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Threshold peaks in heavy hadrons 
Pc

• New data from LHC 
• Possible interpretation  

      - hadronic molecule with tensor force 
• Former results from our work 
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Hadron Physics
Consistent understanding of hadrons 
      mass, life time, size, interactions, …

Studying heavy exotic hadrons is somewhat similar to 
investigating the social life of heavy quarks. The relevant 
questions one would be asking in this context are  
(a) Who with whom?  
(b) For how long?  
(c) A short episode? or  
(d) “Till Death Us Do Part”?  
(e) In the following I will try to answer some of the obvious 

concrete questions about exotic hadrons: Do they exist? If 
they do, which ones? What is their internal structure? How 
best to look for them?  

Marek Karliner, QNP proceedings, 2018@Tsukuba
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New Pc’s from LHC
7-8 TeV pp collision Λb → p, J/ψ, K−

Λb

p

J/ψ

K–p 
invariant mass 
→ 
Lambda baryons

J/ψ–p 
invariant mass 
→ 
Pc baryons

bud → udscc̄ → (uud)(cc̄)(sū)

K
(cc̄)(sū)

(uud)mK̄p mJ/ψp
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2015 2019

New Data from LHC

m(K̄p), m(J/ψ p)Dalitz plots for 

nine times more statistics →
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Figure 5: Invariant mass squared of K�p versus J/ p for candidates within ±15 MeV of the ⇤0
b

mass.

describing the decay dynamics. Here ✓A and �B are the polar and azimuthal angles of B
in the rest frame of A (✓A is known as the “helicity angle” of A). The three arguments of
Wigner’s D-matrix are Euler angles describing the rotation of the initial coordinate system
with the z-axis along the helicity axis of A to the coordinate system with the z-axis along
the helicity axis of B [11]. We choose the convention in which the third Euler angle is
zero. In Eq. (1), dJA�A,�B��C (✓A) is the Wigner small-d matrix. If A has a non-negligible
natural width, the invariant mass distribution of the B and C daughters is described by
the complex function RA(mBC) discussed below, otherwise RA(mBC) = 1.

Using Clebsch-Gordan coe�cients, we express the helicity couplings in terms of LS
couplings (BL,S), where L is the orbital angular momentum in the decay, and S is the
total spin of A plus B:
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(2)
where the expressions in parentheses are the standard Wigner 3j-symbols. For strong decays,
possible L values are constrained by the conservation of parity (P ): PA = PB PC (�1)L.

Denoting J/ as  , the matrix element for the ⇤0
b ! J/ ⇤⇤ decay sequence is
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where the x-axis, in the coordinates describing the ⇤0
b decay, is chosen to fix �⇤⇤ = 0. The
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Figure 2: Dalitz plot of ⇤0
b ! J/ pK� candidates. The data contain 6.4% of non-⇤0

b backgrounds,
which are distributed smoothly over the phase-space. The vertical bands correspond to the
⇤⇤ resonances. The horizontal bands correspond to the Pc(4312)+, Pc(4440)+, and Pc(4457)+

structures at m2
J/ p = 18.6, 19.7, and 19.9GeV2, respectively.

smooth parametrization of the background. Here, background refers to ⇤⇤ reflections, small
non-⇤0

b contributions (which comprise 6.4% of the sample), and possibly additional broad
P+
c structures. Many di↵erent background parametrizations are considered (discussed

below), each of which is found to produce negligible bias in the P+
c parameters in the

validation fits. Each fit component is multiplied by a phase-space factor, p · q, where p
(q) is the break-up momentum in the ⇤0

b ! P+
c K� (P+

c ! J/ p) decay. Since the signal
peaks are narrow, all fit components are convolved with the detector resolution, which is
2–3MeV in the fit region (see the Supplemental Material). Finally, the detection e�ciency
has negligible impact on the signal mJ/ p distributions, and therefore, is not considered in
these fits.

In the nominal fits, the BW contributions are added incoherently. The results of
these fits are displayed in Fig. 5 for two parametrizations of the background: one using a
high-order polynomial; and another using a low-order polynomial, along with an additional
wide P+

c BW term whose mass and width are free to vary in the fits. For both background
parametrizations, a range of polynomial orders is considered. The lowest order used for
each case is the smallest that adequately describes the data, which is found to correspond

3

m
2 J/
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Invariant mass plots
2015 2019

PRL115, 072001 (2015)
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Figure 6: Fit to the cos ✓Pc-weighted mJ/ p distribution with three BW amplitudes and a
sixth-order polynomial background. This fit is used to determine the central values of the masses
and widths of the P+

c states. The mass thresholds for the ⌃+
c D

0 and ⌃+
c D

⇤0 final states are
superimposed.

approximately 5MeV and 2MeV below the ⌃+
c D

0 and ⌃+
c D

⇤0 thresholds, respectively, as
illustrated in Fig. 6, making them excellent candidates for bound states of these systems.
The Pc(4440)+ could be the second ⌃cD⇤ state, with about 20MeV of binding energy, since
two states with JP = 1/2� and 3/2� are possible. In fact, several papers on hidden-charm
states created dynamically by charmed meson-baryon interactions [31–33] were published
well before the first observation of the P+

c structures [1] and some of these predictions
for ⌃+

c D
0 and ⌃+

c D
⇤0 states [28–30] are consistent with the observed narrow P+

c states.
Such an interpretation of the Pc(4312)+ state (implies JP = 1/2�) would point to the
importance of ⇢-meson exchange, since a pion cannot be exchanged in this system [10].

In summary, the nine-fold increase in the number of ⇤0
b ! J/ pK� decays recon-

8

9 times more data

PRL122 (2019) no.22, 222001 

mJ/ψ [GeV ] mJ/ψ [GeV ]
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Hadronic Molecules
Three states are just below the thresholds
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Figure 6: Fit to the cos ✓Pc-weighted mJ/ p distribution with three BW amplitudes and a
sixth-order polynomial background. This fit is used to determine the central values of the masses
and widths of the P+

c states. The mass thresholds for the ⌃+
c D

0 and ⌃+
c D

⇤0 final states are
superimposed.

approximately 5MeV and 2MeV below the ⌃+
c D

0 and ⌃+
c D

⇤0 thresholds, respectively, as
illustrated in Fig. 6, making them excellent candidates for bound states of these systems.
The Pc(4440)+ could be the second ⌃cD⇤ state, with about 20MeV of binding energy, since
two states with JP = 1/2� and 3/2� are possible. In fact, several papers on hidden-charm
states created dynamically by charmed meson-baryon interactions [31–33] were published
well before the first observation of the P+

c structures [1] and some of these predictions
for ⌃+

c D
0 and ⌃+

c D
⇤0 states [28–30] are consistent with the observed narrow P+

c states.
Such an interpretation of the Pc(4312)+ state (implies JP = 1/2�) would point to the
importance of ⇢-meson exchange, since a pion cannot be exchanged in this system [10].

In summary, the nine-fold increase in the number of ⇤0
b ! J/ pK� decays recon-

8

uudcc

udc - uc 
Σc  -  D(*)

J/ψ p

Formation  
of molecule

Decay
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Near threshold particles ΣcD and ΣcD*

J =0, 1/2 
Jtot = 1/2

J =1, 1/2 
Jtot = 1/2, 3/2
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Figure 6: Fit to the cos ✓Pc-weighted mJ/ p distribution with three BW amplitudes and a
sixth-order polynomial background. This fit is used to determine the central values of the masses
and widths of the P+

c states. The mass thresholds for the ⌃+
c D

0 and ⌃+
c D

⇤0 final states are
superimposed.

approximately 5MeV and 2MeV below the ⌃+
c D

0 and ⌃+
c D

⇤0 thresholds, respectively, as
illustrated in Fig. 6, making them excellent candidates for bound states of these systems.
The Pc(4440)+ could be the second ⌃cD⇤ state, with about 20MeV of binding energy, since
two states with JP = 1/2� and 3/2� are possible. In fact, several papers on hidden-charm
states created dynamically by charmed meson-baryon interactions [31–33] were published
well before the first observation of the P+

c structures [1] and some of these predictions
for ⌃+

c D
0 and ⌃+

c D
⇤0 states [28–30] are consistent with the observed narrow P+

c states.
Such an interpretation of the Pc(4312)+ state (implies JP = 1/2�) would point to the
importance of ⇢-meson exchange, since a pion cannot be exchanged in this system [10].

In summary, the nine-fold increase in the number of ⇤0
b ! J/ pK� decays recon-

8

And interactions
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Heavy quark spin symmetry
Heavy spin inert, light spin active

Magnetic interaction of heavy particles is suppressed ∼
σ1 ⋅ σ2

m1m2

~
D D*

~
Σc Σc*

Λc

HQ spin doublet

HQ spin singlet

J = 1/2

J  =  0       J = 1 J  =  1/2     J = 3/2

Single hadron

good diquark, s = 0

bad diquark, s = 1
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Heavy quark spin symmetry
Meson-Baryon D(*)-Λ(*)

Jtot = [sq, sd] = 1/2

→ One independent interaction for D(*)-Λc

=

One parameter determines the relative masses of  
[DΛ]1/2, [D*Λ]1/2,  [D*Λ]3/2

s = 1/2,   0
(assuming L = 0)
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Heavy quark spin symmetry
Meson-Baryon D(*)-Σc

(*)

D
D*

Σc

Σc*

→ Two independent interactions for D(*)-Σc
(*)

Two parameters determines the relative masses of  
[DΣc]1/2, [D*Σc]1/2,  [D*Σc]3/2, [D*Σc

*]1/2, [D*Σc
*]3/2, [D*Σc

*]5/2

=

=

Jtot = [sq, sd] = 3/2

Jtot = [sq, sd] = 1/2

1/2       0
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Models of ΣcD, ΣcD*, Σc*D, Σc*D*, ΛD  ΛD* 
10 states of J = 1/2, 1/2, 3/2, 3/2, 1/2, 3/2, 5/2, 1/2, 1/2, 3/2

Pion (meson)  
exchange

Loosely bound hadronic molecule
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Tensor force of OPEP

Hidden-charm and bottom meson-baryon molecules
coupled with five-quark states

Yasuhiro Yamaguchi,1,2 Alessandro Giachino,2,3 Atsushi Hosaka,4,5 Elena Santopinto,2
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(Received 11 September 2017; published 29 December 2017)

In this paper, we investigate the hidden-charm pentaquarks as D̄ð"ÞΛc and D̄ð"ÞΣð"Þ
c molecules coupled to

the five-quark states. Furthermore, we extend our calculations to the hidden-bottom sector. The coupling to
the five-quark states is treated as the short range potential, where the relative strength for the meson-baryon
channels is determined by the structure of the five-quark states. We found that resonant and/or bound states
appear in both the charm and bottom sectors. The five-quark state potential turned out to be attractive and,
for this reason, it plays an important role to produce these states. In the charm sector, we need the five-quark
potential in addition to the pion exchange potential in producing bound and resonant states, whereas, in the
bottom sector, the pion exchange interaction is strong enough to produce states. Thus, from this
investigation, it emerges that the hidden-bottom pentaquarks are more likely to form than their hidden-
charm counterparts; for this reason, we suggest that the experimentalists should look for states in the
bottom sector.

DOI: 10.1103/PhysRevD.96.114031

I. INTRODUCTION

The study of the exotic hadrons has aroused great interest
in nuclear and hadron physics. In 2015, the Large Hadron
Collider beauty experiment (LHCb) collaboration observed
two hidden-charm pentaquarks, Pþ

c ð4380Þ and Pþ
c ð4450Þ,

in Λ0
b → J=ψK−p decay [1–3]. These two pentaquark

states are found to have masses of 4380% 8% 28 MeV
and 4449.8% 1.7% 2.5 MeV, with corresponding widths
of 205% 18% 86 MeV and 39% 5% 19 MeV. The spin-
parity JP of these states has not yet been determined.
The parities of these states are preferred to be opposite,
and one state has J ¼ 3=2 and the other J ¼ 5=2.
ðJPPþ

c ð4380Þ
; JPPþ

c ð4450Þ
Þ ¼ ð3=2−; 5=2þÞ gives the best fit sol-

ution, but ð3=2þ; 5=2−Þ and ð5=2−; 3=2þÞ are also accept-
able. The Pþ

c resonances are one of topics of great interest
as the candidates of the exotic multiquark state, and many
discussions have been done so far [4–6].
Hidden-charm pentaquark states, such as uudcc̄ and

udscc̄ compact structures, have been studied so far. Before
Pþ
c observed by LHCb, Yuan et al. in [7] studied the uudcc̄

and udscc̄ systems by the nonrelativistic harmonic
oscillator Hamiltonian with three kinds of the schematic
interactions: a chromomagnetic interaction, a flavor-
spin-dependent interaction, and an instanton-induced

interaction. In [8], Santopinto et al. investigated the
hidden-charm pentaquark states as five-quark compact
states in the S-wave by using a constituent quark model
approach. The hidden-charm and hidden-bottom penta-
quark masses have been calculated by Wu et al. in [9], by
means of a color-magnetic interaction between the three
light quarks and the cc̄ (bb̄) pair in a color octet state.
Takeuchi et al. [10] has also investigated the hidden-charm
pentaquark states by the quark cluster model, and discussed
the structure of the five-quark states which appears in the
scattering states. To investigate the compact five-quark
state, the diquark model has also been applied [11–15]. The
quantum chromodynamics (QCD) sum rules with the
diquark picture were applied in Refs. [16,17]. However,
these authors do not provide any information about the
pentaquark widths. Despite many theoretical works and
implications, there is so far no clear evidence of such
compact multiquark states.
By contrast, it is widely accepted that there are candi-

dates for hadronic molecular states. A long-standing and
well-known example is Λð1405Þ, which is considered to be
a molecule of K̄N and πΣ coupled channels. A general
review of Λð1405Þ can be found in [18]. In the heavy quark
sector, Xð3872Þ [19], Zbð10610Þ, and Zbð10650Þ [20] are

PHYSICAL REVIEW D 96, 114031 (2017)
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has the overlap with the meson-baryon channel but should
be included separately in the system.
Thus, our model Hamiltonian, expanded by the open-

charm MB and 5q channels, is written as

H ¼
!
HMB V

V† H5q

"
ð1Þ

where the MB part HMB contains Ki; the kinetic energy of
each MB channel i and Vπ

ij; the OPEP potential, and H5q

stands for the 5q channels. For simplicity, we consider that
H5q is diagonalized by the 5q channels (denoted by α) of
Table II and its eigenvalue is expressed by Mα. The off-
diagonal part in (1), V, represents the transition between the
MB and 5q channels. In the quark cluster model, such
interactions are modeled by quark exchanges accompanied
by gluon exchanges. In the present paper, we shall make a
simple assumption that ratios of transitions between various
channels i ∼MB and α ∼ 5q are dominated by the spectro-
scopic factors, overlaps hijαi. The absolute strengths are
then assumed to be determined by a single parameter.
Various components of the Hamiltonian are then written as

ðHMB
ij Þ ¼

0

B@
K1 þ Vπ

11 Vπ
12 % % %

Vπ
21 K2 þ Vπ

22 % % %
% % % % % % % % %

1

CA;

ðH5q
αβÞ ¼

0

B@
M1 0 % % %
0 M2 % % %
% % % % % % % % %

1

CA ð2Þ

and

ðViαÞ ¼ ðhijαiÞ ¼

0

B@
V11 V12 % % %
V21 V22 % % %
% % % % % % % % %

1

CA: ð3Þ

Now let us consider the coupled equation for theMB and
5q channels, Hψ ¼ Eψ , where ψ ¼ ðψMB;ψ5qÞ,

HMBψMB þ Vψ5q ¼ EψMB;

V†ψMB þH5qψ5q ¼ Eψ5q:

Solving the second equation for ψ5q, ψ5q ¼
ðE −H5qÞ−1V†ψMB and substituting for the first equation,
we find the equation for ψMB,

!
KMB þ Vπ þ V

1

E −H5q V
†
"
ψMB ¼ EψMB: ð4Þ

The last term on the left-hand side is due to the elimination
of the 5q channels, and is regarded as an effective
interaction for the MB channels. Thus, the total interaction
for the MB channels is defined by

U ¼ Vπ þ V
1

E −H5q V
†: ð5Þ

We then insert the assumed 5q eigenstates into the second
term of (5),

Uij ¼ Vπ
ij þ

X

α

hijVjαi 1

E − E5q
α
hαjV†jji ð6Þ

where E5q
α is the eigenenergy of a 5q channel. In this

equation, we have indicated the meson-baryon channel by
i, j, and 5q channels by α. In this way, the effects of the 5q
channels are included in the form of effective short range
interaction. The corresponding diagram of this equation is
shown in Fig. 1. The computations for the OPEP and the
short range interactions are discussed in the next sections.

B. One pion exchange potential

In this subsection, we derive the one pion exchange
potential (OPEP) between D̄ð&Þ and Yc in the first term of
Eq. (6). Hereafter, we use the notation D̄ð&Þ to stand for a D̄
meson, or a D̄& meson, and Yc to stand for Λc, Σc, or Σ&

c.
The OPEP is obtained by the effective Lagrangians for

heavy mesons (baryons) and the Nambu-Goldstone boson,
satisfying the heavy quark and chiral symmetries. The
Lagrangians for heavy mesons and the Nambu-Goldstone
bosons are given by [50,96–100]

LπHH ¼ gπTr½Hbγμγ5A
μ
baH̄a(: ð7Þ

The trace Tr½% % %( is taken over the gamma matrix. The
heavy meson fields H and H̄ are represented by

Ha ¼
1þ =v
2

½D̄&
aμγμ − D̄aγ5(; ð8Þ

TABLE II. Channels of 5q’s with color octet qqq and cc̄ with
possible total spin J. For notations, see text.

Channel ½q38; 12(0 ½q38; 12(1 ½q38; 32(0 ½q38; 32(1

J 1=2 1=2, 3=2 3=2 1=2, 3=2, 5=2

5q( )
pi pj V V ji

D

Yc

FIG. 1. One pion exchange potential (left) and the effective
interaction due to the coupling to the 5q channel (right). The
meson-baryon channels are generally represented by D̄ and Yc,
respectively, and i is for the initial and j the final channels. A 5q
channel is denoted by α.

YASUHIRO YAMAGUCHI et al. PHYSICAL REVIEW D 96, 114031 (2017)

114031-4

Hadronic molecule with OPEP + 5q core

And in preparation for the new Pc’s data
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Hamiltonian

has the overlap with the meson-baryon channel but should
be included separately in the system.
Thus, our model Hamiltonian, expanded by the open-

charm MB and 5q channels, is written as

H ¼
!
HMB V

V† H5q

"
ð1Þ

where the MB part HMB contains Ki; the kinetic energy of
each MB channel i and Vπ

ij; the OPEP potential, and H5q

stands for the 5q channels. For simplicity, we consider that
H5q is diagonalized by the 5q channels (denoted by α) of
Table II and its eigenvalue is expressed by Mα. The off-
diagonal part in (1), V, represents the transition between the
MB and 5q channels. In the quark cluster model, such
interactions are modeled by quark exchanges accompanied
by gluon exchanges. In the present paper, we shall make a
simple assumption that ratios of transitions between various
channels i ∼MB and α ∼ 5q are dominated by the spectro-
scopic factors, overlaps hijαi. The absolute strengths are
then assumed to be determined by a single parameter.
Various components of the Hamiltonian are then written as

ðHMB
ij Þ ¼

0

B@
K1 þ Vπ

11 Vπ
12 % % %

Vπ
21 K2 þ Vπ

22 % % %
% % % % % % % % %

1

CA;

ðH5q
αβÞ ¼

0

B@
M1 0 % % %
0 M2 % % %
% % % % % % % % %

1

CA ð2Þ

and

ðViαÞ ¼ ðhijαiÞ ¼

0

B@
V11 V12 % % %
V21 V22 % % %
% % % % % % % % %

1

CA: ð3Þ

Now let us consider the coupled equation for theMB and
5q channels, Hψ ¼ Eψ , where ψ ¼ ðψMB;ψ5qÞ,

HMBψMB þ Vψ5q ¼ EψMB;

V†ψMB þH5qψ5q ¼ Eψ5q:

Solving the second equation for ψ5q, ψ5q ¼
ðE −H5qÞ−1V†ψMB and substituting for the first equation,
we find the equation for ψMB,

!
KMB þ Vπ þ V

1

E −H5q V
†
"
ψMB ¼ EψMB: ð4Þ

The last term on the left-hand side is due to the elimination
of the 5q channels, and is regarded as an effective
interaction for the MB channels. Thus, the total interaction
for the MB channels is defined by

U ¼ Vπ þ V
1

E −H5q V
†: ð5Þ

We then insert the assumed 5q eigenstates into the second
term of (5),

Uij ¼ Vπ
ij þ

X

α

hijVjαi 1

E − E5q
α
hαjV†jji ð6Þ

where E5q
α is the eigenenergy of a 5q channel. In this

equation, we have indicated the meson-baryon channel by
i, j, and 5q channels by α. In this way, the effects of the 5q
channels are included in the form of effective short range
interaction. The corresponding diagram of this equation is
shown in Fig. 1. The computations for the OPEP and the
short range interactions are discussed in the next sections.

B. One pion exchange potential

In this subsection, we derive the one pion exchange
potential (OPEP) between D̄ð&Þ and Yc in the first term of
Eq. (6). Hereafter, we use the notation D̄ð&Þ to stand for a D̄
meson, or a D̄& meson, and Yc to stand for Λc, Σc, or Σ&

c.
The OPEP is obtained by the effective Lagrangians for

heavy mesons (baryons) and the Nambu-Goldstone boson,
satisfying the heavy quark and chiral symmetries. The
Lagrangians for heavy mesons and the Nambu-Goldstone
bosons are given by [50,96–100]

LπHH ¼ gπTr½Hbγμγ5A
μ
baH̄a(: ð7Þ

The trace Tr½% % %( is taken over the gamma matrix. The
heavy meson fields H and H̄ are represented by

Ha ¼
1þ =v
2

½D̄&
aμγμ − D̄aγ5(; ð8Þ

TABLE II. Channels of 5q’s with color octet qqq and cc̄ with
possible total spin J. For notations, see text.

Channel ½q38; 12(0 ½q38; 12(1 ½q38; 32(0 ½q38; 32(1

J 1=2 1=2, 3=2 3=2 1=2, 3=2, 5=2

5q( )
pi pj V V ji

D

Yc

FIG. 1. One pion exchange potential (left) and the effective
interaction due to the coupling to the 5q channel (right). The
meson-baryon channels are generally represented by D̄ and Yc,
respectively, and i is for the initial and j the final channels. A 5q
channel is denoted by α.

YASUHIRO YAMAGUCHI et al. PHYSICAL REVIEW D 96, 114031 (2017)

114031-4

• MB = ΣcD, ΣcD*, Σc*D, Σc*D*, ΛD  ΛD* + OPEP
• 5q = Color octet (qqq)(ccbar)

has the overlap with the meson-baryon channel but should
be included separately in the system.
Thus, our model Hamiltonian, expanded by the open-

charm MB and 5q channels, is written as

H ¼
!
HMB V

V† H5q

"
ð1Þ

where the MB part HMB contains Ki; the kinetic energy of
each MB channel i and Vπ

ij; the OPEP potential, and H5q

stands for the 5q channels. For simplicity, we consider that
H5q is diagonalized by the 5q channels (denoted by α) of
Table II and its eigenvalue is expressed by Mα. The off-
diagonal part in (1), V, represents the transition between the
MB and 5q channels. In the quark cluster model, such
interactions are modeled by quark exchanges accompanied
by gluon exchanges. In the present paper, we shall make a
simple assumption that ratios of transitions between various
channels i ∼MB and α ∼ 5q are dominated by the spectro-
scopic factors, overlaps hijαi. The absolute strengths are
then assumed to be determined by a single parameter.
Various components of the Hamiltonian are then written as

ðHMB
ij Þ ¼

0

B@
K1 þ Vπ

11 Vπ
12 % % %

Vπ
21 K2 þ Vπ

22 % % %
% % % % % % % % %

1

CA;

ðH5q
αβÞ ¼

0

B@
M1 0 % % %
0 M2 % % %
% % % % % % % % %

1

CA ð2Þ

and

ðViαÞ ¼ ðhijαiÞ ¼

0

B@
V11 V12 % % %
V21 V22 % % %
% % % % % % % % %

1

CA: ð3Þ

Now let us consider the coupled equation for theMB and
5q channels, Hψ ¼ Eψ , where ψ ¼ ðψMB;ψ5qÞ,

HMBψMB þ Vψ5q ¼ EψMB;

V†ψMB þH5qψ5q ¼ Eψ5q:

Solving the second equation for ψ5q, ψ5q ¼
ðE −H5qÞ−1V†ψMB and substituting for the first equation,
we find the equation for ψMB,

!
KMB þ Vπ þ V

1

E −H5q V
†
"
ψMB ¼ EψMB: ð4Þ

The last term on the left-hand side is due to the elimination
of the 5q channels, and is regarded as an effective
interaction for the MB channels. Thus, the total interaction
for the MB channels is defined by

U ¼ Vπ þ V
1

E −H5q V
†: ð5Þ

We then insert the assumed 5q eigenstates into the second
term of (5),

Uij ¼ Vπ
ij þ

X

α

hijVjαi 1

E − E5q
α
hαjV†jji ð6Þ

where E5q
α is the eigenenergy of a 5q channel. In this

equation, we have indicated the meson-baryon channel by
i, j, and 5q channels by α. In this way, the effects of the 5q
channels are included in the form of effective short range
interaction. The corresponding diagram of this equation is
shown in Fig. 1. The computations for the OPEP and the
short range interactions are discussed in the next sections.

B. One pion exchange potential

In this subsection, we derive the one pion exchange
potential (OPEP) between D̄ð&Þ and Yc in the first term of
Eq. (6). Hereafter, we use the notation D̄ð&Þ to stand for a D̄
meson, or a D̄& meson, and Yc to stand for Λc, Σc, or Σ&

c.
The OPEP is obtained by the effective Lagrangians for

heavy mesons (baryons) and the Nambu-Goldstone boson,
satisfying the heavy quark and chiral symmetries. The
Lagrangians for heavy mesons and the Nambu-Goldstone
bosons are given by [50,96–100]

LπHH ¼ gπTr½Hbγμγ5A
μ
baH̄a(: ð7Þ

The trace Tr½% % %( is taken over the gamma matrix. The
heavy meson fields H and H̄ are represented by

Ha ¼
1þ =v
2

½D̄&
aμγμ − D̄aγ5(; ð8Þ

TABLE II. Channels of 5q’s with color octet qqq and cc̄ with
possible total spin J. For notations, see text.

Channel ½q38; 12(0 ½q38; 12(1 ½q38; 32(0 ½q38; 32(1

J 1=2 1=2, 3=2 3=2 1=2, 3=2, 5=2

5q( )
pi pj V V ji

D

Yc

FIG. 1. One pion exchange potential (left) and the effective
interaction due to the coupling to the 5q channel (right). The
meson-baryon channels are generally represented by D̄ and Yc,
respectively, and i is for the initial and j the final channels. A 5q
channel is denoted by α.
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5q = [[qqq]8 ⋅ [c̄c]8]1

has the overlap with the meson-baryon channel but should
be included separately in the system.
Thus, our model Hamiltonian, expanded by the open-

charm MB and 5q channels, is written as

H ¼
!
HMB V

V† H5q

"
ð1Þ

where the MB part HMB contains Ki; the kinetic energy of
each MB channel i and Vπ

ij; the OPEP potential, and H5q

stands for the 5q channels. For simplicity, we consider that
H5q is diagonalized by the 5q channels (denoted by α) of
Table II and its eigenvalue is expressed by Mα. The off-
diagonal part in (1), V, represents the transition between the
MB and 5q channels. In the quark cluster model, such
interactions are modeled by quark exchanges accompanied
by gluon exchanges. In the present paper, we shall make a
simple assumption that ratios of transitions between various
channels i ∼MB and α ∼ 5q are dominated by the spectro-
scopic factors, overlaps hijαi. The absolute strengths are
then assumed to be determined by a single parameter.
Various components of the Hamiltonian are then written as

ðHMB
ij Þ ¼
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12 % % %

Vπ
21 K2 þ Vπ

22 % % %
% % % % % % % % %
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% % % % % % % % %
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CA ð2Þ

and

ðViαÞ ¼ ðhijαiÞ ¼

0
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V11 V12 % % %
V21 V22 % % %
% % % % % % % % %
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CA: ð3Þ

Now let us consider the coupled equation for theMB and
5q channels, Hψ ¼ Eψ , where ψ ¼ ðψMB;ψ5qÞ,

HMBψMB þ Vψ5q ¼ EψMB;

V†ψMB þH5qψ5q ¼ Eψ5q:

Solving the second equation for ψ5q, ψ5q ¼
ðE −H5qÞ−1V†ψMB and substituting for the first equation,
we find the equation for ψMB,

!
KMB þ Vπ þ V

1

E −H5q V
†
"
ψMB ¼ EψMB: ð4Þ

The last term on the left-hand side is due to the elimination
of the 5q channels, and is regarded as an effective
interaction for the MB channels. Thus, the total interaction
for the MB channels is defined by

U ¼ Vπ þ V
1

E −H5q V
†: ð5Þ

We then insert the assumed 5q eigenstates into the second
term of (5),

Uij ¼ Vπ
ij þ

X

α

hijVjαi 1

E − E5q
α
hαjV†jji ð6Þ

where E5q
α is the eigenenergy of a 5q channel. In this

equation, we have indicated the meson-baryon channel by
i, j, and 5q channels by α. In this way, the effects of the 5q
channels are included in the form of effective short range
interaction. The corresponding diagram of this equation is
shown in Fig. 1. The computations for the OPEP and the
short range interactions are discussed in the next sections.

B. One pion exchange potential

In this subsection, we derive the one pion exchange
potential (OPEP) between D̄ð&Þ and Yc in the first term of
Eq. (6). Hereafter, we use the notation D̄ð&Þ to stand for a D̄
meson, or a D̄& meson, and Yc to stand for Λc, Σc, or Σ&

c.
The OPEP is obtained by the effective Lagrangians for

heavy mesons (baryons) and the Nambu-Goldstone boson,
satisfying the heavy quark and chiral symmetries. The
Lagrangians for heavy mesons and the Nambu-Goldstone
bosons are given by [50,96–100]

LπHH ¼ gπTr½Hbγμγ5A
μ
baH̄a(: ð7Þ

The trace Tr½% % %( is taken over the gamma matrix. The
heavy meson fields H and H̄ are represented by

Ha ¼
1þ =v
2

½D̄&
aμγμ − D̄aγ5(; ð8Þ

TABLE II. Channels of 5q’s with color octet qqq and cc̄ with
possible total spin J. For notations, see text.

Channel ½q38; 12(0 ½q38; 12(1 ½q38; 32(0 ½q38; 32(1

J 1=2 1=2, 3=2 3=2 1=2, 3=2, 5=2

5q( )
pi pj V V ji

D

Yc

FIG. 1. One pion exchange potential (left) and the effective
interaction due to the coupling to the 5q channel (right). The
meson-baryon channels are generally represented by D̄ and Yc,
respectively, and i is for the initial and j the final channels. A 5q
channel is denoted by α.
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assumed to be proportional to the spectroscopic factor, the
overlap hijαi,

hijVjαi ¼ fhijαi ð17Þ

where f is the only parameter to determine the overall
strength of the matrix elements. As wewill discuss later, the
approximation (17) turns out to be rather good in com-
parison with the quark cluster model calculations [10].
For the computation of the spectroscopic factor, let us

construct the MB and 5q wave functions explicitly.
We employ the standard nonrelativistic quark model
with a harmonic oscillator confining potential. The wave
functions are written as the products of color, spin, flavor,
and orbital wave functions. Let us introduce the notation
jD̄Ycðp⃗iÞi for the open-charm meson-baryon channel i of
relative momentum p⃗i. Thus, we can write the wave
function for jD̄Ycðp⃗iÞi as [109]

h⃗ρ; ⃗λ; ⃗r; ⃗xjD̄Ycðp⃗iÞi ¼ ψ int
D̄ ð⃗rÞψ int

Yc
ð⃗ρ; ⃗λÞeip⃗i ·⃗x × ϕD̄Yc

ðCSFÞ:

ð18Þ

In (18), we indicate only the spatial coordinates explicitly,
while the other coordinates for the color, spin and flavor are
summarized in ϕD̄Yc

ðCSFÞ. These coordinates are shown in
Fig. 2. The spatial wave functions ψ int

D̄ ð⃗rÞψ int
Λc
ð⃗ρ; ⃗λÞ are then

written by those of harmonic oscillator.
For the five-quark state, we assume that the quarks move

independently in a single confined region, and hence the ⃗x
motion is also confined. Therefore, by introducing j5qðαÞi,
we have

hρ⃗; λ⃗; r⃗; x⃗j5qðαÞi¼ψ int
5qðρ⃗; λ⃗; r⃗Þ

!
2A
π

"
3=4

e−A
2x2 ×ϕ5qðCSFÞ;

ð19Þ

where the index α is for the 5q configurations, as shown in
Table II for a given spin. The parameter A represents the
inverse of the spatial separation of ⃗x-motion, corresponding
to the qqc and qc̄ clusters, which is in the order of 1 fm, or
less. Again, the color, spin and flavor part is summarized
in ϕ5qðCSFÞ.
Now the spectroscopic factor is the overlap of (18)

and (19). Assuming that the spatial wave functions
ψ int
D̄ ð⃗rÞψ int

Λc
ð⃗ρ; ⃗λÞ and ψ int

5qð⃗ρ; ⃗λ; ⃗rÞ are the same, the overlap
is given by the color, spin, and flavor parts, as labeled by
CSF below, and by the Fourie transform of the Gaussian
function,

hD̄Ycðp⃗iÞj5qðαÞi ¼ hϕD̄Yc
ðCSFÞjϕ5qðCSFÞi

Z
d3x

!
2A
π

"
3=4

e−Ax
2
eip⃗i ·⃗x

¼ hϕD̄Yc
ðCSFÞjϕ5qðCSFÞi

!
2π
A

"
3=4

e−p
2
i =4A ≡ Sαi gðp⃗iÞ; ð20Þ

FIG. 2. Jacobi coordinates of “D̄ meson” and “Yc baryon” in
the 5q configuration. qi (i ¼ 1, 2, 3) stands for the light quark,
and c4 (c̄5) stands for the (anti)charm quark. The coordinate ⃗ρ is
the relative coordinate of q1q2, ⃗λ the relative coordinate between
the center of mass of q1q2 and c4, ⃗r the relative coordinate of
q3c̄5, and ⃗x the relative coordinate between the centers of mass of
q1q2c4 and c̄5q3. Though we do not use the total center-of-mass
coordinate X⃗ in the present paper explicitly, it is also shown in the
figure.

TABLE III. Spectroscopic factor of the 5q potential. J is the
total angular momentum of the system, Scc̄ is the total spin of cc̄,
and S3q is the total spin of the three light quarks.

J Scc̄ S3q D̄Λc D̄$Λc D̄Σc D̄Σ$
c D̄$Σc D̄$Σ$

c

1
2

0 1
2

0.35 0.61 −0.35 % % % 0.20 −0.58
1 1

2
0.61 −0.35 0.20 % % % −0.59 −0.33

1 3
2

0.00 0.00 −0.82 % % % −0.47 0.33

3
2

0 3
2

% % % 0.00 % % % −0.50 0.58 −0.65
1 1

2
% % % 0.71 % % % 0.41 −0.24 −0.53

1 3
2

% % % 0.00 % % % −0.65 −0.75 −0.17
5
2

1 3
2

% % % % % % % % % % % % % % % −1.00
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Equations

has the overlap with the meson-baryon channel but should
be included separately in the system.
Thus, our model Hamiltonian, expanded by the open-

charm MB and 5q channels, is written as

H ¼
!
HMB V

V† H5q

"
ð1Þ

where the MB part HMB contains Ki; the kinetic energy of
each MB channel i and Vπ

ij; the OPEP potential, and H5q

stands for the 5q channels. For simplicity, we consider that
H5q is diagonalized by the 5q channels (denoted by α) of
Table II and its eigenvalue is expressed by Mα. The off-
diagonal part in (1), V, represents the transition between the
MB and 5q channels. In the quark cluster model, such
interactions are modeled by quark exchanges accompanied
by gluon exchanges. In the present paper, we shall make a
simple assumption that ratios of transitions between various
channels i ∼MB and α ∼ 5q are dominated by the spectro-
scopic factors, overlaps hijαi. The absolute strengths are
then assumed to be determined by a single parameter.
Various components of the Hamiltonian are then written as

ðHMB
ij Þ ¼

0

B@
K1 þ Vπ

11 Vπ
12 % % %

Vπ
21 K2 þ Vπ

22 % % %
% % % % % % % % %

1

CA;

ðH5q
αβÞ ¼

0

B@
M1 0 % % %
0 M2 % % %
% % % % % % % % %

1

CA ð2Þ

and

ðViαÞ ¼ ðhijαiÞ ¼

0

B@
V11 V12 % % %
V21 V22 % % %
% % % % % % % % %

1

CA: ð3Þ

Now let us consider the coupled equation for theMB and
5q channels, Hψ ¼ Eψ , where ψ ¼ ðψMB;ψ5qÞ,

HMBψMB þ Vψ5q ¼ EψMB;

V†ψMB þH5qψ5q ¼ Eψ5q:

Solving the second equation for ψ5q, ψ5q ¼
ðE −H5qÞ−1V†ψMB and substituting for the first equation,
we find the equation for ψMB,

!
KMB þ Vπ þ V

1

E −H5q V
†
"
ψMB ¼ EψMB: ð4Þ

The last term on the left-hand side is due to the elimination
of the 5q channels, and is regarded as an effective
interaction for the MB channels. Thus, the total interaction
for the MB channels is defined by

U ¼ Vπ þ V
1

E −H5q V
†: ð5Þ

We then insert the assumed 5q eigenstates into the second
term of (5),

Uij ¼ Vπ
ij þ

X

α

hijVjαi 1

E − E5q
α
hαjV†jji ð6Þ

where E5q
α is the eigenenergy of a 5q channel. In this

equation, we have indicated the meson-baryon channel by
i, j, and 5q channels by α. In this way, the effects of the 5q
channels are included in the form of effective short range
interaction. The corresponding diagram of this equation is
shown in Fig. 1. The computations for the OPEP and the
short range interactions are discussed in the next sections.

B. One pion exchange potential

In this subsection, we derive the one pion exchange
potential (OPEP) between D̄ð&Þ and Yc in the first term of
Eq. (6). Hereafter, we use the notation D̄ð&Þ to stand for a D̄
meson, or a D̄& meson, and Yc to stand for Λc, Σc, or Σ&

c.
The OPEP is obtained by the effective Lagrangians for

heavy mesons (baryons) and the Nambu-Goldstone boson,
satisfying the heavy quark and chiral symmetries. The
Lagrangians for heavy mesons and the Nambu-Goldstone
bosons are given by [50,96–100]

LπHH ¼ gπTr½Hbγμγ5A
μ
baH̄a(: ð7Þ

The trace Tr½% % %( is taken over the gamma matrix. The
heavy meson fields H and H̄ are represented by

Ha ¼
1þ =v
2

½D̄&
aμγμ − D̄aγ5(; ð8Þ

TABLE II. Channels of 5q’s with color octet qqq and cc̄ with
possible total spin J. For notations, see text.

Channel ½q38; 12(0 ½q38; 12(1 ½q38; 32(0 ½q38; 32(1

J 1=2 1=2, 3=2 3=2 1=2, 3=2, 5=2

5q( )
pi pj V V ji

D

Yc

FIG. 1. One pion exchange potential (left) and the effective
interaction due to the coupling to the 5q channel (right). The
meson-baryon channels are generally represented by D̄ and Yc,
respectively, and i is for the initial and j the final channels. A 5q
channel is denoted by α.
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has the overlap with the meson-baryon channel but should
be included separately in the system.
Thus, our model Hamiltonian, expanded by the open-

charm MB and 5q channels, is written as

H ¼
!
HMB V

V† H5q

"
ð1Þ

where the MB part HMB contains Ki; the kinetic energy of
each MB channel i and Vπ

ij; the OPEP potential, and H5q

stands for the 5q channels. For simplicity, we consider that
H5q is diagonalized by the 5q channels (denoted by α) of
Table II and its eigenvalue is expressed by Mα. The off-
diagonal part in (1), V, represents the transition between the
MB and 5q channels. In the quark cluster model, such
interactions are modeled by quark exchanges accompanied
by gluon exchanges. In the present paper, we shall make a
simple assumption that ratios of transitions between various
channels i ∼MB and α ∼ 5q are dominated by the spectro-
scopic factors, overlaps hijαi. The absolute strengths are
then assumed to be determined by a single parameter.
Various components of the Hamiltonian are then written as

ðHMB
ij Þ ¼

0

B@
K1 þ Vπ

11 Vπ
12 % % %

Vπ
21 K2 þ Vπ

22 % % %
% % % % % % % % %

1

CA;

ðH5q
αβÞ ¼

0

B@
M1 0 % % %
0 M2 % % %
% % % % % % % % %

1

CA ð2Þ

and

ðViαÞ ¼ ðhijαiÞ ¼

0

B@
V11 V12 % % %
V21 V22 % % %
% % % % % % % % %

1

CA: ð3Þ

Now let us consider the coupled equation for theMB and
5q channels, Hψ ¼ Eψ , where ψ ¼ ðψMB;ψ5qÞ,

HMBψMB þ Vψ5q ¼ EψMB;

V†ψMB þH5qψ5q ¼ Eψ5q:

Solving the second equation for ψ5q, ψ5q ¼
ðE −H5qÞ−1V†ψMB and substituting for the first equation,
we find the equation for ψMB,

!
KMB þ Vπ þ V

1

E −H5q V
†
"
ψMB ¼ EψMB: ð4Þ

The last term on the left-hand side is due to the elimination
of the 5q channels, and is regarded as an effective
interaction for the MB channels. Thus, the total interaction
for the MB channels is defined by

U ¼ Vπ þ V
1

E −H5q V
†: ð5Þ

We then insert the assumed 5q eigenstates into the second
term of (5),

Uij ¼ Vπ
ij þ

X

α

hijVjαi 1

E − E5q
α
hαjV†jji ð6Þ

where E5q
α is the eigenenergy of a 5q channel. In this

equation, we have indicated the meson-baryon channel by
i, j, and 5q channels by α. In this way, the effects of the 5q
channels are included in the form of effective short range
interaction. The corresponding diagram of this equation is
shown in Fig. 1. The computations for the OPEP and the
short range interactions are discussed in the next sections.

B. One pion exchange potential

In this subsection, we derive the one pion exchange
potential (OPEP) between D̄ð&Þ and Yc in the first term of
Eq. (6). Hereafter, we use the notation D̄ð&Þ to stand for a D̄
meson, or a D̄& meson, and Yc to stand for Λc, Σc, or Σ&

c.
The OPEP is obtained by the effective Lagrangians for

heavy mesons (baryons) and the Nambu-Goldstone boson,
satisfying the heavy quark and chiral symmetries. The
Lagrangians for heavy mesons and the Nambu-Goldstone
bosons are given by [50,96–100]

LπHH ¼ gπTr½Hbγμγ5A
μ
baH̄a(: ð7Þ

The trace Tr½% % %( is taken over the gamma matrix. The
heavy meson fields H and H̄ are represented by

Ha ¼
1þ =v
2

½D̄&
aμγμ − D̄aγ5(; ð8Þ

TABLE II. Channels of 5q’s with color octet qqq and cc̄ with
possible total spin J. For notations, see text.

Channel ½q38; 12(0 ½q38; 12(1 ½q38; 32(0 ½q38; 32(1

J 1=2 1=2, 3=2 3=2 1=2, 3=2, 5=2

5q( )
pi pj V V ji

D

Yc

FIG. 1. One pion exchange potential (left) and the effective
interaction due to the coupling to the 5q channel (right). The
meson-baryon channels are generally represented by D̄ and Yc,
respectively, and i is for the initial and j the final channels. A 5q
channel is denoted by α.
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5q states are eliminated 
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Solving this equation, eigenstates (resonances), phase shits, …
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Model spaces and thresholds

ΣcD

Σ*c D

ΣcD*

Σ*c D*

ΛcD

ΛcD*

J/ψ p

Observed decay 
with tiny contribution to decay width

Observed width
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A recent analysis by the LHCb collaboration suggests the existence of three narrow pentaquark-like states
— the Pc(4312), Pc(4440) and Pc(4457) — instead of just one in the previous analysis (the Pc(4450)). The
closeness of the Pc(4312) to the D̄Σc threshold and the Pc(4440)/Pc(4457) to the D̄∗Σc one suggests a molecular
interpretation of these resonances. We show that these three pentaquark-like resonances can be naturally accom-
modated in a contact-range effective field theory description that incorporates heavy-quark spin symmetry. This
description leads to the prediction of all the seven possible S-wave heavy antimeson-baryon molecules (that
is, there should be four additional molecular pentaquarks in addition to the Pc(4312), Pc(4440) and Pc(4457)),
providing the first example of a heavy-quark spin symmetry molecular multiplet that is complete. If this is
confirmed, it will not only give us an impressive example of the application of heavy-quark symmetries and
effective field theories in hadron physics: it will also uncover a clear and powerful ordering principle for the
molecular spectrum, reminiscent of the SU(3)-flavor multiplets to which the light hadron spectrum conforms.

In 2015 the LHCb collaboration discovered the existence
of two pentaquark-like resonances, which are usually referred
to as Pc(4380) and Pc(4450) due to their masses [1]. This
experimental discovery triggered intense theoretical specula-
tions on the nature of these states, their decays and production
mechanisms. In particular the closeness of the Pc(4450) to
a few meson-baryon thresholds leads naturally to the conjec-
ture that it is a meson-baryon bound state (a conjecture fur-
ther cemented by a series of theoretical predictions that pre-
dated its observation [2–8]), with the most popular explana-
tions being a D̄∗Σc [9–11] or a D̄∗Σ∗c molecule [12, 13] (in
these two cases in the isospin I = 1

2
configuration and prob-

ably with a small admixture of D̄Λc(2595) [14, 15]), and a
χc1 p molecule [16]. There are also non-molecular explana-
tions for this state, which include that it might be a gen-
uine pentaquark [17–23], that threshold effects might play a
role [24, 25] (see also Ref. [26] for a detailed discussion),
baryocharmonia [27], a molecule bound by colour chem-
istry [28] and a soliton [29].

The original analysis of Ref. [1] has been recently updated
by the LHCb collaboration in Ref. [30], where it has been
found that the previous Pc(4450) actually contains two peaks
— the Pc(4440) and Pc(4457) — and that there is a third nar-
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row peak, the Pc(4312). Their masses and widths are

mPc1
= 4311.9 ± 0.7+6.8

−0.6, ΓPc1
= 9.8 ± 2.7+3.7

−4.5,

mPc2
= 4440.3 ± 1.3+4.1

−4.7, ΓPc2
= 20.6 ± 4.9+8.7

−10.1,

mPc3
= 4457.3 ± 0.6+4.1

−1.7, ΓPc3
= 6.4 ± 2.0+5.7

−1.9,

all in units of MeV and for which we have used the nota-
tion Pc1, Pc2 and Pc3 to refer to the three states Pc(4312),
Pc(4440) and Pc(4457) (that is, we have ordered them accord-
ing to their masses). It is interesting to notice that the mass of
the previous Pc(4450) roughly coincides with the geometric
mean of the masses of the new Pc(4440) and Pc(4457). The
Pc(4312) pentaquark-like state is near to the D̄Σc threshold,
while the other two are close to the D̄∗Σc one. When trans-
lated into binding energies we obtain B1 = 8.9, B2 = 21.8
and B3 = 4.8 MeV for the Pc(4312), Pc(4440) and Pc(4457),
respectively. Of course this closeness to threshold has already
been noted by theoreticians in Refs. [31, 32]. If these findings
are confirmed it will not only strongly support the molecular
hypothesis, but it will also provide us with the most impres-
sive illustration of the application of heavy-quark spin sym-
metry (HQSS) [33–36] to hadronic molecules so far. In par-
ticular this experimental analysis will result in the prediction
of the first full HQSS molecular multiplet of the hidden-charm
molecular pentaquarks.

Heavy-hadron molecules, i.e. bound states that include one
or more heavy hadrons, were conjectured decades ago [37,
38]. Owing to the combination of light- and heavy-quark con-
tent, heavy-hadron molecules have a high degree of symmetry
which can be exploited to determine their spectrum [39–48].
HQSS manifests in the existence of interesting patterns in the
heavy-molecular spectrum. The most evident of these pat-
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A recent analysis by the LHCb collaboration suggests the existence of three narrow pentaquark-like states
— the Pc(4312), Pc(4440) and Pc(4457) — instead of just one in the previous analysis (the Pc(4450)). The
closeness of the Pc(4312) to the D̄Σc threshold and the Pc(4440)/Pc(4457) to the D̄∗Σc one suggests a molecular
interpretation of these resonances. We show that these three pentaquark-like resonances can be naturally accom-
modated in a contact-range effective field theory description that incorporates heavy-quark spin symmetry. This
description leads to the prediction of all the seven possible S-wave heavy antimeson-baryon molecules (that
is, there should be four additional molecular pentaquarks in addition to the Pc(4312), Pc(4440) and Pc(4457)),
providing the first example of a heavy-quark spin symmetry molecular multiplet that is complete. If this is
confirmed, it will not only give us an impressive example of the application of heavy-quark symmetries and
effective field theories in hadron physics: it will also uncover a clear and powerful ordering principle for the
molecular spectrum, reminiscent of the SU(3)-flavor multiplets to which the light hadron spectrum conforms.

In 2015 the LHCb collaboration discovered the existence
of two pentaquark-like resonances, which are usually referred
to as Pc(4380) and Pc(4450) due to their masses [1]. This
experimental discovery triggered intense theoretical specula-
tions on the nature of these states, their decays and production
mechanisms. In particular the closeness of the Pc(4450) to
a few meson-baryon thresholds leads naturally to the conjec-
ture that it is a meson-baryon bound state (a conjecture fur-
ther cemented by a series of theoretical predictions that pre-
dated its observation [2–8]), with the most popular explana-
tions being a D̄∗Σc [9–11] or a D̄∗Σ∗c molecule [12, 13] (in
these two cases in the isospin I = 1

2
configuration and prob-

ably with a small admixture of D̄Λc(2595) [14, 15]), and a
χc1 p molecule [16]. There are also non-molecular explana-
tions for this state, which include that it might be a gen-
uine pentaquark [17–23], that threshold effects might play a
role [24, 25] (see also Ref. [26] for a detailed discussion),
baryocharmonia [27], a molecule bound by colour chem-
istry [28] and a soliton [29].

The original analysis of Ref. [1] has been recently updated
by the LHCb collaboration in Ref. [30], where it has been
found that the previous Pc(4450) actually contains two peaks
— the Pc(4440) and Pc(4457) — and that there is a third nar-
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row peak, the Pc(4312). Their masses and widths are

mPc1
= 4311.9 ± 0.7+6.8

−0.6, ΓPc1
= 9.8 ± 2.7+3.7

−4.5,

mPc2
= 4440.3 ± 1.3+4.1

−4.7, ΓPc2
= 20.6 ± 4.9+8.7

−10.1,

mPc3
= 4457.3 ± 0.6+4.1

−1.7, ΓPc3
= 6.4 ± 2.0+5.7

−1.9,

all in units of MeV and for which we have used the nota-
tion Pc1, Pc2 and Pc3 to refer to the three states Pc(4312),
Pc(4440) and Pc(4457) (that is, we have ordered them accord-
ing to their masses). It is interesting to notice that the mass of
the previous Pc(4450) roughly coincides with the geometric
mean of the masses of the new Pc(4440) and Pc(4457). The
Pc(4312) pentaquark-like state is near to the D̄Σc threshold,
while the other two are close to the D̄∗Σc one. When trans-
lated into binding energies we obtain B1 = 8.9, B2 = 21.8
and B3 = 4.8 MeV for the Pc(4312), Pc(4440) and Pc(4457),
respectively. Of course this closeness to threshold has already
been noted by theoreticians in Refs. [31, 32]. If these findings
are confirmed it will not only strongly support the molecular
hypothesis, but it will also provide us with the most impres-
sive illustration of the application of heavy-quark spin sym-
metry (HQSS) [33–36] to hadronic molecules so far. In par-
ticular this experimental analysis will result in the prediction
of the first full HQSS molecular multiplet of the hidden-charm
molecular pentaquarks.

Heavy-hadron molecules, i.e. bound states that include one
or more heavy hadrons, were conjectured decades ago [37,
38]. Owing to the combination of light- and heavy-quark con-
tent, heavy-hadron molecules have a high degree of symmetry
which can be exploited to determine their spectrum [39–48].
HQSS manifests in the existence of interesting patterns in the
heavy-molecular spectrum. The most evident of these pat-
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terns applies to the Zc’s and Zb’s twin resonances discovered
by BESIII [49–52] and Belle [53, 54], respectively. If they
are bound states of a heavy meson and antimeson, be it ei-
ther a charm meson or bottom meson, HQSS predicts that the
S-wave potential in the J

PC = 1+� channel is [41, 42]

V(1+�, P⇤P̄) = V(1+�, P⇤P̄⇤) , (1)

independently of the particle content, where P = D, B̄ and
P
⇤ = D

⇤, B̄⇤. This specific pattern indeed explains why the
Zc’s and Zb’s appear in pairs, both of which are at similar dis-
tances from the P

⇤
P and P

⇤
P
⇤ open heavy flavour thresholds.

A similar pattern applies to the 1++ and 2++ heavy meson-
antimeson interaction [43–45]

V(1++, P⇤P̄) = V(2++, P⇤P̄⇤) . (2)

If we assume the X(3872) resonance to be a D
⇤
D̄ bound state

with J
PC = 1++, this symmetry relation suggests the existence

of a 2++ D
⇤
D̄
⇤ partner with a mass of 4012 MeV. However

the location of the X(3872) overlaps with the D
0⇤

D̄
0 threshold

within experimental errors, which implies that the existence
of the 2++ partner of the X is not guaranteed if we take into
account this error source (besides, there are other uncertain-
ties [55, 56]), see Ref. [57] for a more complete discussion. At
this point we notice that there are six possible heavy meson-
antimeson molecules, forming a HQSS multiplet that can ac-
commodate up to six resonances. However the known heavy
meson-antimeson molecules are all too close to threshold, in-
dicating that most probably this multiplet structure is unlikely
to be fully realized in nature, leaving us with an incomplete
pattern.

This manuscript argues that the new LHCb results [30]
imply that the heavy antimeson-baryon molecules will
probably provide the first example of a full and intact
HQSS molecular multiplet. For this we begin by ex-
plaining the constraints that HQSS imposes on the S-wave
heavy antimeson-baryon interaction, as has been recently de-
rived in Ref. [58]. HQSS implies that we can describe the
seven S-wave D̄

(⇤)⌃(⇤)
c molecules with two coupling constants.

If we additionally assume that the heavy antimeson-baryon
molecules can be described in terms of a contact-range e↵ec-
tive field theory (EFT), the potential for the D̄⌃c, D̄⌃⇤

c
, D̄
⇤⌃c

and D̄
⇤⌃⇤

c
molecules is [58]

V( 1
2
�
, D̄⌃c) = Ca , (3)

V( 3
2
�
, D̄⌃⇤

c
) = Ca , (4)

V( 1
2
�
, D̄⇤⌃c) = Ca � 4

3 Cb , (5)

V( 3
2
�
, D̄⇤⌃c) = Ca +

2
3 Cb , (6)

V( 1
2
�
, D̄⇤⌃⇤

c
) = Ca � 5

3 Cb , (7)

V( 3
2
�
, D̄⇤⌃⇤

c
) = Ca � 2

3 Cb , (8)

V( 5
2
�
, D̄⇤⌃⇤

c
) = Ca +Cb , (9)

with Ca and Cb unknown coupling constants. This potential is
renormalized by including a separable regulator and a cuto↵
⇤ in momentum space and allowing the couplings to depend
on this cuto↵

hp|V⇤|p0i = C(⇤) f ( p

⇤
) f ( p

0

⇤
) , (10)

where p, p
0 are the initial and final center-of-mass momenta of

the two-body system and C represents the linear combination
of Ca and Cb corresponding to the heavy antimeson-baryon
molecule under consideration, see Eqs. (3-9) for details. For
the regulator we choose a Gaussian one, f (x) = e

�x
2 , while

for the cuto↵ we consider the range ⇤ = 0.5�1.0 GeV, where
we notice that if the problem has been properly renormalized
the dependence of the predictions on the cuto↵ will be small.
The potential is then included in a dynamical equation, e.g.
Lippmann-Schwinger:

�(k) +
Z

d
3
p

(2⇡)3 hk|V⇤|pi
�(p)

B2 +
p2

2µ

= 0 , (11)

with � the vertex function, µ the reduced mass of the system
and B2 the binding energy, where solutions of this dynami-
cal equation correspond to bound states. Alternatively, with
the purpose of checking regulator independence, we can use a
delta-shell regulator in coordinate space

V(r; Rc) = C(Rc)
�(r � Rc)

4⇡R2
c

, (12)

with a cuto↵ in the range Rc = 0.5 � 1.0 fm, i.e. of the order
of the typical hadron size, and solve the S-wave Schrödinger
equation. The delta-shell regulator is convenient — it allows
for analytic results — but we stress that any other choice of
regulator will work too. We will not show detailed results for
the delta-shell or other regulators here, but simply comment
that the di↵erences with the Gaussian regulator will be minor.

Now we notice that both the Pc(4440) and Pc(4457) are
good D̄

⇤⌃c molecular candidates, but that their J
P is not

known. Thus we distinguish two scenarios, A and B, where
A corresponds to assuming that the Pc(4440) and Pc(4457)
are J

P = 3
2
� and J

P = 1
2
� respectively, while B corresponds to

the opposite identification. Each of these choices completely
fixes the EFT potential and allows us to predict the location of
the J

P = 1
2
�

D̄⌃c molecule, which in scenario A we predict at

MA(D̄⌃c) = (4306.3 � 4307.7) MeV , (13)

where the range corresponds to the cuto↵ variation ⇤ =
0.5 � 1.0 GeV. This figure is not too close to the expected
location of the Pc(4312) resonance, MPc1 = 4311.9 MeV, but
still compatible within the experimental errors. Meanwhile in
scenario B the Pc(4312) resonance is predicted at

MB(D̄⌃c) = (4311.8 � 4313.0) MeV , (14)

which is extremely close to the experimental value. The pre-
dictions are fairly independent not only on the cuto↵, but also
on the choice of regulator: had we used the delta-shell regu-
lator of Eq. (12) instead of the Gaussian regulator of Eq. (10),
the predictions would have been

M
0
A
(D̄⌃c) = (4306.7 � 4308.0) MeV , (15)

M
0
B
(D̄⌃c) = (4012.1 � 4013.1) MeV , (16)

for the Rc = 0.5� 1.0 fm cuto↵ range, which indicates a pref-
erence for scenario B. This is also the case for other regulators,
e.g. a square-well or a Gaussian potential in coordinate space.

3

Scenario Molecule J
P B (MeV) M (MeV)

A D̄⌃c
1
2
� 13.1 � 14.5 4306.3 � 4307.7

A D̄⌃⇤
c

3
2
� 13.6 � 14.8 4370.5 � 4371.7

A D̄
⇤⌃c

1
2
� Input 4457.3

A D̄
⇤⌃c

3
2
� Input 4440.3

A D̄
⇤⌃⇤

c

1
2
� 3.1 � 3.5 4523.2 � 4523.6

A D̄
⇤⌃⇤

c

3
2
� 10.1 � 10.2 4516.5 � 4516.6

A D̄
⇤⌃⇤

c

5
2
� 25.7 � 26.5 4500.2 � 4501.0

B D̄⌃c
1
2
� 7.8 � 9.0 4311.8 � 4313.0

B D̄⌃⇤
c

3
2
� 8.3 � 9.2 4376.1 � 4377.0

B D̄
⇤⌃c

1
2
� Input 4440.3

B D̄
⇤⌃c

3
2
� Input 4457.3

B D̄
⇤⌃⇤

c

1
2
� 25.7 � 26.5 4500.2 � 4501.0

B D̄
⇤⌃⇤

c

3
2
� 15.9 � 16.1 4510.6 � 4510.8

B D̄
⇤⌃⇤

c

5
2
� 3.2 � 3.5 4523.3 � 4523.6

TABLE I. Predictions for the S-wave HQSS molecular multiplet
of heavy antimeson-baryon molecules, as derived from the lowest-
order contact-range potential which contains two unknown couplings
Ca and Cb. The potential for each particle and spin channel (the
“Molecule” and “J

P” columns) can be checked in Eqs. (3-9). In all
cases we assume that the isospin of the listed molecules is I = 1

2 . We
determine the value of the Ca and Cb couplings from the condition of
reproducing the location of the Pc(4440) and Pc(4457) resonances,
which are known to be close to the D̄

⇤⌃c threshold. We do not know
however the quantum numbers of the Pc(4440) and Pc(4457), but
consider two possibilities instead: in scenario A the 1

2
� molecule is

identified with the Pc(4457) and the 3
2
� with the Pc(4440), while sce-

nario B assumes the opposite identification.

Notice however that we have not propagated the uncertainty
in the masses of the input data — the Pc(4440) and Pc(4457)
— neither have we taken into account the experimental uncer-
tainty in the location of the Pc(4312). That is, the preference
for scenario B is probably not particularly strong. For com-
parison purposes, the seminal works of Refs. [2–5], predict
the J

P = 1
2
� and 3

2
�

D̄
⇤⌃c states to be degenerated. Mean-

while Ref. [6] predicts the 3
2
�

D̄
⇤⌃c molecule to be more

bound, a conclusion which is deduced from the strength
and sign of the one pion exchange potential in S-waves and
which corresponds to our scenario A. The molecular iden-
tifications of the Pc(4440) and Pc(4457) that are derived
from the one boson exchange models of Refs. [32, 59] are
equivalent to our scenario B, i.e. the scenario favored by
our calculations.

Yet, as previously explained, the really exciting aspect of
being able to determine both Ca and Cb is that now we can pre-
dict all the seven heavy antimeson-baryon molecules. This is
done in Table I for scenarios A and B, where in both cases the

seven molecules are always predicted but the specifics of their
location changes slightly depending on the chosen scenario,
particularly in what regards the D̄

⇤⌃⇤
c

molecules: for scenario
A binding increases with the spin quantum number, while the
contrary is true for scenario B. We notice the prediction of
a D̄⌃⇤

c
bound state at 4370 � 4380 MeV, thought the iden-

tification with the Pc(4380) pentaquark peak of Ref. [1] is
problematic owing to the broad nature of this state. Our
conclusion that the HQSS multiplet for the heavy meson-
baryon molecules is complete has been independently con-
firmed in Ref. [60].

To summarize, the recent analysis of the LHCb col-
laboration supports the hypothesis that the pentaquark-like
Pc(4312), Pc(4440) and Pc(4457) resonances are indeed D̄⌃c

and D̄
⇤⌃c molecules. Not only that, this experimental observa-

tion unlocks the possibility of the theoretical prediction of all
the seven S-wave heavy antimeson-baryon molecules, which
incidentally provides the first example of a full and complete
HQSS multiplet for hadronic molecules. The identification
of the Pc(4440) and Pc(4457) with D̄

⇤⌃c bound states is am-
biguous: both the J

P = 1
2
� and J

P = 3
2
� quantum numbers are

in principle possible. In this regard the spectroscopic predic-
tions of the contact-range effective field theory we use in this
manuscript indicates a preference for identifying the Pc(4440)
and Pc(4457) with the J

P = 1
2
� and the J

P = 3
2
� molecule, re-

spectively. The specific spin of the Pc(4440) and Pc(4457)
molecular candidates is however inconsequential for the pre-
diction of the HQSS multiplet. Though the present theoretical
exploration focuses only on the spectroscopy of the molecular
pentaquarks, the eventual discovery of the missing members
of the HQSS multiplets at their predicted locations will by it-
self represent a very strong case in favor of their molecular
nature. Yet future investigation of their decays and produc-
tion mechanisms will be essential to disentangle the nature of
these pentaquark-like states. Finally we stress that the idea of
HQSS multiplets provides a clear and concise ordering princi-
ple for molecular states which, in analogy to the SU(3)-flavour
multiplets in the light hadron sector, has the potential to help
interpret the results of future experimental searches of exotic
states and improve our understanding of the non-perturbative
strong interaction.
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terns applies to the Zc’s and Zb’s twin resonances discovered
by BESIII [49–52] and Belle [53, 54], respectively. If they
are bound states of a heavy meson and antimeson, be it ei-
ther a charm meson or bottom meson, HQSS predicts that the
S-wave potential in the J

PC = 1+� channel is [41, 42]

V(1+�, P⇤P̄) = V(1+�, P⇤P̄⇤) , (1)

independently of the particle content, where P = D, B̄ and
P
⇤ = D

⇤, B̄⇤. This specific pattern indeed explains why the
Zc’s and Zb’s appear in pairs, both of which are at similar dis-
tances from the P

⇤
P and P

⇤
P
⇤ open heavy flavour thresholds.

A similar pattern applies to the 1++ and 2++ heavy meson-
antimeson interaction [43–45]

V(1++, P⇤P̄) = V(2++, P⇤P̄⇤) . (2)

If we assume the X(3872) resonance to be a D
⇤
D̄ bound state

with J
PC = 1++, this symmetry relation suggests the existence

of a 2++ D
⇤
D̄
⇤ partner with a mass of 4012 MeV. However

the location of the X(3872) overlaps with the D
0⇤

D̄
0 threshold

within experimental errors, which implies that the existence
of the 2++ partner of the X is not guaranteed if we take into
account this error source (besides, there are other uncertain-
ties [55, 56]), see Ref. [57] for a more complete discussion. At
this point we notice that there are six possible heavy meson-
antimeson molecules, forming a HQSS multiplet that can ac-
commodate up to six resonances. However the known heavy
meson-antimeson molecules are all too close to threshold, in-
dicating that most probably this multiplet structure is unlikely
to be fully realized in nature, leaving us with an incomplete
pattern.

This manuscript argues that the new LHCb results [30]
imply that the heavy antimeson-baryon molecules will
probably provide the first example of a full and intact
HQSS molecular multiplet. For this we begin by ex-
plaining the constraints that HQSS imposes on the S-wave
heavy antimeson-baryon interaction, as has been recently de-
rived in Ref. [58]. HQSS implies that we can describe the
seven S-wave D̄

(⇤)⌃(⇤)
c molecules with two coupling constants.

If we additionally assume that the heavy antimeson-baryon
molecules can be described in terms of a contact-range e↵ec-
tive field theory (EFT), the potential for the D̄⌃c, D̄⌃⇤

c
, D̄
⇤⌃c

and D̄
⇤⌃⇤

c
molecules is [58]

V( 1
2
�
, D̄⌃c) = Ca , (3)

V( 3
2
�
, D̄⌃⇤

c
) = Ca , (4)

V( 1
2
�
, D̄⇤⌃c) = Ca � 4

3 Cb , (5)

V( 3
2
�
, D̄⇤⌃c) = Ca +

2
3 Cb , (6)

V( 1
2
�
, D̄⇤⌃⇤

c
) = Ca � 5

3 Cb , (7)

V( 3
2
�
, D̄⇤⌃⇤

c
) = Ca � 2

3 Cb , (8)

V( 5
2
�
, D̄⇤⌃⇤

c
) = Ca +Cb , (9)

with Ca and Cb unknown coupling constants. This potential is
renormalized by including a separable regulator and a cuto↵
⇤ in momentum space and allowing the couplings to depend
on this cuto↵

hp|V⇤|p0i = C(⇤) f ( p

⇤
) f ( p

0

⇤
) , (10)

where p, p
0 are the initial and final center-of-mass momenta of

the two-body system and C represents the linear combination
of Ca and Cb corresponding to the heavy antimeson-baryon
molecule under consideration, see Eqs. (3-9) for details. For
the regulator we choose a Gaussian one, f (x) = e

�x
2 , while

for the cuto↵ we consider the range ⇤ = 0.5�1.0 GeV, where
we notice that if the problem has been properly renormalized
the dependence of the predictions on the cuto↵ will be small.
The potential is then included in a dynamical equation, e.g.
Lippmann-Schwinger:

�(k) +
Z

d
3
p

(2⇡)3 hk|V⇤|pi
�(p)

B2 +
p2

2µ

= 0 , (11)

with � the vertex function, µ the reduced mass of the system
and B2 the binding energy, where solutions of this dynami-
cal equation correspond to bound states. Alternatively, with
the purpose of checking regulator independence, we can use a
delta-shell regulator in coordinate space

V(r; Rc) = C(Rc)
�(r � Rc)

4⇡R2
c

, (12)

with a cuto↵ in the range Rc = 0.5 � 1.0 fm, i.e. of the order
of the typical hadron size, and solve the S-wave Schrödinger
equation. The delta-shell regulator is convenient — it allows
for analytic results — but we stress that any other choice of
regulator will work too. We will not show detailed results for
the delta-shell or other regulators here, but simply comment
that the di↵erences with the Gaussian regulator will be minor.

Now we notice that both the Pc(4440) and Pc(4457) are
good D̄

⇤⌃c molecular candidates, but that their J
P is not

known. Thus we distinguish two scenarios, A and B, where
A corresponds to assuming that the Pc(4440) and Pc(4457)
are J

P = 3
2
� and J

P = 1
2
� respectively, while B corresponds to

the opposite identification. Each of these choices completely
fixes the EFT potential and allows us to predict the location of
the J

P = 1
2
�

D̄⌃c molecule, which in scenario A we predict at

MA(D̄⌃c) = (4306.3 � 4307.7) MeV , (13)

where the range corresponds to the cuto↵ variation ⇤ =
0.5 � 1.0 GeV. This figure is not too close to the expected
location of the Pc(4312) resonance, MPc1 = 4311.9 MeV, but
still compatible within the experimental errors. Meanwhile in
scenario B the Pc(4312) resonance is predicted at

MB(D̄⌃c) = (4311.8 � 4313.0) MeV , (14)

which is extremely close to the experimental value. The pre-
dictions are fairly independent not only on the cuto↵, but also
on the choice of regulator: had we used the delta-shell regu-
lator of Eq. (12) instead of the Gaussian regulator of Eq. (10),
the predictions would have been

M
0
A
(D̄⌃c) = (4306.7 � 4308.0) MeV , (15)

M
0
B
(D̄⌃c) = (4012.1 � 4013.1) MeV , (16)

for the Rc = 0.5� 1.0 fm cuto↵ range, which indicates a pref-
erence for scenario B. This is also the case for other regulators,
e.g. a square-well or a Gaussian potential in coordinate space.
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Scenario Molecule J
P B (MeV) M (MeV)

A D̄⌃c
1
2
� 13.1 � 14.5 4306.3 � 4307.7

A D̄⌃⇤
c

3
2
� 13.6 � 14.8 4370.5 � 4371.7

A D̄
⇤⌃c

1
2
� Input 4457.3

A D̄
⇤⌃c

3
2
� Input 4440.3

A D̄
⇤⌃⇤

c

1
2
� 3.1 � 3.5 4523.2 � 4523.6

A D̄
⇤⌃⇤

c

3
2
� 10.1 � 10.2 4516.5 � 4516.6

A D̄
⇤⌃⇤

c

5
2
� 25.7 � 26.5 4500.2 � 4501.0

B D̄⌃c
1
2
� 7.8 � 9.0 4311.8 � 4313.0

B D̄⌃⇤
c

3
2
� 8.3 � 9.2 4376.1 � 4377.0

B D̄
⇤⌃c

1
2
� Input 4440.3

B D̄
⇤⌃c

3
2
� Input 4457.3

B D̄
⇤⌃⇤

c

1
2
� 25.7 � 26.5 4500.2 � 4501.0

B D̄
⇤⌃⇤

c

3
2
� 15.9 � 16.1 4510.6 � 4510.8

B D̄
⇤⌃⇤

c

5
2
� 3.2 � 3.5 4523.3 � 4523.6

TABLE I. Predictions for the S-wave HQSS molecular multiplet
of heavy antimeson-baryon molecules, as derived from the lowest-
order contact-range potential which contains two unknown couplings
Ca and Cb. The potential for each particle and spin channel (the
“Molecule” and “J

P” columns) can be checked in Eqs. (3-9). In all
cases we assume that the isospin of the listed molecules is I = 1

2 . We
determine the value of the Ca and Cb couplings from the condition of
reproducing the location of the Pc(4440) and Pc(4457) resonances,
which are known to be close to the D̄

⇤⌃c threshold. We do not know
however the quantum numbers of the Pc(4440) and Pc(4457), but
consider two possibilities instead: in scenario A the 1

2
� molecule is

identified with the Pc(4457) and the 3
2
� with the Pc(4440), while sce-

nario B assumes the opposite identification.

Notice however that we have not propagated the uncertainty
in the masses of the input data — the Pc(4440) and Pc(4457)
— neither have we taken into account the experimental uncer-
tainty in the location of the Pc(4312). That is, the preference
for scenario B is probably not particularly strong. For com-
parison purposes, the seminal works of Refs. [2–5], predict
the J

P = 1
2
� and 3

2
�

D̄
⇤⌃c states to be degenerated. Mean-

while Ref. [6] predicts the 3
2
�

D̄
⇤⌃c molecule to be more

bound, a conclusion which is deduced from the strength
and sign of the one pion exchange potential in S-waves and
which corresponds to our scenario A. The molecular iden-
tifications of the Pc(4440) and Pc(4457) that are derived
from the one boson exchange models of Refs. [32, 59] are
equivalent to our scenario B, i.e. the scenario favored by
our calculations.

Yet, as previously explained, the really exciting aspect of
being able to determine both Ca and Cb is that now we can pre-
dict all the seven heavy antimeson-baryon molecules. This is
done in Table I for scenarios A and B, where in both cases the

seven molecules are always predicted but the specifics of their
location changes slightly depending on the chosen scenario,
particularly in what regards the D̄

⇤⌃⇤
c

molecules: for scenario
A binding increases with the spin quantum number, while the
contrary is true for scenario B. We notice the prediction of
a D̄⌃⇤

c
bound state at 4370 � 4380 MeV, thought the iden-

tification with the Pc(4380) pentaquark peak of Ref. [1] is
problematic owing to the broad nature of this state. Our
conclusion that the HQSS multiplet for the heavy meson-
baryon molecules is complete has been independently con-
firmed in Ref. [60].

To summarize, the recent analysis of the LHCb col-
laboration supports the hypothesis that the pentaquark-like
Pc(4312), Pc(4440) and Pc(4457) resonances are indeed D̄⌃c

and D̄
⇤⌃c molecules. Not only that, this experimental observa-

tion unlocks the possibility of the theoretical prediction of all
the seven S-wave heavy antimeson-baryon molecules, which
incidentally provides the first example of a full and complete
HQSS multiplet for hadronic molecules. The identification
of the Pc(4440) and Pc(4457) with D̄

⇤⌃c bound states is am-
biguous: both the J

P = 1
2
� and J

P = 3
2
� quantum numbers are

in principle possible. In this regard the spectroscopic predic-
tions of the contact-range effective field theory we use in this
manuscript indicates a preference for identifying the Pc(4440)
and Pc(4457) with the J

P = 1
2
� and the J

P = 3
2
� molecule, re-

spectively. The specific spin of the Pc(4440) and Pc(4457)
molecular candidates is however inconsequential for the pre-
diction of the HQSS multiplet. Though the present theoretical
exploration focuses only on the spectroscopy of the molecular
pentaquarks, the eventual discovery of the missing members
of the HQSS multiplets at their predicted locations will by it-
self represent a very strong case in favor of their molecular
nature. Yet future investigation of their decays and produc-
tion mechanisms will be essential to disentangle the nature of
these pentaquark-like states. Finally we stress that the idea of
HQSS multiplets provides a clear and concise ordering princi-
ple for molecular states which, in analogy to the SU(3)-flavour
multiplets in the light hadron sector, has the potential to help
interpret the results of future experimental searches of exotic
states and improve our understanding of the non-perturbative
strong interaction.
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Summary

• Recent finding of Pc is very exciting 
• They suggest something interesting near the thresholds 
• Hadronic molecule is the most likely interpretation 
• Tensor force acts on the spin doublet JP = 1/2 and 3/2 
• A unique way to see the role of the tensor force, which 

is the first example in the strong interaction dynamics 
• Heavy and light (with SSB) flavors’ combination 

brings wealth structure of hadrons with fine tunings


