Status Report

Jinjoo Seo* Inha University*

2021.02.18

- Compare 'old final results' and new results

- Check Efficiency effect -> OK

Efficiency comparison

- Rapidity cut (lyl<1.2) is applied to electrons comes from true Xic0 generated by Pythia8.
- The difference is $\sim 5\%$ to $\sim 10\%$.
- The result of Xic is good agreement compare with the result of Lc, other analysis.

$$Acc * \epsilon * \epsilon_{\Xi tag} = \frac{N_{\Xi_c^0}(MC, Reco)}{N_{\Xi_c^0}(MC, Gen)}|y| < 0.5, \ e|y| <$$

- Check Unfolding effect -> OK

• Unfolding

- New : Data(AOD234) + MC(Pythia8, AOD235)
- old + old MC : Data(AOD208) + MC(Pythia6, AOD208)
- old + new MC : Data(AOD208) + MC(Pythia8, AOD225) <u>×10⁻</u> 0.6

- Check raw yield effect -> still debugging

- Raw yield
 - Lc analysis is consistent with old and new.
 - Xic analysis show enhancement of raw yield.
 - ➡Check if MB trigger is applied correctly
 - OK, but need to some minor modification

//V0-Related topological selections taskWDV -> SetV0VertexerDCAFirstToPV(0.03); taskWDV -> SetV0VertexerDCASecondtoPV(0.03); taskWDV -> SetV0VertexerDCAV0Daughters(2.00); taskWDV -> SetV0VertexerCosinePA(0.95); taskWDV -> SetV0VertexerMinRadius(0.2); taskWDV -> SetV0VertexerMaxRadius(200); //Cascade-Related topological selections taskWDV -> SetCascVertexerMinV0ImpactParameter(0.05); taskWDV -> SetCascVertexerV0MassWindow(0.008); taskWDV -> SetCascVertexerDCABachToPV(0.05); taskWDV -> SetCascVertexerDCACascadeDaughters(2.0); taskWDV -> SetCascVertexerCascadeMinRadius(.5); taskWDV -> SetCascVertexerCascadeCosinePA(.95); taskWDV -> SetCascVertexerCascadeCosinePA(.95); taskWDV -> SetCascVertexerCascadeCosinePA(.95);

- Check raw yield effect -> still debugging

- Compare cross sections

- Cross section
 - The new cross section of hadronic channel and semileptonic channel are consistent.
 - It is shown of increase at low and high pT region both of them.
 - For semileptonic channel, [1,2] pT bin is shown with new data, but sizable error.
 - Will be discussed at D2H.

Status

7

- Investigate the first bin [1,2]

- Investigate the first bin [1,2]
 - The count of raw yield is 405 and the count of unfolded yield is 250 in the first bin.
 - The relativity uncertainty of new semileptonic cross section is 50% and the merged one is 21%.
 - In new data, the statistics increase due to WDF, but S/B is consistent in the first bin.
 - Large uncertainty is coming from the background subtraction

Back up

11

- Compare 'old final results' and new results

