Hyperon and charmed baryon productions with an instanton interaction

Sang-In Shim

RCNP, Osaka University

17 June 2019

Collaborated with Prof. Atsushi Hosaka and Prof. Hyun-Chul Kim

List of contents

Background and Motivation

- Heavy baryons and Diquarks
- Researches on heavy baryon productions

Methods for heavy baryon productions

- One- and Two-quark processes
- Baryon wave functions
- Kinematics and Transition amplitudes

Results and Discussion

Summary and Outlook

2 /25

List of contents

Background and Motivation

- Heavy baryons and Diquarks
- Researches on heavy baryon productions

• Methods for heavy baryon productions

- One- and Two-quark processes
- Baryon wave functions
- Kinematics and Transition amplitudes

Results and Discussion

Summary and Outlook

Heavy baryons and Diquarks

• Baryon excitations can be expressed as λ - and ρ -modes

 $\bullet \lambda$ - and ρ -modes show distinct difference in heavy baryons

Researches on heavy baryon productions

Experiments^{1,2}

- Early experiment at Brookhaven in 1985
- New experiment is planned at J-PARC by the high momentum pion beam

Former theoretical research^{3,4}

- The production rates of heavy baryons were predicted
- Only λ -mode excitations were studied

¹J.H.Christenson, E.Hummel, G.A.Kreiter, J.Sculli, PRL55, 154(1985) ²Charmed baryon spectroscopy via the (π, D^{*-}) reaction (2012). J-PARC P50 proposal. ³S.-H.Kim, A.Hosaka, H.-Ch.Kim, H.Noumi and K.Shirotori, PTEP(2014)no.10, 103D01. ⁴S.-H.Kim, A.Hosaka, H.-Ch.Kim, H.Noumi, PRD92(2014)no.9, 094021.

Researches on heavy baryon productions

Experiments^{1,2}

- Early experiment at Brookhaven in 1985
- New experiment is planned at J-PARC by the high momentum pion beam

Former theoretical research^{3,4}

- The production rates of heavy baryons were predicted
- Only λ -mode excitations were studied

Sang-In Shim (RCNP, Osaka University)

Researches on heavy baryon productions

Charm production spectrum (Kim, Hosaka, Kim, Noumi, 2015)

Motivation

- Propose a process to excite both λ and ρ -modes
- Describe heavy baryon productions and find observables such as production rates
- Provide a careful discussion about structures and production rates of g.s, λ- and ρ-modes for various heavy baryons

List of contents

Background and Motivation

- Heavy baryons and Diquarks
- Researches on heavy baryon productions

Methods for heavy baryon productions

- One- and Two-quark processes
- Baryon wave functions
- Kinematics and Transition amplitudes

Results and Discussion

Summary and Outlook

One- and two-quark processes

- One-quark process^{1,2}
 - One quark in the baryon is involved in the interaction
 - The heavy baryon can be excited only to $\lambda\text{-modes}$
- Two-quark process
 - Both $\rho\text{-}$ and $\lambda\text{-}modes$ can be found
 - Need to consider 3-quark interactions or two-step precesses

¹S.-H.Kim, A.Hosaka, H.-Ch.Kim, H.Noumi and K.Shirotori, PTEP(2014)no.10, 103D01. ²S.-H.Kim, A.Hosaka, H.-Ch.Kim, H.Noumi, PRD92(2014)no.9, 094021.

Inha University, Incheon, Korea, 17 June 2019 11/25

Quark interactions in the instanton model ('t Hooft interactions)

Baryon wave functions ($m_1 = m_2 = m_q$)

Kinematics for heavy baryon productions

Matrix elements for two-quark processes

 $\langle \mathbf{Y}, \mathbf{M} | \mathcal{L}_{tH} | \mathbf{p}, \pi \rangle = \langle (Meson) \rangle \times \langle (Baryon) \rangle$

$$\langle (Baryon) \rangle \sim C_{Y} \int d^{3}x_{1} d^{3}x_{2} d^{3}x_{3} \Psi_{Y}^{*}(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}) e^{i\vec{q}\cdot\vec{x}_{3}} \delta^{3}(\vec{x}_{2} - \vec{x}_{3}) \Psi_{N}(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3})$$

$$\begin{array}{c} \text{Operator from } \mathcal{L}_{th} \\ \vec{q}_{eff} & : \text{ Effective momentum transfer, } \vec{q}_{eff} = \frac{2}{3}\vec{p}_{p} - \frac{2m_{q}}{2m_{q}+m_{Q}}\vec{p}_{Y(Y_{c})} \\ \mathcal{L}_{tH} & : \text{ Interaction Lagrangian for the 3-quark interaction} \end{array}$$

- : Interaction Lagrangian for the 3-quark interaction
- $\psi_{I}^{\rho \text{ or } \lambda(*)}$: Wave function for ρ or λ modes of the initial(final) state baryon

Matrix elements for two-quark processes

$$\begin{split} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \Psi_{N} = e^{i\vec{P}_{N}\cdot\vec{X}}\psi_{0}^{\rho}(\vec{\rho})\psi_{0}^{\lambda}(\vec{\lambda}) \\ & \vec{p}_{3} \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{0}^{\rho}(\vec{\rho})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\rho}(\vec{\rho})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\rho}(\vec{\rho})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\rho}(\vec{\rho})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\rho}(\vec{\rho})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\rho}(\vec{\rho})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\rho}(\vec{\rho})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\lambda}(\vec{\lambda})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\lambda}(\vec{\lambda})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\lambda}(\vec{\lambda})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\lambda}(\vec{\lambda})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\lambda}(\vec{\lambda})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\lambda}(\vec{\lambda})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\lambda}(\vec{\lambda})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\lambda}(\vec{\lambda})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\lambda}(\vec{\lambda})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\lambda}(\vec{\lambda})\psi_{1}^{\lambda}(\vec{\lambda})\psi_{1}^{\lambda}(\vec{\lambda})\psi_{1}^{\lambda}(\vec{\lambda}) \\ & \end{array} \\ & \begin{array}{c} & \Psi_{Y} = e^{i\vec{P}_{Y}\cdot\vec{X}}\psi_{1}^{\lambda}(\vec{\lambda})\psi_{1}^{\lambda}$$

Inha University, Incheon, Korea, 17 June 2019 16/25Sang-In Shim (RCNP, Osaka University) The 1st CENuM Workshop for Hadronic Physics

List of contents

Background and Motivation

- Heavy baryons and Diquarks
- Researches on heavy baryon productions

• Methods for heavy baryon productions

- One- and Two-quark processes
- Baryon wave functions
- Kinematics and Transition amplitudes

Results and Discussion

Summary and Outlook

Comparison between One- and Two-quark processes

One-quark processes¹(former work)

$$\begin{array}{l} \langle Y(\frac{1}{2}^{+}, \ l \ = 0), M | \mathcal{L}_{int} | p, \pi^{-} \rangle \propto exp \left[-\frac{q_{eff}^{2}}{4A^{2}} \right] \\ \langle Y(\frac{1}{2}^{-}, \ l \lambda \ = 1), M | \mathcal{L}_{int} | p, \pi^{-} \rangle \propto \frac{\alpha_{\lambda'} | q_{eff}^{2} |}{\sqrt{2}A^{2}} exp \left[-\frac{q_{eff}^{2}}{4A^{2}} \right] \\ \bullet \mbox{ Two-quark processes(present work)} \\ \langle Y(\frac{1}{2}^{+}, \ l \ = 0), M | \mathcal{L}_{tH} | p, \pi^{-} \rangle \propto exp \left[-\frac{q_{eff}^{2}}{4B^{2}} \right] \\ \langle Y(\frac{1}{2}^{-}, \ l \lambda \ = 1), M | \mathcal{L}_{tH} | p, \pi^{-} \rangle \propto exp \left[-\frac{q_{eff}^{2}}{4B^{2}} \right] \\ \langle Y(\frac{1}{2}^{-}, \ l \lambda \ = 1), M | \mathcal{L}_{tH} | p, \pi^{-} \rangle \propto \frac{\alpha_{\lambda'} | \vec{q}_{eff} |}{\sqrt{2}B^{2}} exp \left[-\frac{q_{eff}^{2}}{4B^{2}} \right] \\ \langle Y(\frac{1}{2}^{-}, \ l \lambda \ = 1), M | \mathcal{L}_{tH} | p, \pi^{-} \rangle \propto \frac{\sqrt{2} \alpha_{\rho} | \vec{q}_{eff} |}{B^{2}} exp \left[-\frac{q_{eff}^{2}}{4B^{2}} \right] \\ \langle Y(\frac{1}{2}^{-}, \ l \rho \ = 1), M | \mathcal{L}_{tH} | p, \pi^{-} \rangle \propto \frac{\sqrt{2} \alpha_{\rho} | \vec{q}_{eff} |}{B^{2}} exp \left[-\frac{q_{eff}^{2}}{4B^{2}} \right] \\ - \mbox{ As } | \vec{q}_{eff} | \ increases, productions of \\ (1) \ Ground states decrease exponentially \\ (2) \ Excited states increase, reach a pick and decrease \\ {}^{1}S.H.Kim, A.Hosaka, H.-Ch.Kim, H.Noumi and K.Shirotori, PTEP(2014) no.10, 103D01. \\ \end{array}$$

Comparison between One- and Two-quark processes(λ-mode)

Sang-In Shim (RCNP, Osaka University)

The 1st CENuM Workshop for Hadronic Physics

Inha University, Incheon, Korea, 17 June 2019 19/25

Comparison between One- and Two-quark processes(λ-mode)

Sang-In Shim (RCNP, Osaka University)

The 1st CENuM Workshop for Hadronic Physics Inha University,

Inha University, Incheon, Korea, 17 June 2019 20/25

Production rates of the two-quark process(Preliminary)

G.S.	Λ(1/2+)	Σ(1/2+)	Σ(3/2+)		π -p —>K ⁰ (forward s	YS OF D-YC	
Rate(Ys)	1	3.3	0			GeV for) Strange
Rate(Yc)	1	2.9	0		$ k_{\pi}^{Lab} = \begin{cases} 2 \\ 2 \end{cases}$	0 GeV for	Charmed
λ-modes	Λ(1/2-,j=1)	∧(3/2-,j=1)	Σ(1/2-,j=0)	Σ(1/2-,j=1)	Σ(3/2-,j=1)	Σ(3/2-,j=2)	Σ(5/2-,j=2)
Rate(Ys)	0.004	0.010	0.007	0.015	0.007	0.038	0
Rate(Yc)	0.10	0.20	0.12	0.23	0.12	0.58	0
ρ-modes	Λ(1/2-,j=0)	Λ(1/2-,j=1)	∧(3/2-,j=1)	∧(3/2-,j=2)	Λ(5/2-,j=2)	Σ(1/2-,j=1)	Σ(3/2-,j=1)
Rate(Ys)	0.017	0.039	0.018	0.10	0	0.016	0.032
Rate(Yc)	0.22	0.43	0.22	1.1	0	0.20	0.41

¹PDG2016, Chinese Physics C, 40, 100001

Production rates of the two-quark process(Preliminary) All production rates are normalized by $\Lambda_s(1/2+)$ or $\Lambda_c(1/2+)$

G.S.	Λ(1/2+)	Σ(1/2+)	Σ(3/2+)		(forward scattering)			
Rate(Ys)	1	3.3	0		\vec{L} Lab $\int 5$	5 GeV for	Strange	
Rate(Yc)	1	2.9	0		$ \kappa_{\pi} = \begin{cases} 2 \end{cases}$	0 GeV for	Charmed	
λ-modes	∧(1/2-,j=1)	∧(3/2-,j=1)	Σ(1/2-,j=0)	Σ(1/2-,j=1)	Σ(3/2-,j=1)	Σ(3/2-,j=2)	Σ(5/2-,j=2)	
Rate(Ys)	0.004	0.010	0.007	0.015	0.007	0.038	0	
Rate(Yc)	0.10	0.20	0.12	0.23	0.12	0.58	0	
ρ-modes	Λ(1/2-,j=0)	Λ(1/2-,j=1)	Λ(3/2-,j=1)	∧(3/2-,j=2)	Λ(5/2-,j=2)	Σ(1/2-,j=1)	Σ(3/2-,j=1)	
Rate(Ys)	0.017	0.039	0.018	0.10	0	0.016	0.032	
Rate(Yc)	0.22	0.43	0.22	1.1	0	0.20	0.41	

¹PDG2016, Chinese Physics C, 40, 100001

Production rates of the two-quark process(Preliminary)

 Neither one- nor two-quark process alone can explain experimental data Production rates of the two-quark process(Preliminary)

					<i>π</i> -р —>К	⁰ Ys or D-Yo	C
G.S.	Λ(1/2+)	Σ(1/2+)	Σ(3/2+)		(forward	scattering)
Rate(Ys)	1	3.3	0		∣ <i>⊾</i> Lab∣_∫	5 GeV for	Strange
Rate(Yc)	1	2.9	0	1 : 2	2 : 1	: 5	: 0
λ-modes	∧(1/2-,j=1)	∧(3/2-,j=1)	Σ(1/2-,j=0)	Σ(1/2-,j= ⁻	1) Σ(3/2-,j=1)) Σ(3/2-,j=2)	Σ(5/2-,j=2)
1 : 2	0.004	0.010	0.007	0.015	0.007	0.038	0
Rate(Yc)	0.10	0.20	0.12	0.23	0.12	0.58	0
ρ-modes	Λ(1/2-,j=0)	Λ(1/2-,j=1)	Λ(3/2-,J=.),	A(3/2-,j=2	2) ∧(5/2-,j=2)) Σ(1/2-,j=1)	Σ(3/2-,j=1)
Rate(Ys)	0.017	0.039	0.018	0.10	0	0.016	0.032
Rate(Yc)	0.22	0.43	0.22	1.1	0	0.20	0.41
	1	: 2	: 1	: 5	: 0	1 :	2

- Neither one- nor two-quark process alone can explain experimental data
- Spin structure dependence has been found in λ- and ρ-mode productions

Summary

- Production rates of strange and charmed baryons are being studied with two-quark processes
- Momentum transfer & spin-structure dependences and ratio between G.S. Λ and Σ productions are discussed

Outlook

- Investigation for finite angles is planned
- Contributions from the both one-quark, two-quark and additional processes should be studied more
- Study on structure of the quark interaction is required to describe more realistic reactions

Heavy baryon productions from two-step processes

- Investigation on difference between one- and two-step processes
- Vector meson exchange processes can be possible $\pi^- p \rightarrow D^{*-} \Lambda_c^*$

Thank you for your attention!

G.S.	Λ(1/2+)	Σ(1/2+)	Σ(3/2+)				
M(Ys) ¹	1116	1193	1385	<i>π</i> -p —>K⁰Ys or D-Yc			
M(Yc) ¹	2286	2453	2518	$ \vec{k}_{\pi}^{Lab} = \begin{cases} 5 & \text{GeV for Strange} \\ 20 & \text{GeV for Charme} \end{cases}$			Strange
Rate(Ys)	1	3.3	0				Charmed
Rate(Yc)	1	2.9	0				
λ-modes	∧(1/2-,j=1)	Λ(3/2-,j=1)	Σ(1/2-,j=0)	Σ(1/2-,j=1)	Σ(3/2-,j=1)	Σ(3/2-,j=2)	Σ(5/2-,j=2)
M(Ys) ^{1,2}	1405	1520	1654	1734	1670	1755	1775
M(Yc) ²	2595	2628	2802	2826	2807	2837	2839
Rate(Ys)	0.004	0.010	0.007	0.015	0.007	0.038	0
Rate(Yc)	0.10	0.20	0.12	0.23	0.12	0.58	0
ρ-modes	∧(1/2-,j=0)	Λ(1/2-,j=1)	Λ(3/2-,j=1)	∧(3/2-,j=2)	∧(5/2-,j=2)	Σ(1/2-,j=1)	Σ(3/2-,j=1)
M(Ys) ²	1670	1777	1690	1810	1814	1751	1760
M(Yc) ²	2890	2933	2917	2956	2960	2909	2910
Rate(Ys)	0.017	0.039	0.018	0.10	0	0.016	0.032
Rate(Yc)	0.22	0.43	0.22	1.1	0	0.20	0.41

¹PDG2016, Chinese Physics C, 40, 100001

G.S.	Λ(1/2+)	Σ(1/2+)	Σ(3/2+)	_			
M(Ys) ¹	1116	1193	1385		<i>π</i> -р —>К	⁽⁰ Ys or D-	Yc
M(Yc) ¹	2286	2453	2518		īLabı ∫ 5	GeV for S	strange
Rate(Ys)	1	3.3	0		$\kappa_{\pi}^{(m)} = \begin{cases} 20 \end{cases}$	GeV for C	Charmed
Rate(Yc)	1	2.9	0				
λ-modes	Λ(1/2-,j=1)	Λ(3/2-	Σ(1/2-,j=0)	Σ(1/?-,i= ⁻	1) Σ(3/2-,j=1)	Σ(3/2-,j=2)	Σ(5/2-,j=2)
M(Ys) ^{1,2}	1405	1520	1654	1731	1670	1755	1775
M(Yc) ²	2595	2628	2802	2826	2807	2837	2839
Rate(Ys)	0.004	0.010	0.007	0.015	0.007	0.038	0
Rate(Yc)	0.10	0.20	0.12	0.23	0.12	0.58	0
p-modes	Λ(1/2-,j=0)	Λ(1/2-,j=1)	Λ(3/2-,j=1)	∧(3/2-,j=2	2) ∧(5/2 j=2)	Σ(1/2-,j=1)	Σ(3/2-,j=1)
M(Ys) ²	1670	1777	1690	1810	1814	1751	1760
M(Yc) ²	2890	2933	2917	2956	2960	2909	2910
Rate(Ys)	0.017	0.039	0.018	0.10	0	0.016	0.032
Rate(Yc)	0.22	0.43	0.22	1.1	0	0.20	0.41

¹PDG2016, Chinese Physics C, 40, 100001

G.S.	Λ(1/2+)	Σ(1/2+)	Σ(3/2+)				
M(Ys) ¹	1116	1193	1385		<i>π</i> -p —>k	K ⁰ Ys or D-	Yc
M(Yc) ¹	2286	2453	2518	$ \vec{k}_{\pi}^{Lab} = \begin{cases} 5 & \text{GeV for Strange}\\ 20 & \text{GeV for Charme} \end{cases}$			Strange
Rate(Ys)	1	3.3	0				Charmed
Rate(Yc)	1	2.9	0				
λ-modes	Λ(1/2-,j=1)	Λ(3/2-,j=1)	Σ(1/2-,j=0)	Σ(1/2-,j=1)	Σ(3/2-,j=1)	Σ(3/2-,j=2)	Σ(5/2-,j=2)
M(Ys) ^{1,2}	1405	1520	1654	1734	1670	1755	1775
M(Yc) ²	2595	2628	2802	2826	2807	2837	2839
Rate(Ys)	0.004	0.010	0.007	0.015	0.007	0.038	0
Rate(Yc)	0.10	0.20	0.12	0.23	0.12	0.58	0
p-modes	∧(1/2-,j=0)	∧(1/2-,j=1)	∧(3/∠ ,j−1)	Λ(3/2-j=2)	Λ(5/2-,j=2)	Σ(1/2-,j=1)	Σ(3/2-,j=1)
M(Ys) ²	1670	1777	1690	,510	1814	1751	1760
M(Yc) ²	2890	2933	2917	2956	2260	2909	2910
Rate(Ys)	0.017	0.039	0.018	0.10	0	0.016	0.032
Rate(Yc)	0.22	0.43	0.22	1.1	0	0.20	0.41

¹PDG2016, Chinese Physics C, 40, 100001

- Hyperon and charmed baryon productions show distinct differences on q²_{eff} - dependence
- Spin structure dependence has been found in ρ and λ -modes
- Both one- and two-quark processes need to be taken into account to explain experimental data