

Ξ_c⁰ via semileptonic decay in pPb at 5.02 TeV

July 3rd 2020 D2H meeting Jeongsu Bok, Minjung Kweon, Jinjoo Seo Inha University

Contents

- Dataset
- Analysis procedure
- Result (w/o systematic uncertainty)

Dataset

- pPb 5.02 TeV
- Data Period : LHC16q(31 runs), LHC16t(4 runs)
 - FAST, CENT_woSDD
- Run numbers
 - https://twiki.cern.ch/twiki/pub/ALICE/AliDPGRunList16q/LHC16qpass1runlistv2.pdf
 - HadronPID, ElectronPID are same.
 - 16q: 265525, 265521, 265501, 265500, 265499, 265435, 265427, 265426, 265425, 265424, 265422, 265421, 265420, 265419, 265388, 265387, 265385, 265384, 265383, 265381, 265378, 265377, 265344, 265343, 265342, 265339, 265338, 265338, 265334, 265332, 265309
 - 16t : 267166, 267165, 267164, 267163
- Event selection
 - Trigger Class: kINT7
 - Pileup rejection only for the real data (AliESDtrackCuts::kSPD, AliESDtrackCuts::kBoth)
 - Primary vertices reconstructed from ITS+TPC tracks are within ±10 cm
- Event numbers
 - 516M after event selection, AliNormalizationCounter
 - Grid job
- MC
 - Period : LHC17d2b_fast_new
 - Event numbers : 16M

Analysis Procedure

- Following pp 5TeV, 13TeV which followed 7TeV (PLB 781 (2018) 8–19)
 - Based on the code
 - vertexingHF/AliAnalysisTaskSEXic0Semileptonic.cxx
 - macros/AddTaskXic0Semileptonic.C
 - Previous analysis note for pp 5,13TeV
 - <u>https://alice-notes.web.cern.ch/system/files/notes/analysis/990</u>
 - Using the same cut, procedure at this moment.
- Procedure

$$\Xi_c^0 \to e^+ \Xi^- \nu \to e^+ (\pi^- \Lambda) \nu \to e(\pi p \pi) \nu + c.c.$$

- Select e and Ξ
- Make Right-Sign (RS) pairs ($e + \Xi , e \Xi +$) and Wrong-Sign (WS) pairs ($e \Xi , e + \Xi +$)
- Signal extraction by subtracting the WS spectra from the RS spectra
- Prefilter correction
- Convert $p_T(e\Xi pair)$ into $p_T(\Xi_c^{0})$ using unfolding technique
- Efficiency correction
- Calculate BR*d σ /dp_T
- Calculate R_{pPb}
- (Systematic Uncertainty)

Analysis detail : electron PID

Electron PID cuts: following 5TeV, 13TeV analysis

Cuts vairbales	cuts		
AOD Filter Bit	4(Standard cuts with very loose DCA)		
Number of crossed rows	>70		
Number of crossed rows over TPC findable cluster	> 0.8		
Number of TPC PID clusters	>50		
Ratio of findable clusters	>0.6		
ITS/TPC refit	TRUE		
Number of ITS cluster	≥ 3		
$p_{\rm T}({\rm GeV/c})$	>0.5		
η	< 0.8		
SPD hit	both		
$ n\sigma_{TOF} $	<3		
$ n\sigma_{TPC} $	$> -3.9 + 1.17 \cdot x - 0.094 \cdot x^2$		
prefilter cut	$m_{e^+e^-} < 0.05 \text{ GeV/c}^2$		

Analysis Detail : $n\sigma_{TPC}$ cut

- $\mathrm{n}\sigma_{\mathrm{TPC}}$ distribution for
 - p_T between 0.5, 1.0, 2.0, 3.0, 4.0, 5.0
- p_T dependent cut will be used
 - $-3.9 + 1.17^*x 0.094^*x^*x < n\sigma_{TPC} < 3.0$

Electron purity, contamination by $n\sigma_{TPC}$ cut

- p_T-dependent cut will be used : -3.9 + 1.17*x 0.094*x*x < n σ_{TPC} < 3.0
 - Used in pp 7,5,13 TeV analyses
- Purity = N(elec)/N(all).
- Contamination = N(others)/N(all)
- Purity is high enough to use this cut

Fig. 3: The purity of electron(left) and the contamination of electron(right) at $\sqrt{s} = 5.02$ TeV

Fig. 4: The purity of electron(left) and the contamination of electron(right) at $\sqrt{s} = 13$ TeV

Electron PID : prefilter cut

- Prefilter cut to reject photonic electron
 - M(e+e- pair) > 0.05
 - M(ee)~0 : π^0 Dalitz decays, γ conversions.

prefilter efficiency

- M(ee pair) > 0.05
- Prefilter efficiency ~ 0.98, close to pp

$$\varepsilon_{prefilter} = \frac{N_{e\Xi}(same - sign \ prefilter \ on)}{N_{e\Xi}(prefilter \ off)}$$

E selection

p_T (GeV/c)

3 1.34 1.35 m_≘ (GeV/c²)

4<p_T<5

1.33 1.34 1.35

7<p_⊤<8

 m_{\pm} (GeV/c²)

3 1.34 1.35 m₌ (GeV/c²)

1<p_⊤<2

1<p_<2

1.31

1.31

1.31

m₌ (GeV/c²)

1.32

1.33

7<p_<8

1.32

4<p_<5

1.32

1.33

- Invariant mass distribution of Ξ as a function of *p*T.
- Cuts for Ξ are listed

Part	ticle	Quarks	S	$I(J^P)$	Mass(MeV/c ²)	Decay particles	B.R.(%)	$c\tau$
$\Xi^{-}($	$\overline{\Xi}^+$)	$dss(\overline{dss})$	-2 (+2)	$\frac{1}{2}(\frac{1}{2}^+)$	1321.71	$\Lambda\pi^-(\overline{\Lambda}\pi^+)$	99.9	4.91

Cuts variables	cuts
Number of TPC clusters	>80
Λ Mass tolerance (MeV/c ²)	7.5
Ξ Mass tolerance (MeV/c ²)	8
DCA of V0 to PV (cm)	>0.03
DCA of V0 daughters to PV (cm)	>0.073
V0 cosine of pointing angle to Ξ vertex	>0.983
Ξ cosine of pointing angle to PV	>0.983
DCA of bachelor track to PV (cm)	>0.0204
V0 decay length (cm)	>2.67
Ξ decay length (cm)	>0.38
$ n\sigma_{TPC} $ (proton)	<4
$ n\sigma_{TPC} $ (pion)	<4

 m_{π} (GeV/c²)

RS and WS

2000

1500

1000

500

Entries

- RS (Right-Sign) : e+Ξ-, e-Ξ+
 - Includes signal
- WS (Wrong-sign) : e-Ξ-, e+Ξ+
 - Background estimation
- most of the background sources contribute equally to WS and RS pairs.
 - \rightarrow estimate background with WS
 - \rightarrow signal = RS WS
- Due to the missing momentum of the neutrino, the M(eΞ pair) doesn't have a peak at the Ξ_c⁰ mass. (2470.85+0.28 MeV/c²)
- eΞ pair cuts
 - M(eΞ) < 2.5 GeV/c²
 - Opening angle < 90°

M(eE) (GeV/c²

Subtract WS from RS spectra

• RS and WS, RS-WS in Mass

RS and WS in p_T bin, RS/WS

• RS and WS in p_T bin

RS and WS (p_) in pPb

- Different binning in the analysis note
- Right side : comparison of RS/WS in pPb and pp 13TeV with new binning
 - RS/WS in pPb is smaller than pp 13TeV

Unfolding

- Following pp 5, 13 TeV analysis
- Using RooUnfold Bayesian unfolding , 3 iterations.
- Response matrix from MC
- Check unfolding by comparing measured spectra and refolded spectra
 - 'Refolded' is consistent with 'Measured' within uncertainty
- Systematic uncertainty will be studied very soon
- Unweighted spectra (weighting factor next page)

Weighting factor

weight withfit

- Match shape of MC and unfolded (unweighted) spectra in 2<pT<12
 - Normalize within 2<pT<12, fit with exponential, then get the ratio between two functions \rightarrow weighting factor

10-

Fig. 17: Weight process at $\sqrt{s} = 13$ TeV.

pp 5TeV

- MC

Data

10

A.U.

• Acc*eff is consistent with pp 5TeV, 13TeV

$$(Acc \times \boldsymbol{\varepsilon} \times \boldsymbol{\varepsilon}_{\Xi} tag) = rac{N_{MC,reco}^{\Xi_c^0}}{N_{MC,gen}^0}$$

pp 5 TeV

Acc*Eff

Unfolding (weighted)

- Refolded is consistent with 'measured'
- Weighted unfolded is close to unweighted unfolded one

Result : cross section (xBR)

- N_{evt}(pPb) = 5.15708e+08.
 - Visible cross section (pPb) = 2.09e+06 μb
 - arxiv:1412.6828 page 6
 - pp 13TeV : 57mb pp 5TeV : 50.87mb

 $d\sigma^{\Xi^0_{
m c}}$

 $dp_{\rm T} dv$

 $BR \cdot -$

 $N_{\Xi_c^0}$

 $\overline{2 \cdot \Delta p_T \Delta y \cdot (A \times \boldsymbol{\varepsilon} \times \boldsymbol{\varepsilon}_{\Xi \text{tag}}) \cdot L_{\text{int}}}$

 $L_{\rm int} = rac{N_{\rm evt}}{\sigma_{\rm pp}^{\rm MBAND}}$

calculating R_{pPb}

- <N_{coll}> (pPb 5.02 TeV)= 6.87
 - https://arxiv.org/pdf/1412.6828.pdf
- Visible cross section
 - $\sigma_{pPb}^{MBAND} = 2.09e+06 \ \mu b$
 - arxiv:1412.6828 page 6
 - $\sigma_{pp}^{MBAND} = 50.87 \pm 0.04$ (stat.) mb = 50.87*1000 µb
 - <u>http://cds.cern.ch/record/2648933</u> page 5
- $R_{pPb} = \{BR \times (d\sigma/dp_T)/\sigma_{pPb}^{MBAND}\} / \{BR \times (d\sigma/dp_T)/\sigma_{pPb}^{MBAND}\}$

$R_{pPb}(\Xi_c^0)$ at 5.02 TeV

- Not far from 1 as expected
- Outlook
 - Systematic study

Thank you

Backup Slides

Backup : pp cross section

Fig. 46: Left $\Xi_c^0 p_T$ spectra for different energy. (Right) The comparison of Ξ_c^0 in pp collisions at $\sqrt{s} = 13$ TeV.

Backup : some R_{pPb} results

• Hfe pPb

- <u>http://alice-publications.web.cern.ch/node/5647</u>
- arXiv:1910.14399
- Lambda_c+
 - <u>http://alice-publications.web.cern.ch/node/4141</u>
 - arXiv:1712.09581

TPC nsigma pPb vs pp 13 TeV

RS/WS comparison

at the second se

- RS/WS in pPb, pp5TeV, pp13TeV but on the right side,
- Right side : Different binning, extracted from plots in the analysis note
 - Left side : new binning, comparison with pp 13TeV
- RS/WS in pPb looks smaller than pp

1.0<p <20

4.0 < p < 5.0

7.0<p_<80

Xi mass (1321.71)

• pPb

pp 13TeV

1.34

 m_{Ξ} (GeV/c²)

1.33

20

1.3 1.31 1.32

1.33 1.34

 m_{\pm} (GeV/c²)

RS, WS ptbin

• pPb, pp 5TeV

Fig. 9: The invariant mass distribution of RS and WS $e\Xi$ pairs at $\sqrt{s} = 5.02$ TeV.

Entries 5000

1500

1000

500

600

Entri 700

Entries

20

RS and WS

+ RS

RS and WS in MC

