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Motivation

Why coupled-channel system?

Why S-matrix in complex energy plane?
• Contains information on scattering amplitude.
• Coupled two-channel S-matrix is a function of 

two-momenta
• Resonance:

• the peak location → real part 
• width → imaginary part

The case of Λ 1405
• Coupling of the 𝜋Σ and ഥ𝐾𝑁 channels
• Quasi-bound state of ഥ𝐾𝑁
• Appears just below the ഥ𝐾𝑁 threshold 

R.J. Hemingway, Nuclear Physics B 23 (1973)

Goal: Obtain the general features of scattering 
observables arising from the coupled-channel system.

R.H. Dalitz and S.F. Tuan, Physical Review Letters 2 (1959)



𝑝 = 2𝜇 𝐸 𝑒𝑖𝜃𝐸/2 0 ≤ 𝜃𝐸 < 2𝜋

Analytic Properties of S-matrix

𝐼𝑚 𝑝

𝑅𝑒 𝑝

𝑝-plane

𝑝 = 2𝜇 𝐸 𝑒𝑖𝜃𝐸/2 2𝜋 ≤ 𝜃𝐸 < 4𝜋

imaginary part of 𝑝 in the physical sheet (orange)
and in the unphysical sheet (blue)

The S-matrix (single-channel)
• a single-valued function of the complex momentum 𝑝.
• a function of complex 𝐸 in a two-sheeted Riemann surface

𝐸 =
𝑝2

2𝜇
; 𝐸 = 𝐸 𝑒𝑖𝜃𝐸 0 ≤ 𝜃𝐸 < 4𝜋

• The physical sheet: 0 ≤ 𝜃𝐸 < 2𝜋 → 𝐼𝑚 𝑝 > 0
• physical region 𝐸 = 𝐸𝑅 + 𝑖0+ (𝐸𝑅 > 0)
• The unphysical sheet: 2𝜋 ≤ 𝜃𝐸 < 4𝜋 → 𝐼𝑚 𝑝 < 0

physical region



Poles in the physical sheet

1. Poles in the negative real energy axis are 
bound states.

2. Poles can only be in the negative real axis.
Causality in the nonrelativistic case

†
:

ҧ𝑝− ҧ𝑝∗

𝑅𝑒 𝑝

𝐼𝑚 𝑝

No restriction when it comes to poles in the 
unphysical sheet 𝐼𝑚 𝑝 < 0.

𝑝-plane

Results into an exponentially increasing 
time-dependent wave-function.

For a single-channel case, the resonance poles are confined only in one unphysical sheet.

†
N. G. van Kampen, Phys. Rev. 91 (1953)

Reflection Principle:       𝑆 𝐸 = 𝑆 𝐸∗ † or 𝑆 𝑝 = 𝑆 −𝑝∗ †

• If 𝐸𝑝𝑜𝑙𝑒 is a pole then 𝐸𝑝𝑜𝑙𝑒
∗ is also a pole.

• The 𝑆 𝐸𝑙𝑜𝑤 in the lower half E-plane is just a reflection about the real axis of 

𝑆 𝐸𝑢𝑝 in the upper half. 

Analytic Properties of S-matrix

Int ≥ Int



𝑡α𝛽 𝑝, 𝑝′; 𝐸 = 𝑣𝛼𝛽 𝑝, 𝑝′ +෍

𝛾

න
0

∞

𝑑𝑝′′ 𝑝′′ 2
2𝜇𝛾 𝑣𝛼𝛾 𝑝, 𝑝′′ 𝑡𝛾𝛽 𝑝′′, 𝑝′; 𝐸

2𝜇𝛾 𝐸 − Θ𝛾 + 𝑖𝜖 − 𝑝′′ 2

𝑣𝛼𝛽 𝑝, 𝑝′ = 𝑓𝛼 𝑝 𝜆𝛼𝛽𝑓𝛽 𝑝′ ; 𝑓𝛼 𝑝 =
𝛽𝛼
2

𝑝2 + 𝛽𝛼
2

𝑡α𝛽 𝑝, 𝑝′; 𝐸 = 𝑓𝛼 𝑝
cof 𝜏 𝐸 −1

𝛼𝛽

det 𝜏 𝐸 −1
𝑓𝛽 𝑝′ ; 𝜏 𝐸 −1

𝛼𝛽 = 𝜆−1 𝛼𝛽 − 𝛿𝛼𝛽 Σ 𝐸 𝛼;

Multichannel T-matrix 

Σ 𝐸 𝛾 = න
0

∞

𝑑𝑝
2𝜇𝛾𝑝

2𝑓𝛾
2(𝑝)

2𝜇𝛾 𝐸 − Θ𝛾 + 𝑖𝜖 − 𝑝 2

Pole position condition: 
det 𝜏 𝐸 −1 = 0

B. C. Pearce and B. F. Gibson, Phys. Rev. C 40, 902 (1989).

Lippmann-Schwinger equation:

𝑡𝛼 𝛽

𝑝 𝑝′

𝑣𝛼 𝛽

𝑝 𝑝′

= 𝑣𝛼

𝑝
𝑝′′

+ 𝛾 𝛽

𝑝′

𝑡Σ𝛾 𝛾

𝜆𝛼𝛽 is the coupling strength and 𝛽𝛼 as cut-off parameter 

(Yamaguchi form factor)



Σ 𝐸 𝛾 = න
0

∞

𝑑𝑝
2𝜇𝛾𝑝

2𝑓𝛾
2(𝑝)

2𝜇𝛾 𝐸 − Θ𝛾 + 𝑖𝜖 − 𝑝 2

For 𝑓𝛾 𝑝 =
𝛽𝛾
2

𝑝2+𝛽𝛾
2

Σ 𝐸 𝛾 =
𝜋𝜇𝛾𝛽𝛾

3

2 𝑘𝛾 + 𝑖𝛽𝛾
2

𝑝-plane

𝐶

𝑘𝛾

−𝑘𝛾

Σ 𝐸 𝛾 for 𝐸 in the physical sheet 𝑘𝛾 = + 2𝜇𝛾 𝐸 − Θ𝛾

Σ 𝐸 𝛾 for 𝐸 in the unphysical sheet 𝑘𝛾 = − 2𝜇𝛾 𝐸 − Θ𝛾

𝑘𝛾 = ± 2𝜇𝛾 𝐸 − Θ𝛾

𝑆 𝐸 = 1 + 2𝑖𝑇 𝐸 ;

𝑇11 𝐸 = −𝜋𝜇1𝑘1
𝛽1
4

𝑘1
2 + 𝛽1

2 2

𝜆−1 22 − Σ 𝑘2

𝜆−1 11 − Σ 𝑘1 𝜆−1 22 − Σ 𝑘2 − 𝜆−1 12 𝜆−1 21

𝜆−1 𝛼𝛽 =
𝜆𝛼𝛽

𝜆11𝜆22 − 𝜆12𝜆21

Multichannel T-matrix 

Pole-position condition for two-channel case:

𝜆−1 11 − Σ 𝑘1 𝜆−1 22 − Σ 𝑘2 − 𝜆−1 12 𝜆−1 21 = 0

𝑇11 𝐸 = −𝜋𝜇1𝑘1𝑓1 𝑘1
2cof 𝜏 𝑘1

−1
11/ det 𝜏 𝑘1

−1



det 𝜏 𝑘𝛼
−1 = 𝜆−1 𝛼𝛼 −

𝜋𝜇𝛼𝛽𝛼
3

2 𝑘𝛼 + 𝑖𝛽𝛼
2
= 0 𝑘𝛼 = −𝑖𝛽𝛼 ±

𝜋𝜇𝛼𝛽𝛼
3𝜆𝛼𝛼
2

Poles in the single-channel case 𝜆12 = 0
Pole-position condition: 

𝜆𝛼𝛼
𝜆𝛼𝛼 = 0

𝜆𝛼𝛼 becomes more negative

𝑘𝛼-plane

We can set 𝜆𝛼𝛼 to have either a bound state 
pole or a virtual state pole near the threshold.

𝛽𝛼 > 0 is the cut-off parameter
𝜇𝛼 > 0 is the reduced mass
𝜆𝛼𝛼 is the potential parameter

𝜆𝛼𝛼 < 0 attractive
𝜆𝛼𝛼 > 0 repulsive

𝑘𝛼-plane



physical (complex energy) sheet:

𝑇(𝐸) = −𝜋𝜇1𝑘1
𝛽1
4

𝑘1
2 + 𝛽1

2 2

1

1
𝜆1

−
𝜋𝜇1𝛽1

3

2 𝑘1 + 𝑖𝛽1
2

𝑘1 = + 2𝜇1𝐸

Parameters chosen give a bound state 
pole at 𝐸 = 1420 𝑀𝑒𝑉. 

𝑇 𝐸 2 in the physical sheet

𝜆11 = −0.02371
𝛽1 = 1000 𝑀𝑒𝑉
𝜇1 = 324 𝑀𝑒𝑉
Θ1 = 1435 𝑀𝑒𝑉

unphysical (complex energy) sheet: 𝑘1 = − 2𝜇1𝐸

𝑇 𝐸 2 in the unphysical sheet

Poles in the single-channel case 𝜆12 = 0



det 𝜏 𝐸 −1 = 0

Poles in coupled-channel case
Details of pole-trajectory:  

𝜆−1 11 −
𝜋𝜇1𝛽1

3

2 𝑘1 + 𝑖𝛽1
2 𝜆−1 22 −

𝜋𝜇2𝛽2
3

2 𝑘2 + 𝑖𝛽2
2 − 𝜆−1 12 𝜆−1 21 = 0

• New set of unphysical sheets open
• Provide initial settings for channel 1 and channel 2 at 𝜆12 = 0.
• Solve for 𝑘1 and 𝑘2 using:

𝐸 =
𝑘1
2

2𝜇1
− Θ1 =

𝑘2
2

2𝜇2
− Θ2 det 𝜏 𝑘1, 𝑘2

−1 = 0and 𝑘1, 𝑘2

Riemann Sheet Im 𝒌𝟏 Im 𝒌𝟐

[tt] (Physical sheet) + +
[bt] (Unphysical sheet) - +
[bb] (Unphysical sheet) - -
[tb] (Unphysical sheet) + -

Settings at 𝝀𝟏𝟐 = 𝟎

Channel 1 Channel 2

Set 1 Virtual Bound

Set 2 Virtual Virtual

Set 3 Bound Virtual

Set 4 Bound Bound

𝑘𝛼 = 2𝜇𝛼 𝐸 − Θ𝛼



Topology of the Riemann Sheets in a two-channel system

[tt]

[tt]

[bb]

[bb]

[bt]

[bb]

[tt]

[bb]

[tt]

[tb]

[tb]



Set 1: Virtual-bound

Θ𝜋Σ = 1333 Θഥ𝐾𝑁 = 1435𝑏𝑠 ത𝐾𝑁 = 1420𝑣𝑠𝜋Σ = 1131

Channel 1 Threshold at Θ𝜋Σ = 1333 𝑀𝑒𝑉 with virtual state pole at 𝐸 = 1131 𝑀𝑒𝑉
Channel 2 Threshold at Θഥ𝐾𝑁 = 1435 𝑀𝑒𝑉 with bound state poles at 𝐸 = 1420 𝑀𝑒𝑉

Units in MeV

Direction of 
increasing 𝜆12

Parameters:
𝜇𝜋Σ = 125 𝑀𝑒𝑉
𝜆𝜋Σ = −0.03162
𝛽𝜋Σ = 1000 𝑀𝑒𝑉
𝜇ഥ𝐾𝑁 = 324 𝑀𝑒𝑉
𝜆ഥ𝐾𝑁 = −0.02372
𝛽ഥ𝐾𝑁 = 1000 𝑀𝑒𝑉

𝝀𝟏𝟐 𝑹𝒆 𝑬𝒑𝒐𝒍𝒆 𝑰𝒎 𝑬𝒑𝒐𝒍𝒆

0.0069 1405.01 15.51

0.0087 1397.57 25.14

0.0110 1384.14 69.17

0.0142 1421.78 140.0

The pole moves in the unphysical 
[bt] sheet as 𝜆12 is increased.



Set 1: Virtual-bound
𝝀𝟏𝟐 𝑹𝒆 𝑬𝒑𝒐𝒍𝒆 𝑰𝒎 𝑬𝒑𝒐𝒍𝒆

0.0069 1405.01 15.51

tt bt 

tb bb 

Parameters:
𝜇𝜋Σ = 125𝑀𝑒𝑉
𝜆𝜋Σ = −0.03162
𝛽𝜋Σ = 1000 𝑀𝑒𝑉
𝜇ഥ𝐾𝑁 = 324 𝑀𝑒𝑉
𝜆ഥ𝐾𝑁 = −0.02372
𝛽ഥ𝐾𝑁 = 1000 𝑀𝑒𝑉



𝝀𝟏𝟐 = 𝟎. 𝟎𝟐𝟓
𝝀𝟏𝟐 = 𝟎. 𝟎𝟑𝟎
𝝀𝟏𝟐 = 𝟎. 𝟎𝟒𝟎
𝝀𝟏𝟐 = 𝟎. 𝟎𝟒𝟓

tb
bt

Channel 1 (Θ1 = 0): Virtual state poles at 𝐸 = −30
Channel 2 (Θ2 = 3): Virtual state poles at 𝐸 = 2

Θ1 = 0 Θ2 = 3𝑣𝑠2 = 2𝑣𝑠 = −30

In the solid line trajectory 𝐼𝑚 𝑘1 > 0 and 𝐼𝑚 𝑘2 < 0.
In the dashed line trajectory 𝐼𝑚 𝑘1 < 0 and 𝐼𝑚 𝑘2 > 0.

Units in 100 MeV
Set 2: Virtual-virtual

Parameters:
𝜇1 = 100 𝑀𝑒𝑉
𝜆1 = −0.00465
𝛽1 = 1077 𝑀𝑒𝑉
𝜇2 = 100 𝑀𝑒𝑉
𝜆2 = −0.04899
𝛽2 = 937 𝑀𝑒𝑉



Structure connected 
to bt sheet

Structure connected 
to bb sheet

Channel 1 (Θ1 = 0): Virtual state poles at 𝐸 = −30
Channel 2 (Θ2 = 3): Virtual state poles at 𝐸 = 2

Θ1 = 0 Θ2 = 3𝑣𝑠2 = 2𝑣𝑠 = −30

tb
bt

tt 

tb

bt

bb

Set 2: Virtual-virtual
Units in 100 MeV



Structure connected 
to bt sheet

Structure connected 
to bb sheet

Channel 1 (Θ1 = 0): Virtual state poles at 𝐸 = −30
Channel 2 (Θ2 = 3): Virtual state poles at 𝐸 = 2

Θ1 = 0 Θ2 = 3𝑣𝑠2 = 2𝑣𝑠 = −30

tb
bt

tt 

tb

bt

bb

Set 2: Virtual-virtual
Units in 100 MeV



𝝀𝟏𝟐 = 𝟎. 𝟎𝟐𝟓
𝝀𝟏𝟐 = 𝟎. 𝟎𝟑𝟎
𝝀𝟏𝟐 = 𝟎. 𝟎𝟒𝟎
𝝀𝟏𝟐 = 𝟎. 𝟎𝟒𝟓

Channel 1 (Θ1 = 0): Virtual state poles at 𝐸 = −30
Channel 2 (Θ2 = 3): Virtual state poles at 𝐸 = 2

Θ1 = 0 Θ2 = 3𝑣𝑠2 = 2𝑣𝑠 = −30

• The poles (green and purple) in the bt sheet are above the threshold (black).
• However, both the 𝑇11

2 and the Argand diagram give resonance-like peak 
positions below the threshold.

tb
bt

𝑬𝒑𝒆𝒂𝒌 = 𝟐. 𝟗𝟏𝟖

𝑬𝒑𝒆𝒂𝒌 = 𝟐. 𝟔𝟐𝟓

𝑬𝜹=𝝅/𝟐 = 𝟐. 𝟗𝟏𝟖

𝑬𝜹=𝝅/𝟐 = 𝟐. 𝟔𝟐𝟓

Set 2: Virtual-virtual
Units in 100 MeV



Resonance and resonance-like structure

Θ1 = 0 Θ2 = 3𝑣𝑠1 = −137 𝑣𝑠2 = 2𝑣𝑠1 = −100 𝑣𝑠1 = −30 𝑣𝑠1 = −10 𝑣𝑠1 = −1

Choose two parametrization 
with distinct trajectories

Units in 100 MeV

𝑘1 = −𝑖𝛽1 ±
𝜋𝜇1𝛽1

3𝜆11
2

Position of pole in channel 1 
when 𝜆12 = 0.



𝝀𝟏𝟐 = 𝟎. 𝟎𝟑𝟏𝟖

Θ1 = 0 Θ2 = 3𝑣𝑠1 = −137 𝑣𝑠2 = 2

tb
bt

𝝀𝟏𝟐 = 𝟎. 𝟎𝟒𝟎

𝑣𝑠1 = −30

The purple case is a 
resonance-like peak
• pole is no longer 

accessible in the 
physical region between 
the two thresholds.

The blue case is a 
resonance peak 
• peak position coincides 

with the real part of the 
pole.

The Argand diagram with

𝛿 𝐸 = Θ2 >
𝜋

2
is only an indication that a 
maximum 𝑇11 = 1 is reached 
but does not necessarily imply 
resonance.

Resonance and resonance-like structure
Units in 100 MeV

For a narrow peak-structure to be a 
resonance, the inelastic threshold 
should appear below the 𝑇11 = 𝑖/2. 𝛿 𝐸 = Θ2 >

3𝜋

4



Θ1 = 0 Θ2 = 3𝑣𝑠1 = −100 𝑣𝑠2 = 2𝑣𝑠1 = −10

tb
bt

Case 1:

Case 2:

Resonance and resonance-like structure
Units in 100 MeV

For a narrow peak-structure to be a 
resonance, the inelastic threshold 
should appear below the 𝑇11 = 𝑖/2. 𝛿 𝐸 = Θ2 >

3𝜋

4



Summary

• Reviewed some fundamental properties of the S-matrix

• Introduced a separable potential model for coupled-channel 
system
• Different parametrization in the zero-coupling limit results 

into different pole trajectories
• Cusp structure in 𝑇11

2 emerge if a pole in the inaccessible 
sheet crosses the threshold cut 

• Extraction of pole position based on the peak structure in 
the 𝑇11

2 can be misleading.
• The Argand diagram can be used to test if a peak structure 

is a resonance.


