Status Weekly Ξ_c^0 analysis meeting, Aug. 27, 2020

Current status

- My job assignment status cleaned up:
 - now I can solely focus on this analysis
- Playing w/ Jinjoo's code
 - a. Currently reading/checking macros after analysis task code
 - b. I'll try to produce minBias separated by multiplicity two percentiles asap
- AOD info in DPG webpage
 - * https://twiki.cern.ch/twiki/bin/view/ALICE/AODsets#AOD_production_info
 - a. I cannot find specific AODs produced for high multiplicity triggers
 - b. The version of AODs of interest for data (RUN2 p-p @ 13 TeV) is always the same: AOD208
 - c. It looks I should gather HM triggered events from same AODs Jinjoo used so far
 - d. Did basic crosscheck by using:
 - d-1. Info in DPG webpage
 - d-2. Run info in analysis note
 - d-3. Run info in analysis code (from arrays in Jinjoo's run.C)

Run info crosscheck 2016

		2016		
LHC16t (5 runs)	p-Pb@5TeV	pass1_FAST pass1_CENT_wSDD pass1_CENT_woSDD	AOD/AOD190 AOD191(muon_pass2)	(267161 – 267166)
LHC16s (25 runs)	Pb-p@8.16TeV	pass1_FAST pass1_CENT_wSDD pass1_CENT_wOSDD	AOD/AOD190 AOD191(muon_pass2/3)	(266405 – 267110)
LHC16r (53 runs)	p-Pb@8.16TeV	pass1_EA8T pass1_CENT_wSDD pass1_CENT_woSDD	AOD/AOD191 (muon_pass2)	(265589 – 266318)
LHC16q (34 runs)	p-Pb@5TeV	pass1_FAST pass1_CENT_wSDD pass1_CENT_woSDD	AOD/AOD190 AOD191(muon_pass2)	(265305 – 265525)
LHC16p (42 runs)	pp@13TeV	pass1	AOD, AOD208*	(264076 – 264347)
LHC16o (117 runs)	pp@13TeV	pass1	AOD, AOD208*	(262395 – 264035)
LHC16I (89/87 runs)	pp@13TeV	pass1/pass2	AOD(pass1), AOD208*(pass2)	(258883 – 260014)
LHC16k (213/212 runs)	pp@13TeV	pass1/pass2	AOD(pass1), AOD208*(pass2)	(256504 – 258537)
LHC16j (57 runs)	pp@13TeV	pass1	AOD, AOD208*	(256146 – 256420)
LHC16i (21 runs)	pp@13TeV	pass1	AOD, AOD208*	(254378 – 255469)
LHC16h (91 runs)	pp@13TeV	pass1	AOD, AOD208*	(254378 – 255469)
LHC16g (20 runs)	pp@13TeV	pass1	AOD, AOD208*	(254124 – 254332)
LHC16f (24 runs)	pp@13TeV (full / low-B)	pass1	AOD, AOD208*, AOD212*	(253659 – 253978)
LHC16e (22 runs)	pp@13TeV	pass1	AOD, AOD208*	(252603 – 253591)
LHC16d (26 runs)	pp@13TeV	pass1	AOD, AOD208*	(252235 – 252375)

– Concerns:

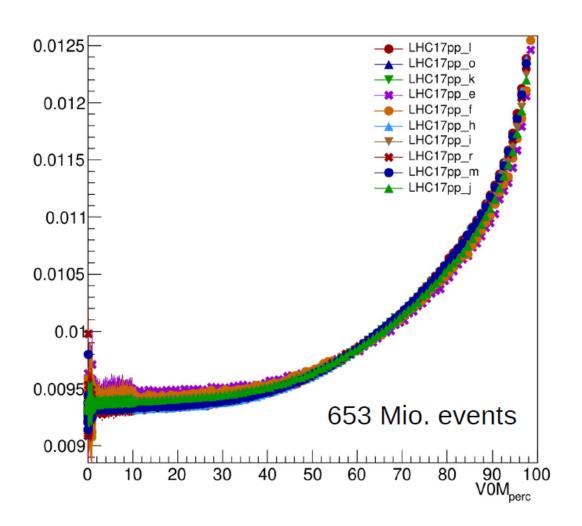
- a. <u>LHC16f, LHC16i</u>: AODs exist but not used in the analysis, result of run QA?
- b. <u>LHC16k</u>: runs 257892, 257028, 257026, 257021 exists in the note, but missing in the code

Run info crosscheck 2018

Period	Collision System	Pass	AOD Version	Run No. Range		
2018						
LHC18r (100 runs)	Pb-Pb@5.02TeV	pass1	AOD, AOD216/225(muon pass3)	(296690 - 297624)		
LHC18q (144 runs)	Pb-Pb@5.02TeV	pass1	AOD, AOD225(muon pass3)	(295581 - 296623)		
LHC18p (84 runs)	pp@13TeV	pass1	AOD, AOD208*	(294009 – 294925)		
LHC18o (48 runs)	pp@13TeV	pass1	AOD, AOD208*	(293368 – 293898)		
LHC18n (2 runs)	pp@13TeV	pass1	AOD, AOD208*	(293357 – 293359)		
LHC18m (277 runs)	pp@13TeV	pass1_withTRDtracking	AOD, AOD208*	(290222 – 292839)		
LHC18I (92 runs)	pp@13TeV	pass1	AOD, AOD208*	(289240 – 289971)		
LHC18k (12 runs)	pp@13TeV	pass1	AOD, AOD208*	(289165 – 289201)		
LHC18j (1 run)	pp@13TeV	pass1	AOD, AOD208*	(288943 – 288943)		
LHC18i (10 runs)	pp@13TeV	pass1	AOD, AOD208*	(288861 – 288909)		
LHC18h (2 runs)	pp@13TeV	pass1	AOD, AOD208*	(288804 – 288806)		
LHC18g (11 runs)	pp@13TeV	pass1	AOD, AOD208*	(288619 – 288750)		
LHC18f (78 runs)	pp@13TeV	pass1	AOD, AOD208*	(287000 – 287977)		
LHC18e (46 runs)	pp@13TeV	pass1	AOD, AOD208*	(286380 – 286937)		
LHC18d (48 runs)	pp@13TeV	pass1	AOD, AOD208*	(285978 – 286350)		
LHC18c (53 runs)	pp@13TeV (low field)	pass1_FAST pass1_CENT	AOD, AOD212*	(285466 – 285958)		
		pass1_CENT_woSDD				
LHC18b (28 runs)	pp@13TeV	pass1	AOD, AOD208*	(285008 – 285447)		

- Concerns: <u>LHC18m</u>
 - a. Entire # of runs in LHC18m is 239 in note, but only 134 runs are being used in code, why?
 - b. LHC18m1 [292839, 291624] (115), LHC18m2 [290467, 290323] (19)

^{*} in code, array contains 242 runs but only partially invoked


Backup 2017

		2017		
LHC17r (30 runs)	pp@13TeV	pass1	AOD, AOD208*	(282528 – 282704)
LHC17q (15 runs)	pp@5.02TeV	pass1_FAST pass1_CENT_wSDD pass1_CENT_woSDD	AOD, AOD208*	(28 2365 – 282441)
LHC17p (42 runs)	pp@5.02TeV	pass1_FAST pass1_CENT_wSDD pass1_CENT_woSDD	AOD, AOD208*	(282008 – 282343)
LHC17o (177 runs)	pp@13TeV	pass1	AOD, AOD208*	(280282 – 281961)
LHC17n (2 runs)	Xe-Xe@5.44TeV	pass1	AOD/AOD227	(280234 – 280235)
LHC17m (109 runs)	pp@13TeV	pass1	AOD, AOD208*	(278914 – 280140)
LHC17I (133 runs)	pp@13TeV	pass1	AOD, AOD208*	(276551 – 278216)
LHC17k (135 runs)	pp@13TeV	pass1	AOD, AOD208*	(274690 – 276508)
LHC17j (13 runs)	pp@13TeV	pass1	AOD, AOD208*	(274593 – 274671)
LHC17i (65 runs)	pp@13TeV	pass1	AOD, AOD208*	(273591 – 274442)
LHC17h (123 runs)	pp@13TeV	pass1	AOD, AOD208*	(271868 – 273103)
LHC17g (37 runs)	pp@13TeV (low B field)	pass1	AOD, AOD212*	(270882 – 271777)
LHC17f (5 runs)	pp@13TeV	pass1	AOD, AOD208*	(270854 – 270865)
LHC17e (6 runs)	pp@13TeV	pass1	AOD, AOD208*	(270822 – 270830)
LHC17c (12 runs)	pp@13TeV	pass1	AOD, AOD208*	(270531 – 270667)

Backup Calling LHC18m in the code

```
if (foption.Contains("LHC18m1")){
    plugin->SetGridDataDir("/alice/data/2018/LHC18m");
    for (int i=0; i<115; i++) plugin->AddRunNumber(LHC18mRuns[i]);
    plugin->SetDataPattern("/pass1_withTRDtracking/AOD208/*/AliAOD.root");
}
if (foption.Contains("LHC18m2")){
        plugin->SetGridDataDir("/alice/data/2018/LHC18m");
        for (int i=223; i<242; i++) plugin->AddRunNumber(LHC18mRuns[i]);
        plugin->SetDataPattern("/pass1_withTRDtracking/AOD208/*/AliAOD.root");
}
```

Backup Quote from V0M percentile studies (by B. Volkel, D2H, June 26)

Backup Message from Cristina

Dear MinJung,

we have just started to have a look at the HMV0 triggers data for the Lc and D0 analyses vs multiplicity.

In the multiplicity range 0-0.1%, that should be the one suggested for the V0 High multiplicity events, we have 500 M of events.

If we use the SPD HM triggered data, the number of events is 100 M, so we suggest to use the HMVO data, in case.

As Fabrizio said, you could start to have a look to the MB samples, and perform the analysis vs multiplicity using that sample:

for the Lc and D0 analysis, we are currently investigating 0.1-30% and 30-100% with MB triggered data, using the V0M percentiles.

In the multiplicity class 30-100% we have ~700M of events, while I don't have the information relative to the range 0.1-30%.

cheers, Cristina