency correction is done separately from other efficiency corrections because it is expected to depend on the event multiplicity and topology, which could be different in data and MC.

\[
\epsilon_{\text{prefilter}} = \frac{N_{e\Lambda}(\Xi) \text{ (same-sign prefilter on)}}{N_{e\Lambda}(\Xi) \text{ (prefilter off)}}
\]

Electron pair mass distribution

$e^+ e^-$ (unlike sign)

$e^\pm e^\pm$ (like sign)

p_t (GeV/c)

$\epsilon_{\text{prefilter}}$ in $e\Xi$ analysis
Further step

- Correct for the over subtraction caused by bottom baryon contributions

 - In the WS spectra, there are contributions from bottom baryons, such as $\Xi_b \rightarrow e^- \Xi^- \nu_e X$.

 - The Ξ_b baryons are not measured at LHC energies. Therefore two assumptions are made to estimate the contributions in $e\Xi$ analysis.
 1) The shape of p_T spectrum is same as Λ^0_b ($\Lambda^0_b \rightarrow e^- \Lambda^+ c X \rightarrow e^- \Lambda X$)
 This measurement is extrapolated to $p_T = 0$ using the Tsallis function.
 2) The $B(b \rightarrow \Xi_b) B(\Xi_b \rightarrow e\Xi X)/(B(b \rightarrow \Lambda_b) B(\Lambda_b \rightarrow e\Lambda X))$ ratio is the same in ee and pp collisions.

![The efficiency of Ξ_b as a function of $p_T^{\Xi_b}$](image1)

![Response matrix of $\Xi_b \rightarrow e\Xi$](image2)
Further step

- Using Unfolding technique to correct missing neutrino momentum

- The response matrices are prepared to convert reconstructed $e\Xi$ pair p_T into true $\Xi_0^c p_T$

- The matrices are calculated in two step
 1) The response matrix is obtained with the p_T distribution generated with PYTHIA 6.
 2) The resulting Ξ_0^c momentum distribution is used to produce the response matrix.

- The unfolding is performed with the RooUnfold implementation of the Bayesian unfolding technique.

Correlation between the generated Ξ_0^c baryon p_T and the reconstructed $e^+\Xi^-$ pair p_T
- Summary

- Summary
 - Ξ^0_c production is being studied via semi-leptonic decay in pp collision at 13 TeV.
 - Electrons are identified using Time-Of-Flight (TOF) and Time Projection Chamber (TPC).
 - The Ξ^- peak in the $\pi^-\Lambda$ invariant-mass distribution integrated over p_T is found (1321.71 ± 8 MeV/c2).
 - Background electrons are removed to use electron pair mass information.
 - Make Right Sign (RS) pair and Wrong Sign (WS) pair and WS was subtract from RS to remove background.

- Outlook

- Outlook
 - To increase statistics, we are considering to add another periods of the runs
 - The efficiency correction will be done, and the over subtraction effect due to bottom baryon contribution also will be corrected.
 - Unfolding procedure will be done considering also the missing neutrino momentum.
Thank you
Back up
- Make $e\Xi$ pair and subtraction
Analysis status

- Make $e\Xi$ pair and subtraction
Invariant-mass distribution of $\Xi^- \rightarrow \pi^- \Lambda$ (and charge conjugate) candidates integrated over p_T.

The arrow indicates the world average Ξ^- mass and the dashed lines indicate the selected interval for the Ξ^- candidates.

Invariant-mass distributions of right-sign and wrong-sign (and charge conjugate) pairs integrated over the whole p_T interval.

Invariant-mass distribution of Ξ^0_c candidates obtained by subtracting the wrong-sign pair yield from the right-sign one compared with the signal distribution from the simulation, which is normalized to the measured RS–WS yield. The arrow indicates the Ξ^0_c mass.
- Cascade_c production in pp collision at 7TeV

Product of acceptance and efficiency \((A \times \epsilon)\) of \(\Xi^0_c\) baryons generated in \(|y| < 0.8\) decaying into \(e^+\Xi^-\nu_e\) as a function of \(p_T\), determined from simulations PYTHIA 6.

Inclusive \(\Xi^0_c\)-baryon \(p_T\)-differential production cross section multiplied by the branching ratio into \(e^+\Xi^-\nu_e\), as a function of \(p_T\) for \(|y| < 0.5\), in pp collisions at \(\sqrt{s} = 7\) TeV. The error bars and boxes represent the statistical and systematic uncertainties, respectively. The contribution from \(\Xi_b\) decays is not subtracted.
- Cascade_c production in pp collision at 7TeV

Ratio of the p_T-differential cross sections of Ξ^0_c baryons (multiplied by the branching ratio into $e^+\Xi^-\nu_e$) and D^0 mesons as a function of p_T for $|y| < 0.5$, in pp collisions at $\sqrt{s} = 7$ TeV. The error bars and boxes represent the statistical and systematic uncertainties, respectively. Predictions from theoretical models, (a) PYTHIA 8 with different tunes (b) DIPSY and HERWIG 7, are shown as shaded bands representing the range of the currently available theoretical predictions for the branching ratio of the considered Ξ^0_c decay mode.
\begin{itemize}
\item $N_{\text{gen}}^{\Xi_0}$: The number of Ξ^0 baryons within Δy decaying into $e\Xi\nu$ counted at the generation level in the MC simulations.
\item $N_{\text{reco}}^{\Xi_0}$: The number of Ξ^0 baryons decaying into $e\Xi\nu$ counted at the reconstruction level in the MC simulations.
\item The elastic cross section of anti-proton in GEANT3 is known to be inaccurate, therefore, further correction based on GEANT4 is applied.
\end{itemize}

\[(\text{Acc} \times \varepsilon \times \varepsilon_{\text{tag}}) = \frac{N_{\text{MC, reco}}^{\Xi_0}}{N_{\text{MC, gen}}^{\Xi_0}} \]

Efficiency correction and event normalization

The product of efficiency, acceptance and the Ξ tagging efficiency as a function of p^Ξ_{T}

Ratio of the Ξ^0_{c} spectra with and without the GEANT4 correction