

A unifying pion mean-field approach

:Electromagnetic properties of light and singly-heavy baryons

June-Young Kim

Department of Physics

Inha University

ollaboration with Ghil-Seok Yang, Hyun-Chul Kim, M. Oka

- Motivation
- Light baryons
 - Electromagnetic properties of baryon decuplet
 - Electromagnetic transitions of baryon decuplet
- Singly heavy baryons
 - Stability of Nc-1 and Nc-2 solitons
 - Mass spectra of singly heavy baryons
 - Electromagnetic properties of singly heavy baryons with spin 1/2
 - Electromagnetic properties of singly heavy baryons with spin 3/2
- Summary and conclusion

- A baryon can be viewed as a Nc valence quarks bound by mesonic mean field in the limit of large Nc - E.Witten
- The quantum fluctuation is suppressed by 1/Nc in that limit, which means that we ignore the interaction between mesons (Mean-Field Approach)
- ✓ It was realized by the Chiral Quark-Soliton Model.
- The chiral quark soliton model has successfully explained mass splittings and form factors of both light and singly-heavy baryons.

Light baryons

Effective chiral action

 $S_{\text{eff}} = -N_c \text{TrLn}(i\gamma_{\mu}\partial^{\mu} + i\hat{m} + iMU^{\gamma_5})$

Chiral symmetry without the mass term
 Spontaneous chiral symmetry breaking
 Explicit flavor SU(3) symmetry breaking

Self-Consistent soliton solution

 ✓ Solving the saddle point equation (minimizing the effective chiral action).

$$\frac{\delta S_{\rm eff}(U)}{\delta U}|_{U=U_c} = 0 \qquad \underline{M_{\rm cl} \approx 1300 \,\,{\rm MeV}}$$

Hedgehog Ansatz

$$U_c = e^{i\gamma_5 n^a \tau^a \pi(r)} \qquad \qquad U(\boldsymbol{r}) = \begin{pmatrix} U_c(\boldsymbol{r}) & 0\\ 0 & 1 \end{pmatrix}. \quad \text{Witten's embedding}$$

- ✓ <u>Trivial embedding</u>
- ✓ Hedgehog symmetry
- Zero-mode quantization

$$\langle J_N(\boldsymbol{x}, T/2) J_N^{\dagger}(\boldsymbol{y}, -T/2) \rangle_0 \sim \Pi_N(T) \sim e^{-M_N T}$$

✓ Nucleon correlation function → $\int \mathcal{D}U[\cdots] \rightarrow \int \mathcal{D}A \int \mathcal{D}\vec{z}[\cdots]$

✓ Saddle point approximation and Zero-mode quantization

$$U(\vec{x},t) = A(t)U_c(\vec{x} - \vec{z}(t))A^{\dagger}(t)$$

√ <u>Nc valence quarks gives baryon number</u>.

$$ec{J}+ec{T}=0$$
 $Y'=rac{N_c}{3}$

Quantization rule

Electromagnetic current

$$J_{\mu}(x) = \overline{\psi}(x)\gamma_{\mu}\hat{\mathcal{Q}}\psi(x) \qquad \text{where} \qquad \hat{\mathcal{Q}} = \begin{pmatrix} \frac{2}{3} & 0 & 0\\ 0 & -\frac{1}{3} & 0\\ 0 & 0 & -\frac{1}{3} \end{pmatrix} = \frac{1}{2}\left(\lambda_{3} + \frac{1}{\sqrt{3}}\lambda_{8}\right)$$

The matrix elements of the electromagnetic form factors are found by using the functional integral.

- All form factors are insensitive to the value of constituent quark mass.
- The strange current quark mass was fixed by reproducing mass splittings of the lowest-lying light baryons.

$$G_{E0}(Q^2) = \int d^3 z j_0(kr) \mathcal{G}_{E0}(\boldsymbol{z})$$

$$G_{E2}(Q^2) = 6\sqrt{5} \frac{M_B^2}{|\boldsymbol{q}|^2} \int d^3 z j_2(|\boldsymbol{q}||\boldsymbol{z}|) \mathcal{G}_{E2}(\boldsymbol{z})$$

$$G_{M1}(Q^2) = -i2\sqrt{6\pi} \frac{M_B}{|\boldsymbol{q}|} \int d^3 z j_1(|\boldsymbol{q}||\boldsymbol{z}|) \mathcal{G}_{M1}(\boldsymbol{z})$$

$$G_{M3}(Q^2) = -i20\sqrt{21\pi} \frac{M_B^3}{|\boldsymbol{q}|^3} \int d^3 z j_3(|\boldsymbol{q}||\boldsymbol{z}|) \mathcal{G}_{M3}(\boldsymbol{z})$$

 Due to the hedgehog structure, the magnetic octupole form factor is found to be zero.

The electric form factors of the baryon decuplet satisfy the <u>SU(3) Gell-Mann-</u> <u>Nishijima formula</u>. (symmetry-conserving quantization)

- \checkmark The results from lattice QCD are known to fall off more slowly.
- ✓ The <u>effects of the explicit SU(3) symmetry breaking are marginal.</u>
- ✓ The <u>charge radii</u> of the baryon decuplet were also computed.

The electric form factors of the baryon decuplet satisfy the <u>SU(3) Gell-Mann-</u> <u>Nishijima formula</u>. (symmetry-conserving quantization)

- \checkmark The results from lattice QCD are known to fall off more slowly.
- ✓ The <u>effects of the explicit SU(3) symmetry breaking are marginal.</u>
- ✓ The <u>charge radii</u> of the baryon decuplet were also computed.

The electric form factors of the baryon decuplet satisfy the <u>SU(3) Gell-Mann-</u> <u>Nishijima formula</u>. (symmetry-conserving quantization)

- \checkmark The results from lattice QCD are known to fall off more slowly.
- ✓ The <u>effects of the explicit SU(3) symmetry breaking are marginal.</u>
- ✓ The <u>charge radii</u> of the baryon decuplet were also computed.

 \checkmark The effects of the explicit SU(3) symmetry breaking are marginal.

- The <u>magnetic moments</u> of the baryon decuplet can be found from the magnetic form factors.
- The mass of the nuclear magneton could be replaced by that of the soliton to improve the results. However, we didn't do that.

 \checkmark The effects of the explicit SU(3) symmetry breaking are marginal.

- The <u>magnetic moments</u> of the baryon decuplet can be found from the magnetic form factors.
- The mass of the nuclear magneton could be replaced by that of the soliton to improve the results. However, we didn't do that.

 \checkmark The effects of the explicit SU(3) symmetry breaking are marginal.

- The <u>magnetic moments</u> of the baryon decuplet can be found from the magnetic form factors.
- The mass of the nuclear magneton could be replaced by that of the soliton to improve the results. However, we didn't do that.

- In the case of the electric quadrupole form factor, the vacuum polarization contribution is dominant. It can be interpreted as follows: The members of the baryon decuplet may be deformed by the pion mean fields while the core part is governed by the valence quarks.
- \checkmark The effects of the explicit SU(3) symmetry breaking are quite large.
- ✓ The <u>electric quadrupole moments</u> of the baryon decuplet were also computed.

- In the case of the electric quadrupole form factor, the vacuum polarization contribution is dominant. It can be interpreted as follows: The members of the baryon decuplet may be deformed by the pion mean fields while the core part is governed by the valence quarks.
- \checkmark The effects of the explicit SU(3) symmetry breaking are quite large.
- ✓ The <u>electric quadrupole moments</u> of the baryon decuplet were also computed.

- In the case of the electric quadrupole form factor, the vacuum polarization contribution is dominant. It can be interpreted as follows: The members of the baryon decuplet may be deformed by the pion mean fields while the core part is governed by the valence quarks.
- \checkmark The effects of the explicit SU(3) symmetry breaking are quite large.
- ✓ The <u>electric quadrupole moments</u> of the baryon decuplet were also computed.

ELECTROMAGNETIC TRANSITIONS OF BARYON DECUPLET

- One-photon exchange approximation and the delta rest frame are used.
- The results of the M1 transition form factor is are underestimated in comparison with those of LQCD.
- ✓ At the pseudo-threshold,

$$G_{E2}^*(Q_{pt}^2) = \frac{M_{\Delta^+} - M_p}{2M_{\Delta^+}} G_{C2}^*(Q_{pt}^2)$$

ELECTROMAGNETIC TRANSITIONS OF BARYON DECUPLET

- Effects of SU(3) symmetry breaking on C2/M1 and E2/M1 improve marginally the corresponding results.
- ✓ In the case of the E2/M1, it vanishes kinematically at $Q^2 = 0.6 \ [GeV]^2$
- The tendency of C2/M1 as a function of the momentum transfer is in good agreement with experimental data.

Heavy baryons

Recently, interest in heavy baryons has been renewed as a series of new experimental data on them.

- ✓ As $m_Q \rightarrow \infty$, heavy quark spin is conserved, which leads to the fact that the lightquark spin is also conserved.
- The soliton and a heavy quark are decoupled and the heavy quark plays a role of the static color source.

C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update.

✓ The masses of charmed baryons are well known. Thus we will first check the validity of the present approach in the charmed sector.

✓ On the other hand, some of bottom baryon masses are unknown. ✓ In this talk, we will show how the mass of Ω_b^{*-} is predicted.

C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update.

 A model-independent analysis has been made for the heavy baryon system, and its validity has been confirmed.

Gh. S. Yang, H.-Ch. Kim, M. V. Polyakov and M. Praszalowicz, Phys. Rev. D94, 071502 (2016)

✓ When it comes to model calculation, the Nc-1 mean field should be tested whether it makes stabilized soliton or not.

 A model-independent analysis has been made for the heavy baryon system, and its validity has been confirmed.

Gh. S. Yang, H.-Ch. Kim, M. V. Polyakov and M. Praszalowicz, Phys. Rev. D94, 071502 (2016)

✓ When it comes to model calculation, the Nc-1 mean field should be tested whether it makes stabilized soliton or not.

2.5

3.0

2.5

3.0

 $H = H_{\rm sym} + H_{\rm sb} + H_{\rm hf}$

✓ The rotational energy yields the energy difference between the $\overline{3}$ and the 6.

$$\overline{\mathbf{3}} \to (p, q) = (0, 1) \to J = 0$$
 antitriplet
 $\mathbf{6} \to (p, q) = (2, 0) \to J = 1$ sextet.

 We have to introduce the hyperfine interaction to lift the degeneracy in the sextet representations.

 Σ_{h}^{0}

 $\frac{2}{3}$

Mass correction from the flavor SU(3) symmetry breaking.

	This work	Model Independent [21]	Experiment [23]
$\delta_{\overline{3}}$	-180.3	-203.8	\sim -182.9
δ_{6}	-139.7	-135.2	\sim -122.4

MASS SPECTRA OF HEAVY BARYONS

The soliton mass is overestimated. Thus, instead of using it, we employ the experimental center mass, so we predict the all masses of $\overline{3}$ and 6.

\mathcal{R}^Q_J	B_c	This work	Experiment [23]	\mathcal{R}^Q_J	B_b	This work	Experiment [23]
$\overline{3}_{1/2}^{c}$	Λ_c	2278.4	2286.5 ± 0.1	$\overline{3}^{b}_{1/2}$	Λ_b	5608.2	$5619.5 {\pm} 0.2$
$\overline{3}_{1/2}^{c'}$	Ξ_c	2458.6	$2469.4{\pm}0.3$	$\overline{3}_{1/2}^{b^{\dagger}}$	Ξ_b	5788.5	$5793.1 {\pm} 0.7$
$6_{1/2}^{c}$	Σ_c	2438.6	$2453.5 {\pm} 0.1$	${f 6}_{1/2}^{b'}$	Σ_b	5800.3	5813.4 ± 1.3
$6_{1/2}^{c}$	Ξ_c'	2578.3	$2576.8 {\pm} 2.1$	${f 6}_{1/2}^{b'}$	Ξ_b'	5940.1	$5935.0{\pm}0.05$
$6_{1/2}^{c}$	Ω_c	2718.1	2695.2 ± 1.7	${f 6}_{1/2}^{b'}$	Ω_b	6079.8	$6048.0{\pm}1.9$
$6^{c}_{3/2}$	Σ_c^*	2506.7	$2518.1 {\pm} 0.8$	${f 6}_{3/2}^{b'}$	Σ_b^*	5820.6	$5833.6{\pm}1.3$
$6^{c}_{3/2}$	Ξ_c^*	2646.4	$2645.9 {\pm} 0.4$	$6_{3/2}^{b'}$	Ξ_b^*	5960.3	$5955.3 {\pm} 0.1$
$6_{3/2}^{c'}$	Ω_c^*	2786.2	$2765.9 {\pm} 2.0$	${f 6}_{3/2}^{b'}$	Ω_b^*	6100.1	-

The results obtatained are in good agreement with the experiment result, and even we predict mass of Ω_b^* .

Electromagnetic current

$$J_{\mu}(x) = \overline{\psi}(x)\gamma_{\mu}\hat{\mathcal{Q}}\psi(x) + e_{Q}\overline{\Psi}\gamma_{\mu}\Psi \qquad \qquad \hat{\mathcal{Q}} = \begin{pmatrix} \frac{2}{3} & 0 & 0\\ 0 & -\frac{1}{3} & 0\\ 0 & 0 & -\frac{1}{3} \end{pmatrix} = \frac{1}{2}\left(\lambda_{3} + \frac{1}{\sqrt{3}}\lambda_{8}\right)$$

The matrix elements of the electromagnetic form factors are found by using the functional integral.

The correlation function is changed only for the valence part in the singly heavy baryon sector.

Electric form factor

 $G_E^B(q^2) = \int d^3z j_0(|\boldsymbol{q}||\boldsymbol{z}|) \mathcal{G}_E^B(\boldsymbol{z}) + G_E^Q(q^2),$

32

The electric form of the lattice QCD calculation decrease quite slowly as Q² increases. (The pion mass is not a physical mass in the lattice calculation)

The heavy baryons are electrically compact objects.

J. Y. Kim and H. C. Kim, Phys. Rev. D97, no.11, 114009(2018).

J. Y. Kim and H. C. Kim, Phys. Rev. D97, no.11, 114009(2018).

33

The electric form factors of the spin-3/2 heavy baryons are exactly same as those of the spin-1/2 heavy baryons within the present frame work.

The magnetic form factors are as follows:

$$G_{M1}(Q^2)[6_1^{3/2}, B_c] = \frac{3}{2}G_{M1}(Q^2)[6_1^{1/2}, B_c]$$

G. S. Yang and H. C. Kim, Phys. Lett. B781, 601(2018).

 ✓ There is no heavy quark contribution to the E2 form factor in the present approach.

35

			14			
Q_B	Σ_c^{*++}	Σ_c^{*+}	Σ_c^{*0}	Ξ_c^{*+}	Ξ_c^{*0}	Ω_c^{*0}
$m_s = 180$	-0.0261	-0.0048	0.0166	-0.0072	0.0147	0.0128
$m_s = 0$	-0.0259	-0.0065	0.0130	-0.0065	0.0130	0.0130
Valence	-0.0123	-0.0022	0.0078	-0.0034	0.0069	0.0060
Sea	-0.0138	-0.0025	0.0088	-0.0038	0.0078	0.0068

$$Q_{\Delta^+} = -0.039 \ e \cdot \text{fm}^2$$
$$Q_{\Omega^-} = 0.061 \ e \cdot \text{fm}^2$$

- We investigate the electromagnetic form factors of baryon decuplet and its transition form factors.
- The size of Δ^+ turns out electrically slightly larger than the proton.
- The electric quadrupole moment shows how much a particle is deformed, and it is found to be $Q_{\Delta^+} = -0.039 \ e \cdot \text{fm}^2$ and $Q_{\Omega^-} = 0.061 \ e \cdot \text{fm}^2$.
- The E2 and the C2 transition form factors satisfy the constraint condition at the pseudothreshold, and <u>corresponding amplitudes are very small in comparison with the M1</u> <u>amplitude as much as ~2%.</u>
- The mean-field approach succeed in a description of the mass splittings in the heavy baryon sector and even predicts the mass of $\Omega_{\rm b}^{*}$.
- > The heavy baryons are electrically compact objects.
- The <u>electric quadrupole moments of the heavy baryons are small</u>, compared with those of the baryon decuplet.
- The heavy baryon transition form factors are under investigation, and the corresponding result will soon come out.

THANK YOU VERY MUCH!

