

Ξ^{0}_{c} production via semi-leptonic decay in pp collisions at $\sqrt{s} = 13$ TeV

Jinjoo Seo*, Jeongsu Bok Inha University*

2020.06.26 D2H meeting

- Contents

Last presentation

1. Correction of oversubtraction caused by bottom baryon

- Fit Λ_b 7TeV measurement using Tsallis function.
- Λ_b 7TeV measurement is scaled to 13TeV by FONLL.
- Multiply branching ratio factor
- Multiply Ξ_b efficiency
- Convert Ξ_b pT to eXi pT using response matrix

2. Systematic uncertainty of oversubtraction

- Varying the parameters of the Tsallis function
- Varying branching ratio fraction

3. Question mark

Definition of branching ratio fraction

Contents

<u>https://indico.cern.ch/event/913249/contributions/3840564/attachments/2033027/3403278/200506_jj_ForumApproval.pdf</u>

ш

4000

Right sign

^-

Wrong sign

- Correction of oversubtraction caused⁶by bottom baryon

- Bottom baryon contribution in WS spectra
 - The₁ faw yield is obtained by subtraction WS spectra from RS spectra.
 - In the WS spectra, there are contributions from bottom baryons, such as $\Xi_b \rightarrow e \Xi v$ \Rightarrow The subtracted spectra underestimate the yields of charmed baryons.

ш 1000

Current Status

400

- Fit Λ_b 7TeV measurement using Tsallis function
 - The Ξ_b baryons are not measured at LHC energies. \rightarrow Assumption : $\Xi_b p_T$ shape is same as Λ_b
 - Λ_b was measured by CMS and LHCb at 7TeV.
 - CMS measurement is used to fit the spectrum down to 0GeV pT. (*Phys. Lett.*, B714:136–157, 2012)
 - LHCb measurement is not used due to the difference in the rapidity coverage from ALICE.

- Λ_b 7TeV measurement is scaled to 13TeV by FONLL
 - Since Λ_b was measured at 7TeV, energy scaling is needed using FONLL.
 - There is no Λ_b 13TeV spectrum in FONLL but there is B meson spectrum.
 - Assumption : B ratio (13TeV/7TeV) is same as Λ_b ratio (13TeV/7TeV)
 - → Baryon and meson energy dependence of fragmentation function are same.
 - 7TeV Λ_b cross section is scaled to 13TeV Λ_b by scale factor obtained B meson ratio.

D2H meeting, 2020.06.26

- Multiply branching ratio fraction
 - CMS measurement contains branching ratio Λ_b to $J/\psi\Lambda$.

$$\frac{\mathrm{d}\sigma(\mathrm{pp} \to \Lambda_{\mathrm{b}} X)}{\mathrm{d}p_{\mathrm{T}}^{\Lambda_{\mathrm{b}}}} \times \mathcal{B}(\Lambda_{\mathrm{b}} \to \mathrm{J}/\psi \Lambda) = \frac{n_{\mathrm{sig}}}{2 \cdot \epsilon \cdot \mathcal{B} \cdot \mathcal{L} \cdot \Delta p_{\mathrm{T}}^{\Lambda_{\mathrm{b}}}},$$

- Branching ratio fraction is multiplied to 13TeV Λ_b cross section to get a Ξ_b cross section.
 - Branching ratio is obtained at PDG

$$\frac{BR(b \to \Xi_b)BR(\Xi_b \to e\Xi\nu)}{BR(b \to \Lambda_b)BR(\Lambda_b \to J/\Psi\Lambda)} = \frac{3.9 \times 10}{5.8 \times 10}$$

$$\begin{array}{lll} \Gamma_{1} & \Xi^{-}\ell^{-}\overline{\nu}_{\ell}X \times \mathsf{B}(\overline{b} \to \overline{\Xi}_{b}) & (3.9 \pm 1.2 \) \times 10^{-4} \\ \Gamma_{1} & J/\psi(1S)\Lambda \times \mathsf{B}(b \to \Lambda_{b}^{0}) & (5.8 \pm 0.8 \) \times 10^{-4} \end{array}$$

D2H meeting, 2020.06.26

- Multiply Ξ_b efficiency
 - To get a Ξ_b yield in pp collisions at 13TeV, efficiency and some factors are multiplied.

$$N_{\Xi_b}^{raw} = Br \frac{d\sigma^{\Xi_b}}{dp_{\mathrm{T}} dy} 2\Delta p_{\mathrm{T}} \Delta y \cdot \epsilon \cdot L_{int}$$

- L_{int} is calculated same as 13TeV Ξ_c analysis.
- Cuts are applied which same as Ξ_c analysis (track cut, Xi topology cut, pair cut ...)

D2H meeting, 2020.06.26

$$\epsilon = \frac{\Xi_b(Reco, WS)}{\Xi_b(Gen)_{|y|<0.5}}$$

7

- Convert $\Xi_b p_T$ to $e \Xi p_T$ using response matrix
 - Ξ_{b} spectrum is folded to e Ξ spectrum using \bullet response matrix
 - Bin by Bin folding is done.
 - Ξ_b contribution in WS is 2% at low p_T region, and 10% at high $p_{\rm T}$ region.
 - At high p_{T} , b production increases.

Current Status

8

Current Status

- Correction of oversubtraction caused by bottom baryon

10-

Entrie,

10 |

- Convert $\Xi_b p_T$ to $e \Xi p_T$ using response matrix
- **Convert** $\Xi_b p_T$ to $e \equiv p_T$ using response matrix Ξ_b spectrum is folded to $e \equiv$ spectrum using • $(d^{2}\sigma)/(dp_{T}dy)$ response matrix
 - Bin by Bin folding is done.
 - Ξ_b contribution in WS is 2% at low p_T region, and 10% at high $p_{\rm T}$ region.
 - At high p_{T} , b production increases.
 - $e\Xi$ pair from bottom baryon is added to $e\Xi$ pair from RS-WS.
 - Bottom baryon contribution increases the cross section 1~7%.

$C \cdot p_T \left[1 + \frac{\sqrt{p_T^2 + m^2} - m}{nT} \right]$ - Systematic uncertainty of oversubtraction CMS: $n = 7.6 \pm 0.4$, T = 1.10 GeV (

- Varying the parameters of the Tsallis function ullet
 - The uncertainties on the bottom baryon correction are estimated by varying the parameters of the Tsallis function.
 - 1. Varying n : varied by 1σ (7.6 \rightarrow 8.0)
 - 2. Scale up: CMS estimated the uncertainties on the cross section in the $p_{\rm T}$ range above 10 GeV/c to be ~50%
 - The normalization of the Λ_b spectrum is scaled up by the uncertainty.

D2H meeting, 2020.06.26

- Systematic uncertainty of oversubtraction

- Varying branching ratio fraction •
 - The $\Xi_b \rightarrow e \Xi X$ spectrum is generated based on $\Lambda_b \rightarrow J/\psi \Lambda$ spectrum.
 - The uncertainties on the $B(b \rightarrow \Xi_b)B(\Xi_b \rightarrow e \Xi X)$ (30%) and $B(b \rightarrow \Lambda_b)B(\Lambda_b \rightarrow J/\psi \Lambda)$ (14%) are added in quadrature
 - ➡ Total uncertainties of branching ratio fraction is 33%.
 - Systematic uncertainty is assigned as 1% at 6 to 12 p_{T} . •

Current Status

$$BR(b \to \Xi_b)BR(\Xi_b \to e\Xi\nu)$$

$$BR(b\to\Lambda_b)BR(\Lambda_b\to J/\Psi\Lambda)$$

11

- Question mark

- Definition of branching ratio fraction
 - In <u>7TeV</u> analysis, CMS Λ_b cross section is used to correct the bottom baryon contribution.
 - Same Λ_b spectrum which used in 13TeV analysis.
 - In 7TeV analysis, branching ratio fraction is defined as

 $BR(b \rightarrow \Xi_b)BR$

 $BR(b \rightarrow \Lambda_b)BR$

• In 13TeV analysis, branching ratio fraction is defined as

 $BR(b \to \Xi_b)BR(\Xi_b \to e\Xi\nu)$

 $\overline{BR(b \to \Lambda_b)BR(b)}$

Since CMS Λ_b cross section is defined as

$$\frac{\mathrm{d}\sigma(\mathrm{pp} \to \Lambda_{\mathrm{b}} X)}{\mathrm{d}p_{\mathrm{T}}^{\Lambda_{\mathrm{b}}}} \times \mathcal{B}(\Lambda_{\mathrm{b}} \to \mathrm{J}/\psi \Lambda) = \frac{n_{\mathrm{sig}}}{2 \cdot \epsilon \cdot \mathcal{B} \cdot \mathcal{L} \cdot \Delta p_{\mathrm{T}}^{\Lambda_{\mathrm{b}}}},$$

$$\frac{R(\Xi_b \to e\Xi\nu)}{R(\Lambda_b \to e\Lambda\nu)}$$

$$\frac{A(\Xi_b \to e \Xi \nu)}{A(\Lambda_b \to J/\Psi \Lambda)}$$

D2H meeting, 2020.06.26

- Summary and Plan

- Correction of oversubtraction caused by bottom baryon
 - CMS Λ_b measurement is used to fit the spectrum down to 0GeV pT at 7TeV.
 - B meson ratio(scale factor) generated by FONLL is used to scale the Λ_b cross section.
 - Branching ratio fraction is multiplied to 13TeV Λ_b cross section to get a Ξ_b cross section.
 - Ξ_b contribution in WS is 2% at low p_T region, and 10% at high p_T region.
 - Bottom baryon contribution increases the cross section about 1~7%
- Systematic uncertainty of oversubtraction
 - Systematic uncertainty is assigned by scale up as 1% at 2 to 6 $p_{\rm T}$ and 2% 6 to 12 $p_{\rm T}$.
 - Systematic uncertainty is assigned by branching ratio fraction as 1% at 6 to 12 p_{T} .
 - Systematic uncertainty generated n(fitting parameter) and scale factor is not assigned.
- Plan
 - All systematic uncertainty are recalculated with bottom baryon correction.
 - Check the charge asymmetric background??
 - Any suggestions??

Summary and Plan

D2H meeting, 2020.06.26

Back up

- Cut list

Event cut variables

Physics selection

Primary vertex

Pile up

Track cut variables	Cuts	Xi cut variables	Cuts
Track Filter bit	kTrkGlobalNoDCA	Number of CrossedRows	>70
Number of CrossedRows	>70	CrossedRows over findable clusters	>0.77
CrossedRows over findable clusters	>0.8	Λ Mass tolerance (MeV/c2)	7.5
Number of TPC PID clusters	>50	Ξ Mass tolerance (MeV/c2)	8
Ratio to findable cluster	>0.6	DCAof V0 to PV(cm)	>0.03
ITS/TPC refit	TRUE	DCA f VO daughters PV (cm)	>0.073
Number of ITS cluster	>=3	V0 cosine pointing angle to Ξ vertex	>0.983
pt	>0.5	DCA of bachelor track to PV (cm)	>0.0204
lηl	<0.8	VO decay length (cm)	>2.67
SPD hit	Both	Ξ decay length (cm)	>0.38
TOF nσ	<3	TPC nσ (proton)	<4
TPC no	f(P _T) ~ 3	TPC nσ (pion)	<4
	2		

 $f(P_T) = -3.9 + 1.17 P_T - 0.094 P_T^2$

D2H meeting, 2020.06.26

Cut list

Cuts

AliVEvent::kINT7

Within 10cm

Rejection

- eXi pair distribution from Xib

- Track cut and Xi topology cut are applied.
- Invariant mass distribution does not have a peak due to missing neutrino.
 - Opening angle cut is applied.
 - Above 2.5GeV is rejected since 2.5GeV is pair mass cut for Xic analysis.
- **Opening angle distribution is obtained after invariant mass cut** ullet

• Below 0 is rejected since 0 is pair opening angle cut for Xic analysis.

D2H meeting, 2020.06.26

