Diquark Effective Theory
Colored Clusters in Hadron

Makoto Oka
Advanced Science Research Center, JAEA

June 18, 2019
The 1st CENuM Workshop for Hadron Physics
Inha University
Contents

- Introduction
- Diquarks
- Chiral Diquark Effective Theory
- Conclusion
Scales in Nuclei and Hadrons

- **Atoms = nucleus + electrons**
 - size $\sim 10^5$ fm
 - binding energy $\sim 10^{-5}$ MeV/electron

- **Nuclei = protons + neutrons**
 - size \sim a few - 10 fm
 - binding energy \sim a few - 10 MeV/nucleon
 - excitation energy ~ 0.1 - 10 MeV

- **Hadrons = quarks**
 - size ~ 0.5 - 1 fm
 - binding energy $?$ confined
 - excitation energy ~ 140 MeV (pion production)
 - ~ 100 - 1000 MeV (hadron spectrum)
Nucleon is a colorless cluster

Why do nucleons not melt away in nuclei, when nucleons overlap with each other significantly?

Nuclear Force is Fine-Tuned:
Both the LR attraction and SR repulsion are of the hadronic energy scale

\[V_{NN} (central) \]

\[\sim 100 - 1000 \text{ MeV} \]
Is Kaon a colorless cluster?

- Strong attraction of K^bar in nuclei
 $\Lambda^*(1405)$ as $K^\text{bar} N$ “molecular bound state”.

- $K^- \text{pp nucleus } \sim (\Lambda^*p + p \Lambda^*)$ dibaryon
 Deeply bound K^bar nuclear state?

- Can K^bar be a robust cluster in nuclei?
 If yes, why? Is K^bar still color singlet?
 If not, what is different from nucleon?
Hidden-Charm Multiquarks

- **X(3872)** found in 2003 by Belle (KEK)
 \[\text{not reproduced by lattice QCD using only } q-q\bar{q} \text{ operators.} \]

- **Z(3900), Z(4430)** etc.: charged hidden charm states

X(3872)
- **Belle**
 - Mass: 3899 MeV
 - Width: 46 MeV
 - Reference: PRL 110 (2013) 252001

Zc⁺(4430)
- **Belle**
 - Mass: 4433 MeV
 - Width: 45 MeV
 - Reference: PRL 100 (2008) 142001

Zc⁺(3900)
- **BES III**
 - Mass: 3899 MeV
 - Width: 46 MeV

\[Z_c^+(4430) \text{ and } Z_c^+(3900) \text{ were observed by Belle and BES III.} \]
Hidden-Charm Multiquarks

$P_c \rightarrow J/\psi + p$ (c\bar{c}uud)
LHCb (PRL 115 (2015) 07201) found two penta-quark states with hidden c\bar{c}.
Hidden-Charm Multiquarks

$P_c \to J/\psi+p (c\bar{c}uud)$
LHCb (PRL 115 (2015)) found two penta-quark states with hidden $c\bar{c}$.

$P_c(4450) (3/2^+)$
$P_c(4380) (3/2^+)$

LHCb: arXiv:1904.03947
Above the threshold
$q\bar{q}$ creation and rearrangement of multiquarks

• What governs them?
• Constituent quarks, mesons, diquarks...
• Are heavy quarks useful to know it?

by A. Hosaka

April 20, 2015

Makoto Oka (ASRC, JAEA)
Color

- Quark has 3 colors (RBG) forming color-singlet hadrons

 meson q-q^{bar}
 $$3 \otimes \bar{3} = 1 \oplus 8$$

 diquark q-q
 $$3 \otimes 3 = \bar{3} \oplus 6$$
 not white

 baryon q-q-q
 $$3 \otimes 3 \otimes 3 = (\bar{3} \oplus 6) \otimes 3 = (1 \oplus 8) \oplus (8 \oplus 10)$$

 $$3 \otimes 3 = \bar{3}$$
 $$\bar{3} \otimes 3 = 1$$
Color

- more quarks

$q^2 \bar{q}^2$ (tetraquarks):

$$3 \otimes 3 \otimes \bar{3} \otimes \bar{3} = (2 \times 1) \oplus (4 \times 8) \oplus 10 \oplus \overline{10} \oplus 27$$

$q^4 \bar{q}^4$ (pentaquarks):

$$3^4 \otimes \bar{3} = (3 \times 1) \oplus \ldots$$

q^6 (dibaryons):

$$3^6 = (5 \times 1) \oplus \ldots$$
Color

- more quarks

$q^2-q^\text{bar}^2$ (tetraquarks):

$3 \otimes 3 \otimes \bar{3} \otimes \bar{3} = (2 \times 1) \oplus (4 \times 8) \oplus \ldots$

q^6 (dibaryons):

$3^4 \otimes \bar{3} = (3 \times 1) \oplus \ldots$

$3^6 = (5 \times 1) \oplus \ldots$

Multiquarks are colorful!

To explore confinement dynamics for exotic colorful components.
Diquark

- The simplest *colorful cluster* in hadrons is the diquark.
- Spin dependent force in the (magnetic) gluon exchange

 Color-Magnetic Interaction

 \[\Delta_{CM} \equiv \langle - \sum_{i<j} (\vec{\lambda}_i \cdot \vec{\lambda}_j)(\vec{\sigma}_i \cdot \vec{\sigma}_j) \rangle. \]

 Scalar diquark: \(0^+\) color \(3^{\text{bar}}\) \(\Delta_{CM} = -8\)

 Axial-vector: \(1^+\) color \(3^{\text{bar}}\) \(\Delta_{CM} = +8/3\)

- Can be related to the Hyperfine splitting of the baryon

 \[M(1^+)-M(0^+) = (2/3) \ [M(\Delta)-M(N)] \sim 200 \ \text{MeV} \]

 \[\Delta_{CM} \quad +8/3 \quad -8 \quad +8 \quad -8 \]
Diquark

Diquarks $D_q (=qq)$ as elements of hadrons

$D_q D_q^{\text{bar}} = qq q^{\text{bar}} q^{\text{bar}} = \text{Tetraquark}$

$D_q Q = qq Q = HQ \text{ Baryon}$

$D_q D_q Q^{\text{bar}} = qq qq Q^{\text{bar}} = \text{Pentaquark}$

$D_q D_q D_q = qq qq qq$

$= \text{Hexaquark (Dibaryon)}$
Diquarks obey the Bose-Einstein statistics. BE condensate in dense hadronic matter is expected. => color-superconducting phase
Diquark Effective Theory

Strategy

- **Consider Diquarks** as “colorful” building blocks of hadrons and hadronic matter. In order to describe their dynamics, write down the *Diquark* effective Lagrangian.

- **Warning:** As *Diquarks* are not color singlet, we need a way to compensate the color in the confined phase. For instance, assume a background color field generated by a heavy quark.

- **Lattice QCD** helps us to fix the parameters of the effective Lagrangian.
Diquark in Lattice QCD

 quench, Landau gauge fixed
 \(m_q \sim 342\) MeV, \(M(0^+) \sim 694\) MeV, \(M(1^+) \sim 810\) MeV

- Alexandrou, de Forcrand, Lucini, PRL 97, 222002 (2006)
 From Qqq system, quench, gauge invariant
 \(M(1^+) - M(0^+) \sim 200-220\) MeV, \(R(S) \sim 1\) fm
 \(M(0^-) - M(0^+) \sim 600\) MeV

- Babich, et al., PR D76, 074021 (2007)
 quench, Landau gauge
 \(M(0^+) - 2m_q \sim -200\) MeV, \(M(1^+) - M(0^+) \sim 162\) MeV

- Yujiang Bi, et al., Chinese Physics C40 (2016) 073106
 full, Landau gauge
 \(M(0^+) - m_q \sim 310\) MeV, \(M(1^+) - M(0^+) \sim 290\) MeV

Evidence for Diquarks in Lattice QCD

C. Alexandrou,¹ Ph. de Forcrand,²,³ and B. Lucini²,⁴

\[\Delta m/\delta m_{\Delta N} = 0.67(7), 0.73(8), \text{ and } 0.67(8) \]

\[\delta m_{\Delta N} \sim 300\text{MeV} \longrightarrow \Delta m \sim 200 - 220\text{MeV} \]
Diquark Effective Theory

Color-Flavor-Spin Structures: Pauli principle

<table>
<thead>
<tr>
<th></th>
<th>J^π</th>
<th>color</th>
<th>flavor</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(q^TCq)_A^5$</td>
<td>0$^-$</td>
<td>3</td>
<td>3</td>
<td>3P_0</td>
</tr>
<tr>
<td>$(q^TC\gamma^5q)_A^3$</td>
<td>0$^+$</td>
<td>3</td>
<td>3</td>
<td>1S_0</td>
</tr>
<tr>
<td>$(q^TC\gamma^\mu\gamma^5q)_A^3$</td>
<td>1$^-$</td>
<td>3</td>
<td>3</td>
<td>3P_1</td>
</tr>
<tr>
<td>$(q^TC\gamma^\mu q)_S^3$</td>
<td>1$^+$</td>
<td>3</td>
<td>6</td>
<td>3S_1</td>
</tr>
<tr>
<td>$(q^TC\sigma^{\mu\nu}q)_S^3$</td>
<td>1$^+$, 1$^-$</td>
<td>3</td>
<td>6</td>
<td>3D_1, 1P_1</td>
</tr>
<tr>
<td>$(q^TCq)_S^6$</td>
<td>0$^-$</td>
<td>6</td>
<td>6</td>
<td>3P_0</td>
</tr>
<tr>
<td>$(q^TC\gamma^5q)_S^6$</td>
<td>0$^+$</td>
<td>6</td>
<td>6</td>
<td>1S_0</td>
</tr>
<tr>
<td>$(q^TC\gamma^\mu\gamma^5q)_S^6$</td>
<td>1$^-$</td>
<td>6</td>
<td>6</td>
<td>3P_1</td>
</tr>
<tr>
<td>$(q^TC\gamma^\mu q)_A^6$</td>
<td>1$^+$</td>
<td>6</td>
<td>$\bar{3}$</td>
<td>3S_1</td>
</tr>
<tr>
<td>$(q^TC\sigma^{\mu\nu}q)_A^6$</td>
<td>1$^+$, 1$^-$</td>
<td>6</td>
<td>$\bar{3}$</td>
<td>3D_1, 1P_1</td>
</tr>
</tbody>
</table>

- **Scalar**
 - “good” diquark
- **Axial-vector**
 - “bad” diquark
- Color 6

$C \equiv i\gamma^0\gamma^2 = -C^{-1} = -C^T$
Multiquark exotic states

- Double charm tetraquark meson
 \[T_{cc} (cu^\text{bar}d^\text{bar}, 1^+, I=0) = [cc]_{1+} [u^\text{bar}d^\text{bar}]_{0+} \]

- The lowest strong-decay threshold is DD* (L=0).
- If the scalar diquark is light enough to make \(T_{cc} \) bound below DD* threshold, \(T_{cc} \) will be a stable tetra-quark resonance.

- New possible color correlations with the production rates
Multiquark exotic states

- Double charm tetraquark meson
 - The lowest strong-decay threshold is DD* (L=0).
 - If the scalar diquark is light enough to make T_{cc} bound below DD* threshold, T_{cc} will be a stable tetra-quark resonance.

New possible color correlations with the production rates

Hyodo, Liu, Oka, Sudoh, Yasui, PLB721 (2013) 56-60

Multiquark exotic states

$\Lambda c, \Sigma c, \Sigma c^*(cqq)$

qq flavor SU(3)

$\bar{c}c$ flavor SU(3)

$6_c(1^S_0) \otimes 6_c(1^S_0)$

$\bar{3}_c(3^S_1)$

$\Sigma c 1/2^+ \Sigma c^* 3/2^+$

$\bar{3}_c(3^S_1) \otimes \bar{3}_c(3^S_1)$

200 MeV

$6_c(1^S_0) \otimes 6_c(3^S_1)$

$T_{cc}^1 \left[6_c \right]$

$\bar{c}c$

$q=q,u,d,s$

0^+

$0^+ 1^+ 2^+$

25 MeV

75 MeV

125 MeV

1^+

D^*D^* threshold

$T_{cc}^1 [3_c \overline{b}ar]$

$T_{cc}^1 [\bar{3}_c]$

1^+

color magnetic interaction

mixing suppressed

suppressed
Chiral Diquarks

- **Chiral symmetry SU(3)$_R$ x SU(3)$_L$**

 \[q^a_{iR} = P_R q^a_i, \quad q^a_{iL} = P_L q^a_i \]

 \[P_{R,L} \equiv \frac{1 \pm \gamma_5}{2}, \quad [P_{R,L}, C] = 0, \quad P^T_{R,L} = P_{R,L} \]

- **Scalar chiral diquarks (color 3^{bar})**

 \[d^a_{iR} \equiv \epsilon_{ijk}(q^T_{jR} C q^a_{kR}) \]

 \[\text{Right scalar diquark, chiral } (\bar{3},1), \text{ color } \bar{3} \]

 \[d^a_{iL} \equiv \epsilon_{ijk}(q^T_{jL} C q^a_{kL}) \]

 \[\text{Left scalar diquark, chiral } (1, \bar{3}), \text{ color } \bar{3} \]

- **Parity eigenstates: 0^+, 0^- diquarks**

 \[S^a_i = d^a_{iR} - d^a_{iL} = \epsilon_{ijk}(q^T_{jL} C \gamma_5 q^a_k) \]

 \[(\bar{3}, 1) + (1, \bar{3}) \]

 \[P^a_i = d^a_{iR} + d^a_{iL} = \epsilon_{ijk}(q^T_{jL} C q^a_k) \]
Chiral Diquarks

- **SU(3)_R x SU(3)_L transform for scalar diquarks**

 \[
 q_R \rightarrow U_R q_R = (U_R)_{ij} q_{jR}, \quad U_R \in SU(3)_R \\
 q_L \rightarrow U_L q_L = (U_L)_{ij} q_{jL}, \quad U_L \in SU(3)_L
 \]

 \[
 d_R \rightarrow d_R U_R^\dagger \quad (\bar{3}, 1), \quad d_R^\dagger \rightarrow U_R d_R^\dagger \quad (3, 1) \\
 d_L \rightarrow d_L U_L^\dagger \quad (1, \bar{3}), \quad d_L^\dagger \rightarrow U_L d_L^\dagger \quad (1, 3)
 \]

 \[
 d_R^\alpha(d_R^\alpha)^\dagger \equiv d_{iR}^\alpha(d_{iR}^\alpha)^\dagger, \quad d_L^\alpha(d_L^\alpha)^\dagger \equiv d_{iL}^\alpha(d_{iL}^\alpha)^\dagger, \quad \text{chiral invariant, color singlet} \\
 d_R^\alpha(d_R^\alpha)^\dagger + d_L^\alpha(d_L^\alpha)^\dagger = \text{Lorentz scalar, color singlet, chiral invariant}
 \]

- **Strategy upgraded:**

 Write down general forms of the chiral invariant Lagrangian for the chiral diquarks with a background chiral meson field.
Chiral Diquark Effective Theory

Chiral meson field: Σ_S (scalar nonet), Σ_P (pseudo-scalar nonet)

$$\Sigma = \Sigma_S + i\Sigma_P \rightarrow U_L \Sigma U_R^\dagger \quad (\bar{3}, 3)$$

$$\Sigma_S = \Phi_S/f_\pi, \quad \Sigma_P = \Phi_P/f_\pi \quad \langle \Sigma_S \rangle = 1, \quad \langle \Sigma_P \rangle = 0$$

\mathcal{P}: $d_R \leftrightarrow d_L, \quad \Sigma \rightarrow \Sigma^\dagger$

The effective Lagrangian (of the linear sigma model)

$$\mathcal{L} = -D_\mu d_R \left(D_\mu d_R \right)^\dagger - D_\mu d_L \left(D_\mu d_L \right)^\dagger$$

$$-m_0^2(d_Rd_R^\dagger + d_Ld_L^\dagger) - m_1^2(d_R\Sigma^\dagger d_L^\dagger + d_L\Sigma d_R^\dagger)$$

$$D_\mu = \partial_\mu + ig T^\alpha G^\alpha_{\mu}^{\text{ext}}$$
Chiral Diquark Effective Theory

\[\mathcal{L} = -D_\mu d_R (D_\mu d_R)^\dagger - D_\mu d_L (D_\mu d_L)^\dagger - m_0^2 (d_R d_R^\dagger + d_L d_L^\dagger) - m_1^2 (d_R \Sigma^\dagger d_L^\dagger + d_L \Sigma d_R^\dagger) \]

chiral invariant mass CSB mass

- For the chiral invariant vacuum, \(\langle \Sigma \rangle = \langle \Sigma_s \rangle = 0 \) (\(\langle \sigma \rangle = 0 \)), the diquark mass is given by \(m_0 \).

- For normal vacuum \(\Sigma = 1 \), the masses of \(0^+ \) and \(0^- \) diquarks are given by

\[
M^2 = \begin{pmatrix} m_0^2 & m_1^2 \\ m_1^2 & m_0^2 \end{pmatrix} \longrightarrow M = \sqrt{m_0^2 \pm m_1^2}
\]

\[
\sqrt{m_0^2 - m_1^2} \rightarrow S = d_R - d_L (0^+) \quad \sqrt{m_0^2 + m_1^2} \rightarrow P = d_R + d_L (0^-)
\]

\[
\Delta M^2 = M_P^2 - M_S^2 = 2m_1^2
\]
Chiral Diquark Effective Theory

\(\Sigma_P \) (pseudo-scalar nonet) couplings

\[
\Sigma = \Sigma_S + i \Sigma_P \rightarrow U_L \Sigma U_R^{\dagger} \quad (\bar{3}, 3) \quad \Sigma_P = \frac{1}{f_\pi} \lambda^a \Phi_P^a
\]

\[
V = (-i) m_1^2 (\bar{d}_R \Sigma_P d_L^{\dagger} - \bar{d}_L \Sigma_P d_R^{\dagger})
\rightarrow (-i) \frac{m_1^2}{f_\pi} (\bar{d}_R \lambda^a d_L^{\dagger} - \bar{d}_L \lambda^a d_R^{\dagger}) \Phi_P^a = (-i) \frac{m_1^2}{2 f_\pi} (P \lambda^a S^{\dagger} - S \lambda^a P^{\dagger}) \Phi_P^a
\]

“Goldberger-Treiman” relation

\[
g_{PS}^{SP} = \frac{m_{S1}^2}{2 f_\pi} = \frac{M_P^2 - M_S^2}{f_\pi} = \frac{\Delta_M^2}{f_\pi}
\]
Chiral Diquark Effective Theory

Vector + Axial-vector (3,3) Diquarks

\[d_{ij}^{\mu_a} \equiv \epsilon_{abc}(q_{iL}^{bT} C\gamma^\mu q_{jR}^c) = \epsilon_{abc}(q_{jR}^{bT} C\gamma^\mu q_{iL}^c) \quad \text{chiral (3,3) vector diquark} \]

\[d_{V[ij]}^{\mu_a} = d_{ij}^{\mu_a} - d_{ji}^{\mu_a} = \epsilon_{abc}(q_{i}^{bT} C\gamma^\mu \gamma^5 q_{j}^c) \quad \text{Vector } 1^- \text{ diquark, flavor } 3 \]

\[d_{A[ij]}^{\mu_a} = d_{ij}^{\mu_a} + d_{ji}^{\mu_a} = \epsilon_{abc}(q_{i}^{bT} C\gamma^\mu q_{j}^c) \quad \text{Axial-vector } 1^+ \text{ diquark, flavor } 6 \]

\[d^\mu \rightarrow U_L d^\mu U_R^{T}, \quad (3,3) \quad d^{\mu\dagger} \rightarrow U_R^{T\dagger} d^\mu U_L^{\dagger} \quad (\bar{3}, \bar{3}) \]

\[\mathcal{L} = -\frac{1}{2} \text{Tr}[F^{\mu\nu} F_{\mu\nu}^{\dagger}] - m_0^2 \text{Tr}[d^\mu d_{\mu}^{\dagger}] - m_1^2 \text{Tr}[\Sigma^{\dagger} d^\mu \Sigma^T d_{\mu}^{\dagger T}] \]

\[F^{\mu\nu} = D^\mu d^\nu - D^\nu d^\mu \]
Chiral Diquark Effective Theory

- **Full (Scalar + Vector) Diquark Effective Theory**

\[
\mathcal{L} = -D_\mu d_R (D_\mu d_R)^\dagger - D_\mu d_L (D_\mu d_L)^\dagger \\
- m^2_{S0} (d_R d_R^\dagger + d_L d_L^\dagger) - m^2_{S1} (d_R \Sigma^\dagger d_L^\dagger + d_L \Sigma d_R^\dagger) \\
- \frac{1}{2} \text{Tr} [F_{\mu\nu} F_{\mu\nu}^\dagger] - m^2_{V0} \text{Tr} [d_\mu d_\mu^\dagger] - m^2_{V1} \text{Tr} [\Sigma^\dagger d_\mu^\dagger \Sigma d_\mu^T] \\
- g_{pSV} \text{Tr} [d_\mu \epsilon_R d_R^\dagger \partial_\mu \Sigma^\dagger + d_\mu^\dagger (\partial_\mu \Sigma)^T \epsilon_L d_L^\dagger + (\text{c.c.})]
\]

- **Expected Couplings of PS meson**

\[\Xi_c \leftrightarrow \Lambda_c \bar{K}\]

\[\Sigma_c \rightarrow \Lambda_c \pi\]
Chiral Diquark Effective Theory

 Non-linear chiral Diquark effective theory (for pentaquark/tetraquarks)

- Y. Kawakami, M. Harada,
 Chiral effective theory of Single Heavy Baryons (HQ symmetry)
Chiral Diquark Effective Theory

C. Alexandrou et al., Quenched QCD, PRL 97, 222002 (2006)

PRL 97, 222002 (2006)

$\sim 1000 \text{ MeV} \quad 0^- \quad \sqrt{m_0^2 + m_1^2}$

$\sim 600 \text{ MeV} \quad 1^+$

$\sim 400 \text{ MeV} \quad 0^+ \quad m_0 - m_1$

$m_0 \sim 760 \text{ MeV}, \quad m_1 \sim 640 \text{ MeV} \quad (\text{SU}(3) \text{ chiral limit})$

Under restoration of chiral symmetry, $\langle \Sigma \rangle = \langle \Sigma_s \rangle \rightarrow 0$, the mass of the Scalar diquark and Pseudoscalar diquark will be degenerate to be $m_0 \sim 760 \text{ MeV}$.
\[\langle \Sigma \rangle = \langle \Sigma_s \rangle \rightarrow 0 \]

\[m_0 \sim 760 \text{ MeV}, \ m_1 \sim 640 \text{ MeV} \ (\text{SU(3) chiral limit}) \]

\[m_0 \sim 760 \text{ MeV} \]
Diquark mass differences from unquenched lattice QCD

Yujian Bi(周玉江)$^{1;1}$ Hao Cai(蔡浩)$^{1;2}$ Ying Chen(陈莹)2 Ming Gong(宗明)2
Zhaofeng Liu(刘朝峰)$^{2;3}$ Hao-Xue Qiao(乔豪学)1 Yi-Bo Yang(杨一波)3

$\begin{align*}
\text{c005, } J_c^5 \text{ and } J_c^{05} \\
\vdots & : aM_0 = 0.6700 \\
\bigstar & : aM_0 = 0.0670 \\
\times & : aM_0 = 0.0135
\end{align*}$

Makoto Oka (ASRC, JAEA)
Diquark mass differences from unquenched lattice QCD

Makoto Oka (ASRC, JAEA)

Yujiang Bi (毕玉江)1,1 Hao Cai (蔡浩)1,2 Ying Chen (陈莹)2 Ming Gong (宫明)2
Zhaofeng Liu (刘朝峰)2,3 Hao-Xue Qiao (乔豪学)1 Yi-Bo Yang (杨一玻)3

Table 8. Diquark masses and mass difference for various valence quark masses on ensemble c005. The first line is a linear extrapolation in am_q to the chiral limit with the lowest four data points. $a^{-1}=1.75$ GeV

<table>
<thead>
<tr>
<th>am_q</th>
<th>$aM_{q+}(J^c_{\pi}^{95})$</th>
<th>$aM_{1+}(J^c_1)$</th>
<th>$a(M_{1+} - M_{0+})$</th>
<th>$aM_{0-}(J^c_1)$</th>
<th>aM_{1-}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.4142(63)</td>
<td>0.584(21)</td>
<td>0.166(22)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.01350</td>
<td>0.4534(70)</td>
<td>0.611(29)</td>
<td>0.158(31)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.02430</td>
<td>0.4875(52)</td>
<td>0.635(18)</td>
<td>0.148(19)</td>
<td>0.796(52)</td>
<td>-</td>
</tr>
<tr>
<td>0.04890</td>
<td>0.5692(37)</td>
<td>0.694(10)</td>
<td>0.1248(98)</td>
<td>0.862(23)</td>
<td>0.987(53)</td>
</tr>
<tr>
<td>0.06700</td>
<td>0.6166(48)</td>
<td>0.7300(85)</td>
<td>0.1134(93)</td>
<td>0.904(18)</td>
<td>1.003(41)</td>
</tr>
<tr>
<td>0.15000</td>
<td>0.8293(70)</td>
<td>0.8907(68)</td>
<td>0.0614(89)</td>
<td>1.056(29)</td>
<td>1.140(24)</td>
</tr>
<tr>
<td>0.33000</td>
<td>1.1830(30)</td>
<td>1.2334(55)</td>
<td>0.0504(45)</td>
<td>1.378(17)</td>
<td>1.454(21)</td>
</tr>
<tr>
<td>0.67000</td>
<td>1.8265(39)</td>
<td>1.8604(68)</td>
<td>0.0339(62)</td>
<td>1.976(12)</td>
<td>2.025(16)</td>
</tr>
</tbody>
</table>

$M(0^+) \sim 720 \text{ MeV}$

$M(1^+) - M(0^+) \sim 290 \text{ MeV}$ \hspace{1cm} $M(1^+) \sim 1010 \text{ MeV}$

$M(0^-) - M(0^+) \sim 540 \text{ MeV}$ \hspace{1cm} $M(0^-) \sim 1260 \text{ MeV}$ \hspace{1cm} $m_0 = 1030 \text{ MeV}, m_1 = 730 \text{ MeV}$

$M(1^-) - M(1^+) \sim 510 \text{ MeV}$ \hspace{1cm} $M(1^-) \sim 1520 \text{ MeV}$

Makoto Oka (ASRC, JAEA)
$m_0 = 1030$ MeV, $m_1 = 730$ MeV
Diquarks in Heavy Baryons

From Heavy baryon spectroscopy
Λ_Q/Σ_Q with S(0^+)/A(1^+) diquarks

Diquarks
S(0^+) ud (S=0, I=0)
A(1^+) (uu, ud, dd) (S=1, I=1)
Diquarks in Heavy Baryons (P-wave)

by A. Hosaka

λ mode

L=0

L=1

ρ mode

L=0

L=1

P-wave

single quark mode

S-wave

m_Q=m_q

m_Q \neq m_q

ground states

$3^3\rho_{0,1,2}$

$6^1\rho_1$

$A_{L=0}^\perp Q$

$V_{L=0}^\perp Q$

$P_{L=0}^\perp Q$

$1/2^+$

$1/2^-$

$3/2^+$

$3/2^-$

$5/2^+$

$5/2^-$

$1/2^+$

$1/2^-$

$3/2^+$

$3/2^-$

Σ

Λ

ground states
Diquarks in Heavy Baryons (P-wave)

Heavy baryons are good probes of diquarks in hadrons or hadronic matter!

by A. Hosaka
Conclusion

- We construct a chiral effective theory of Diquarks. Scalar and Pseudo-Scalar Diquarks are paired in $(\bar{3}, 1) + (1, \bar{3})$. Vector and Axial-Vector Diquarks are in $(3, 3)$ representation.

- For the SP sector, chiral invariant mass term and SB mass term are available. Using the LQCD data of the Diquarks, we may determined the chiral invariant mass ~ 700 MeV. We obtain the GT relation for the PS meson-Diquark coupling.

- For the VA sector, we get a flavor 6 axial-vector and 3^{bar} vector. Chiral invariant and $\langle \Sigma \rangle^2$ mass terms are allowed. (No linear term)

- Future directions, perspectives
 Heavy baryon spectroscopy
 Exotic states, such as tetra quark, diquark matter, . .