Simulating pA reactions to study the phi meson in nuclear matter at J-PARC

Philipp Gubler Japan Atomic Energy Agency (JAEA)

Talk at the 1st CENuM Workshop for Hadronic Physics

Inha University, Incheon, South Korea

June 18, 2019

Work done in collaboration with Elena Bratkovskaya (Frankfurt U./GSI)

Recent theoretical works about the $\boldsymbol{\varphi}$

based on hadronic models

P. Gubler and W. Weise, Phys. Lett. B **751**, 396 (2015).P. Gubler and W. Weise, Nucl. Phys. A **954**, 125 (2016).

Recent theoretical works about the $\boldsymbol{\varphi}$

based on hadronic models

D. Cabrera, A.N. Hiller Blin and M.J. Vicente Vacas, Phys. Rev. C **95**, 015201 (2017). See also:

D. Cabrera, A.N. Hiller Blin and M.J. Vicente Vacas, Phys. Rev. C **96**, 034618 (2017).

φ meson mass at finite density from QCD sum rules

P. Gubler and K. Ohtani, Phys. Rev. D 90, 094002 (2014).

However, some caution is needed

Experimental di-lepton spectrum

Pole mass:

counts/[6.7MeV/c²]

C

60

40

R. Muto et al. (E325 Collaboration), Phys. Rev. Lett. 98, 042501 (2007).

βγ<1.25

Cu

βγ<1.25

How compare theory with experiment?

Realistic simulation of pA reaction is needed!

Our tool: a transport code PHSD (Parton Hadron String Dynamics)

W. Cassing and E. Bratkovskaya, Phys. Rev. C 78, 034919 (2008).
W. Cassing and E. Bratkovskaya, Phys. Rept. 308, 65 (1999).
W. Cassing, V. Metag, U. Mosel and K. Niita, Phys. Rept. 188, 363 (1990).

Starting point: The Vlasov-Uehling-Uhlenbeck type equation for each particle type

$$\begin{pmatrix} \frac{\partial}{\partial t} + \frac{p_1}{m} \cdot \frac{\partial}{\partial r} - \frac{\partial}{\partial r} U_{BHF}(r;t) \cdot \frac{\partial}{\partial p_1} \end{pmatrix} f(r, p_1;t) = \begin{pmatrix} \frac{\partial f}{\partial t} \end{pmatrix}_{coll}$$

mean field
(tuned to reproduce
nuclear matter properties)

PHSD (Parton Hadron String Dynamics)

Basic Ingredient: "Testparticle" approach

h
$$f_h(\mathbf{r}, \mathbf{p}; t) = \frac{1}{N_{\text{test}}} \sum_{i}^{N_h(t) \times N_{\text{test}}} \delta(\mathbf{r} - \mathbf{r}_i(t)) \ \delta(\mathbf{p} - \mathbf{p}_i(t))$$

$$\dot{\boldsymbol{p}}_i = -\boldsymbol{\nabla}_r U(\boldsymbol{r}_i), \qquad \dot{\boldsymbol{r}}_i = \boldsymbol{p}_i / \sqrt{m^2 + p_i^2}$$

The classical equation of motion are solved for each particle separately

If particles collide with large enough energy

New particles are produced according to experimental cross-sections or models

Example of a PHSD calculation

Au+Au collision at $s^{1/2}$ = 200 GeV, b = 2 fm

Advantage: vector meson spectra can be chosen freely

Our first choice: a Breit-Wigner with density dependent mass and width

$$A_V(M,\rho) = C\frac{2}{\pi} \frac{M^2 \Gamma_V^*(M,\rho)}{[M^2 - M_0^{*2}(\rho)]^2 + M^2 \Gamma_V^{*2}(M,\rho)}$$

with
$$\begin{cases} M_0^*(\rho) = M_0 \left(1 - \alpha \frac{\rho}{\rho_0}\right) \\ \Gamma_V^*(M, \rho) = \Gamma_V(M) + \alpha_{\text{coll}} \frac{\rho}{\rho_0} \end{cases}$$

and $\begin{cases} \alpha = 0.034 \\ \alpha_{\rm coll} = 11 \ {\rm MeV} \end{cases}$

(corresponds to the result found in the E325 experiment) A first look at a reaction to be probed at J-PARC: pA collisions with initial proton energy of 30 GeV

A first look at the reaction: Rapidity distribution of protons/mesons

Due to the large collision energy, the incoming proton passes through the target nucleus

What happens with the φ ?

The dilepton spectrum

p+Cu at 12 GeV

The ϕ meson peak is clearly visible.

The dilepton spectrum in the ϕ meson region

Divided into different $\beta\gamma$ regions

All preliminary

The dilepton spectrum in the ϕ meson region

dN/dω [GeV⁻¹]

To be done

- \star Accumulate more statistics
- ★ Determine which spectral function best reproduces the E325 experimental data (might not be unique)
- ★ Make predictions for the E16 experiment at J-PARC
- ★ Incorporate non-trivial (Lorentz violating) momentum dependence of the spectral function into the simulation

Summary and Conclusions

★ To experimentally the modification of the φ meson spectral function at finite density is non-trivial. A good understanding of the underlying pA reaction is needed!

★ Numerical simulations of the pA reactions to measured at the E325 experiment at KEK, using the PHSD transport code, are in progress.

★ Results will provide important insights for the future E16 experiment at J-PARC

Backup slides

Recent theoretical works about the $\boldsymbol{\varphi}$

J.J. Cobos-Martinez, K. Tsushima, G. Krein and A.W. Thomas, Phys. Lett. B **771**, 113 (2017). J.J. Cobos-Martinez, K. Tsushima, G. Krein and A.W. Thomas, Phys. Rev. C **96**, 035201 (2017).

based on the quark-meson coupling model

		$\Lambda_K = 200$)0	$\Lambda_K = 300$	0	$\Lambda_K = 4000$
		E	$\Gamma/2$	E	$\Gamma/2$	$E \Gamma/2$
${}^{4}_{\phi}\text{He}$	1s	n (-0.8)	n	n (-1.4)	n	-1.0 (-3.2) 8.3
$^{12}_{\phi}\mathrm{C}$	1s	-2.1 (-4.2)	10.6	-6.4 (-7.7)	11.1	-9.8 (-10.7) 11.2
$^{16}_{\phi}O$	1s	-4.0 (-5.9)	12.3	-8.9 (-10.0)	12.5	-12.6 (-13.4) 12.4
	1p	n (n)	n	n (n)	n	n (-1.5) n
$^{40}_{\phi}$ Ca	1s	-9.7 (-11.1)	16.5	-15.9 (-16.7)	16.2	-20.5 (-21.2) 15.8
	1p	-1.0 (-3.5)	12.9	-6.3 (-7.8)	13.3	-10.4 (-11.4) 13.3
	1d	n (n)	n	n (n)	n	n (-1.4) n
$^{48}_{\phi}$ Ca	1s	-10.5 (-11.6)	16.5	-16.5 (-17.2)	16.0	-21.1 (-21.6) 15.6
	1p	-2.5 (-4.6)	13.6	-7.9 (-9.2)	13.7	-12.0 (-12.9) 13.6
	1d	n (n)	n	n (-0.8)	n	-2.1 (-3.6) 11.1
$^{90}_{\phi}$ Zr	1s	-12.9 (-13.6)	17.1	-19.0 (-19.5)	16.4	-23.6 (-24.0) 15.8
	1p	-7.1 (-8.4)	15.5	-12.8 (-13.6)	15.2	-17.2 (-17.8) 14.8
	1d	-0.2(-2.5)	13.4	-5.6 (-6.9)	13.5	-9.7 (-10.6) 13.4
	2s	n (-1.4)	n	-3.4(-5.1)	12.6	-7.4 (-8.5) 12.7
000	2p	n (n)	n	n (n)	n	n (-1.1) n
$^{208}_{\phi} Pb$	1s	-15.0 (-15.5)	17.4	-21.1 (-21.4)	16.6	-25.8(-26.0) 16.0
	1p	-11.4 (-12.1)	16.7	-17.4 (-17.8)	16.0	-21.9 (-22.2) 15.5
	1d	-6.9 (-8.1)	15.7	-12.7 (-13.4)	15.2	-17.1 (-17.6) 14.8
	2s	-5.2 (-6.6)	15.1	-10.9 (-11.7)	14.8	-15.2 (-15.8) 14.5
	2p	n (-1.9)	n	-4.8 (-6.1)	13.5	-8.9 (-9.8) 13.4
	2d	n (n)	n	n (-0.7)	n	-2.2 (-3.7) 11.9
	S	ome ΦA	bc	ound stat	es	might
4	- ixc	st hut t	hev	have a l	arg	e width
			nc y	nuve u i	u 8	
		\rightarrow diff	icu	It to obse	erv	е
		exp	eri	nentallv	?	

Our tool: a transport code PHSD (Parton Hadron String Dynamics)

W. Cassing and E. Bratkovskaya, Phys. Rev. C 78, 034919 (2008).

W. Cassing and E. Bratkovskaya, Phys. Rept. 308, 65 (1999).

W. Cassing, V. Metag, U. Mosel and K. Niita, Phys. Rept. 188, 363 (1990).

Basic Ingredient 1: Solve a Vlasov-Uehling-Uhlenbeck type equation for each particle type

$$\left(\frac{\partial}{\partial t} + \frac{\mathbf{p}_{1}}{m} \cdot \frac{\partial}{\partial \mathbf{r}} - \frac{\partial}{\partial \mathbf{r}} U_{\text{BHF}}(\mathbf{r}; t) \cdot \frac{\partial}{\partial \mathbf{p}_{1}} \right) f(\mathbf{r}, \mathbf{p}_{1}; t) = \left(\frac{\partial f}{\partial t} \right)_{\text{coll}}$$
mean field particle distribution function function function

Basic Ingredient 2: "Testparticle" approach

$$f_h(\boldsymbol{r}, \boldsymbol{p}; t) = \frac{1}{N_{\text{test}}} \sum_{i}^{N_h(t) \times N_{\text{test}}} \delta(\boldsymbol{r} - \boldsymbol{r}_i(t)) \ \delta(\boldsymbol{p} - \boldsymbol{p}_i(t))$$

QCD sum rules

Nucl. Phys. B147, 385 (1979); B147, 448 (1979).

M.A. Shifman, A.I. Vainshtein and V.I. Zakharov,

Makes use of the analytic properties of the correlation function:

$$\Pi(q^{2}) = i \int d^{4}x e^{iqx} \langle T[\chi(x)\bar{\chi}(0)] \rangle$$

$$\chi(x) = \bar{s}(x)\gamma_{\mu}s(x)$$

$$\rightarrow \Pi(q^{2}) = \frac{1}{\pi} \int_{0}^{\infty} ds \frac{\mathrm{Im}\Pi(s)}{s - q^{2} - i\epsilon}$$

$$\overset{\mathrm{is \ calculated}}{\overset{\mathrm{"perturbatively",}}{\overset{\mathrm{using \ OPE}}}$$

After the Borel transformation:

$$G_{OPE}(M^2) = \frac{1}{\pi} \int_0^\infty ds \frac{1}{M^2} e^{-\frac{s}{M^2}} \text{Im}\Pi(s)$$

More on the operator product expansion (OPE)

$$\langle 0|O_n|0\rangle = \langle 0|\overline{q}q|0\rangle, \langle 0|G_{\mu\nu}^a G^{a\mu\nu}|0\rangle, \langle 0|\overline{q}\sigma_{\mu\nu}\frac{\lambda^a}{2}G^{a\mu\nu}q|0\rangle, \langle 0|\overline{q}q\overline{q}q|0\rangle, \dots$$
Change in hot or

Change in hot or dense matter!

Structure of QCD sum rules for the phi meson

$$\frac{1}{M^2} \int_0^\infty ds e^{-\frac{s}{M^2}} \rho(s) = c_0(\rho) + \frac{c_2(\rho)}{M^2} + \frac{c_4(\rho)}{M^4} + \frac{c_6(\rho)}{M^6} + \dots$$

In Vacuum

Dim. 0: $c_0(0) = 1 + \frac{\alpha_s}{\pi}$

Dim. 2:
$$c_2(0) = -6m_s^2$$

Dim. 4:
$$c_4(0) = \frac{\pi^2}{3} \langle \frac{\alpha_s}{\pi} G^2 \rangle + 8\pi^2 m_s \langle \overline{s}s \rangle$$

Dim. 6:
$$c_6(0) = -\frac{448}{81}\kappa\pi^3\alpha_s\langle\overline{s}s\rangle^2$$

Structure of QCD sum rules for the phi meson

$$\frac{1}{M^2} \int_0^\infty ds e^{-\frac{s}{M^2}} \rho(s) = c_0(\rho) + \frac{c_2(\rho)}{M^2} + \frac{c_4(\rho)}{M^4} + \frac{c_6(\rho)}{M^6} + \dots$$
In Nuclear Matter
Dim. 0: $c_0(\rho) = c_0(0)$ $\langle \bar{s}s \rangle_{\rho} = \langle \bar{s}s \rangle_0 + \langle N | \bar{s}s | N \rangle \rho + \dots$
Dim. 2: $c_2(\rho) = c_2(0)$
Dim. 4: $c_4(\rho) = c_4(0) + \rho[-\frac{2}{27}M_N + \frac{56}{27}m_s\langle N | \bar{s}s | N \rangle + \frac{4}{27}m_q\langle N | \bar{q}q | N \rangle + A_2^s M_N - \frac{7}{12}\frac{\alpha_s}{\pi}A_2^g M_N]$
Dim. 6: $c_6(\rho) = c_6(0) + \rho[-\frac{896}{81}\kappa_N\pi^3\alpha_s\langle \bar{s}s \rangle \langle N | \bar{s}s | N \rangle - \frac{5}{6}A_4^s M_N^3]$

The strangeness content of the nucleon: results from lattice QCD $\sigma_{sN}=m_s \langle N|\overline{s}s|N\rangle$

A. Abdel-Rehim et al. (ETM Collaboration), Phys. Rev. Lett. 116, 252001 (2016).

Two methods Feynman-Hellmann theorem $\sigma_{sN} = m_s \frac{\partial m_N}{\partial m_s}$ $M_N \; [MeV]$ $m_s^{\mathrm{RGI}} \, \mathrm{[MeV]}$

S. Durr et al. (BMW Collaboration), Phys. Rev. Lett. 116, 172001 (2016).

Recent results from lattice QCD

 $\sigma_{sN} = m_s \langle N | \overline{s}s | N \rangle$

Table 5: Recent σ_{sN} values from la	attice QCD and ChPT	fits to lattice Q	CD data.
Method	Collaboration, Year	σ_{sN} [MeV]	Reference
Lattice QCD (Feynman-Hellmann)	BMW, 2016	$105(41)(37) \\ 40.2(11.7)(3.5) \\ 41.1(8.2)({}^{7.8}_{5.8}) \\ 35(12) \\ 17(18)(9)$	[121]
Lattice QCD (direct)	χ QCD, 2016		[122]
Lattice QCD (direct)	ETM, 2016		[123]
Lattice QCD (direct)	RQCD, 2016		[124]
Lattice QCD (direct)	JLQCD, 2018		[125]
Lattice QCD data $+$ ChPT	2012	$22(20) \\ 21(6) \\ 27(27)(4)$	[126]
Lattice QCD data $+$ ChPT	2013		[128]
Lattice QCD data $+$ ChPT	2015		[130]

P. Gubler and D. Satow, arXiv:1812:00385 [hep-ph], to be published in Prog. Part. Nucl. Phys.

Compare Theory with Experiment

Other experimental results

There are some more experimental results on the ϕ -meson width in nuclear matter, based on the measurement of the transparency ratio T:

T. Ishikawa et al, Phys. Lett. B 608, 215 (2005).

A. Polyanskiy et al, Phys. Lett. B 695, 74 (2011).

Starting point
$$j_{\mu}(x) = \frac{1}{3}\overline{s}(x)\gamma_{\mu}s(x)$$

$$\Pi_{\mu\nu}(q) = i \int d^{4}x e^{iqx} \langle T[j_{\mu}(x)j_{\nu}(0)] \rangle_{\rho}$$
Rewrite using hadronic degrees of freedom (vector dominance model)

$$\Pi(q^{2}) = \frac{1}{3q^{2}}\Pi^{\mu}_{\mu}(q)$$

$$Im\Pi(q^{2}) = \frac{Im\Pi_{\phi}(q^{2})}{q^{2}g_{\phi}^{2}} \Big| \frac{(1-a_{\phi})q^{2} - \mathring{m}_{\phi}^{2}}{q^{2} - \mathring{m}_{\phi}^{2} - \Pi_{\phi}(q^{2})} \Big|^{2}$$
Kaon loops

Vacuum spectrum

(Vacuum)

How is this spectrum modified in nuclear matter?

Is the (modified) spectral function consistent with QCD sum rules?

P. Gubler and W. Weise, Phys. Lett. B 751, 396 (2015).

Data from

J.P. Lees et al. (BABAR Collaboration), Phys. Rev. D 88, 032013 (2013).

More on the free KN and $\overline{K}N$ scattering amplitudes

For KN: Approximate by a real constant (\leftrightarrow repulsion)

T. Waas, N. Kaiser and W. Weise, Phys. Lett. B 379, 34 (1996).

For $\overline{K}N$: Use the latest fit based on SU(3) chiral effective field theory, coupled channels and recent experimental results (\leftrightarrow attraction)

Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881, 98 (2012).

K⁻p scattering length obtained from kaonic hydrogen (SIDDHARTA Collaboration)

The strangeness content of the nucleon: $\sigma_{sN} = m_s \langle N | \overline{s}s | N \rangle$

A. Bottino, F. Donato, N. Fornengo and S. Scopel, Asropart. Phys. 18, 205 (2002).

In-nucleus decay fractions for E325 kinematics

TABLE II. Expected in-nucleus decay fractions of vector mesons in the E325 kinematics, assuming that the meson decay widths are unmodified in nuclei, obtained by using a Monte Carlo type model calculation (Naruki *et al.*, 2006; Muto *et al.*, 2007).

С	Cu	
(%)	(%)	
46	61	
5	9	
	6 ^a	

^aFor slow ϕ mesons with $\beta \gamma < 1.25$.

Taken from: R.S. Hayano and T. Hatsuda, Rev. Mod. Phys. 82, 2949 (2010).