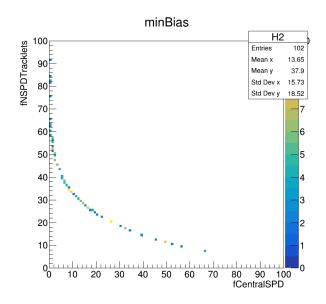
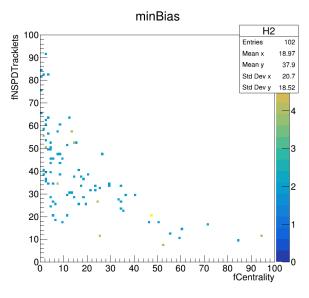

Status Weekly Ξ_c^0 analysis meeting, Sep. 3

Current status


- Updated main task code (AliAnalysisTaskSEXicOSemiLeptonic.*):
 - a. Pushed to Git repository, but additional updates/debugging required
 - b. Updated items: trigger related features, SPD tracklets, zVtx (not pushed yet)
- Minor concern about ROOT versions being used among analyzers:
 - a. A couple of ROOT versions being used simultaneously:
 ROOT5 for Grid/LegoTrain, ROOT6 (required for unfolding) for macro level analysis
 - b. I'll check ROOT5/6 consistency in Grid by picking a few data files up randomly
- No event-wise info in conventional tree
 - a. Current codes apply all event-wise cuts in Grid/LegoTrain level
 - b. Main tree for analysis (eXiTree) does NOT contains event related info:
 - b-1. It contains e-Xi pairs which passed cuts not a problem at all for MB only analysis
 - b-2. Problematic if one want to distinguish each event at tree/macro level
 - b-3. Considering SPDtracklets based correction (raised by Prof. Lim), double counting must be avoided (ex. 3 e-Xi pairs in an event)


Code Update Sanity check for SPD related variables

- * Results from single AOD file of run 294200
- a. fCentrality: multiplicity percentile calculated by VOM
- b. fCentralSPD: mult. percentile calculated by SPD(* I assume this should be used for HMSPD triggered events)
- c. fNSPDTracklets: # of SPD tracklets

Eventwise info problem A makeshift measure

Necessity of event-wise distinction

- I plan to separate each event by fired trigger and its multiplicity percentile:
 but, at the same time, <u>I don't want to modify existing codes</u> as much as I can
- I thought "running multiple LegoTrain jobs using only one trigger" as a solution, but
 - a. How about multiplicity percentile? Provide them as hard corded value and re-run?
 - To do the SPD tracklet based correction,
 such event by event info (sync w/ e-XI pair) required after all
- As a makeshift solution,
 - a. Fill EventTree only when e-Xi pair is filled up
 - b. Add a variable (fNeXipair) under EventTree which counts e-Xi pairs filled for the event:
 - b-1. If only one e-Xi pair filled for the event, the fNeXiPair will be always 0
 - b-2. If fNeXiPair is NOT 0, it means multiple pairs saved for the event
 - ex. If 3 pairs saved, same fCentrality, SPDTracklets, etc will be repeated w/ increasing fNeXiPair from 0 to 2

Plan for final level analysis

- All modification should be compatible w/ existing codes
 - The updates I applied so far should NOT interfere w/ existing codes:
 - a. The existing macros should be compatible to the newly generated output ROOT files
 - b. Now I re-writing Jinjoo's MakeROOTResultsXicO.C
 - b-1. It's de facto copy & paste of existing code but I'll add trigger / percentile feature
 - b-2. Plan to produce output w/ applied options, for instance,

Generating ROOT file in following setup:

Input type: Data

Trigger: HMSPD (bit 8)

Multiplicity percentile: [0.1, 30.0]

Weight fit parameters: [1.0000, 1.0000]

-> output: out_Data_HMSPD_0.1to30.0.root

- b-3. No change in analysis histograms' name, etc
- b-4. Existing final level analysis macros should be compatible repeat analysis w/ multiple output, then collect results by script

Backup Conventional tree (e-Xi) fillup

In AliAnalysis...SemiLeptonic.cxx ,

```
void AliAnalysisTaskSEXicOSemileptonic::UserExec(Option t*)
   AliVEvent *event = InputEvent();
   //Event Selection Ends
   auto nCascs = fEvt->GetNumberOfCascades();
   for (int icasc=0; icasc<nCascs; icasc++)</pre>
         AliAODcascade *casc = ((AliAODEvent*)fEvt)->GetCascade(icasc);
         ... //casc cuts
         for (Int titrk=0; itrk<nTracks; itrk++)
               AliAODTrack *trk = (AliAODTrack*) fEvt->GetTrack(itrk);
               ... //track cuts
               FillPairEleXi(casc, trk); //This Fill function has own cuts
```

Backup Multiple e-Xi pairs in an event example

	_											_	
F					sc	reen			Q =			×	
root	[1]												
root													
root		Tree->Scan("fRunNur	mhar:fCantra	litu.	fCantral S	n · fNSDNTrac	blate fNaYiPair'	٠,٠					

	* Row * fRunNumbe * fCentrali * fCentralS * fNSPDTrac * fNeXiPair *												
****		******											
*		294852 * 0.384999 294852 * 0.524999			64 77								
*		294852 * 0.051500											
*				71 *									
*		294852 * 0.051500			59								
*	5 * 6 *	294852 * 0.051500 294852 * 8.850000			59 52								
*		294852 * 8.850000			52								
*		294852 * 0.033500											
*	9 *	294852 * 0.033500			99								
*	10 * 11 *	294852 * 2.349999 294852 * 0.935000			69 79								
*	12 *	294852 * 0.535000			67								
*	13 *	294852 * 0.050500											
*	14 *		75 * 0.03718		86								
*	15 * 16 *	294852 * 6.449999 294852 * 0.865000			49 65								
*	17 *	294852 * 0.022500			71								
*			75 * 0.75656		60								
*	19 * 20 *	294852 * 6.3 294852 * 2.150000	75 * 0.75656		60 67								
*	20 *	294852 * 2.150000 294852 * 2.150000			71								
*		294852 * 4.550000			82								
*	23 *	294852 * 0.395000			101								
* Type	24 *	294852 * 5.550000 ontinue or q to qu:		14 *	54	* 0							
*	25 *	294852 * 3.549999		65 *	73	* 0							
*		294852 * 7.150000											
*	27 *	294852 * 7.150000			65								
*	28 * 29 *	294852 * 2.849999 294852 * 0.254999			65 59								
*	30 *	294852 * 0.174999			61							1	
*		294852 * 2.45000			67							- 1	
*	32 *	294852 * 0.654999			67								
*	33 * 34 *	294852 * 0.093500 294852 * 0.605000			59 81								
*	35 *	294852 * 0.795000			73								
*	36 *	294852 * 0.185000			66								
*	37 * 38 *	294852 * 0.185000			66 61								
*	38 * 39 *	294852 * 0.545000 294852 * 6.449999			64								
*	40 *	294852 * 6.449999			64								
*	41 *	294852 * 0.81499			71								
*	42 * 43 *	294852 * 0.354999			85 59								
*	43 × 44 ×	294852 * 0.155000 294852 * 0.104999			59 76								
*	45 *	294852 * 0.104999			76								
*	46 *	294852 * 2.049999			68								
*	47 * 48 *	294852 * 2.049999 294852 * 2.349999			68 67								
*	40 × 49 ×	294852 * 2.349999 294852 * 0.735000			67								
Type		ontinue or q to qu											