Introduction of Fast Electronics

RYU, Min Sang University of Seoul

- Role of DAQ in HEP experiment
- Readout scheme for DAQ
- ♦ Fast electronics
 - Signal and Device impedance
 - Preamplifier
 - Fan-In and Fan-Out
 - Discriminator (LED & CFD)
 - Logic Unit for coincidence
 - TDC & ADC
- Summary

2021. Feb. 15

인하대학교

Role of DAQ System in HEP experiment

How do we watch an event in HEP experiments?

We design, fabricate, test, and use the readout system (or fast electronics) for data acquisition (DAQ).

Readout scheme for data acquisition (DAQ)

Components of waveform

Base line Pulse height Pulse width

Proximal line: 10% of pulse heightMesial line: 50% of pulse heightDistal line: 90% of pulse height

Rise time (or attack time) at leading edge
Fall time (or decay time) at trailing edge
→ These depend on the polarity of waveform.

Overshoot Undershoot Ringing

Time period

https://link.springer.com/chapter/10.1007/978-3-319-25448-7_7

Charge of raw signal

Electric charge of analog signal with assumption:

$$Q(C) = \frac{V(V) \cdot t(s)}{2 \cdot R(\Omega)} = \frac{-0.1 V \cdot 20 ns}{2 \cdot 50\Omega} = -20 pC$$

Device impedances

A basic concept in the processing of pulses from radiation detectors is the impedance of the devices that comprise the signal-processing chain.

Voltage (V_L) appearing across a loading (Z_L) by voltage-divider relation

$$V_L = V_S \frac{Z_L}{Z_0 + Z_L}$$

For the open-circuit or unloaded $(Z_L = \infty)$, voltage is $V_L = V_S$. \rightarrow not for the real experiment

To preserve maximum signal level, one normally wants V_L to be as large a fraction of V_S as possible. For $Z_L \gg Z_0$ then $V_L \cong V_S \rightarrow$ Fan-In & Fan-Out, Discriminator, ADC, etc

For $Z_L = Z_0$ then $V_L = V_S/2$ \rightarrow Divider or Splitter

Preamplifier

Role	converting a raw signal from the detector into output signal with gain
Location	placing close to the detector to reduce the noise and avoid the signal loss

\checkmark Specification for design

- Dynamic range
- Size of input signal
- Pulse pileup
- Signal-to-noise ratio
- Power consumption

\checkmark Configuration

- Voltage-sensitive preamplifiers
- Current-sensitive preamplifiers
- Charge-sensitive preamplifiers

Voltage-sensitive preamplifiers

Design principle of V-sensitive preamp

Simplified realistic V-sensitive preamp

Signal voltage V_S Voltage at the input stage of the amplifier V_a Output voltage V_{out}

 $V_a = V_S \frac{R_a}{R_s + R_a}$

Any current drawn would decrease the potential drop across $R_{s.}$ Ideally, its input resistance have to be infinite. But it can only be achieved up to a good approximation.

For $R_a \gg R_S$ then $V_a \cong V_S$ then $V_{out} = Gain \times V_a \approx Gain \times V_S$

Signal voltage $V_S = Q/C_d$

Q: collected charge on the readout electrode ($Q = \int_0^{t_0} i_s(t) dt$) C_d: combined detector and stray capacitance

then
$$V_{out} \approx Gain \times \frac{Q}{C_d} = \frac{Gain}{C_d} \int_0^{t_0} i_s(t) dt$$

Since we are integrating the current to convert it into voltage, C_d should discharge slower than the charge collection time $t_d << R_aC_d$.

Charge-sensitive preamplifiers

C_f (feedback capacitance)

Basic principle of Q-sensitive preamp

The dependence of a voltage-sensitive preamplifier on the input capacitance is a serious problem for many detection systems. → to develop Q-sensitive preamplifiers

The charge (Q_d) accumulated on the electrode (C_d) is integrated on another capacitor (C_f) . Then the potential (V_f) on that capacitor is then directly proportional to the original charge (Q_d) on the detector.

$$V_{out} \propto \frac{Q_f}{C_f} \propto \frac{Q_d}{C_f}$$

The condition that $Q_f \approx Q_d$ can only be achieved if no current flows into the preamplifier's input with $R_a \rightarrow \infty$.

Simple Q-sensitive preamp

Preamplifiers

CAEN N412 8ch Fast Amplifier

INPUTS:

- 50Ω impedance.

- Reflection coefficient: ≤ 6% over input dynamic range.

- Quiescent voltage: < ± 5 mV.

OUTPUTS:

Risetime: ≤ 3.0 ns.

- Falltime: ≤ 2.0 ns.

- Maximum positive amplitude (linear): 400 mV (50Ω impedance).

Maximum negative amplitude (linear): -4 V (50Ω impedance).

- Overshoot: ± 10% for input risetimes of 2 ns and with the 2nd output terminated in 50Ω.

- Quiescent voltage adjustable (via front panel trimmer for each channel) in the range from -20 mV to +50 mV.

GENERAL:

Gain: fixed 10 ± 3%, non-inverting

- Coupling: direct.

I/O delay: ≤ 12 ns.

- Noise: less than 1 mV, referred to input.

 Interchannel crosstalk: better than -56 dB in the worst test condition, and with both the outputs of the tested channel terminated in 50Ω.

Bandwidth:

160 MHz (with both the channel's outputs terminated in 50Ω);
 180 MHz (single ended output).

Fan-In and Fan-Out (FIFO)

Fan-in: maximum number of input signals feeding into the input of a logic system

Fan-out: maximum number of output signals from the output of a logic system

Fan-In and Fan-Out (FIFO)

Ser. n.

0

Ø

DISCRIMINATOR OUTPUT CONNECTOR

CAEN N625 Quad Linear Fan In / Fan Out

Discriminator (DISC)

Role: generating the logical output pulse when the input pulse exceeds the discriminator preset level

→ If input voltages exceeds the threshold value +V then diode D_1 conducts and DISC generates the logical output pulses.

Timing jitter and walk

The contribution of noise to the (Timing) Jitter

Timing Jitter = $e_{noise}/(dV/dt)$

e_{noise}: voltage amplitude of the noise superimposed on the analog pulse

dV/dt: slope of the signal when its leading edge crosses the discriminator threshold

"(Timing) Walk" is the systematic dependence of the time marker on the amplitude of the input pulse.

LED and CFD

 $http://www.peo-radiation-technology.com/wp-content/uploads/2015/09/ort_15_fast-timing-discriminators_datasheet_peo.pdf$

Time resolution: $\sigma_{CFD} < \sigma_{LED}$

Role of Logic Unit

Role: generating the gating pulse when the preset of logical algorism against with inputs is true

INF	TUY	OUTPUT
А	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

OR logic: A + B or $A \vee B$

INF	TUT	OUTPUT
А	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

Logic Unit

UAD COINCIDENCE LOGIC UNIT Mod. N455 AND WDT VP OU AND VP OUT AND OUT WDT VP OU AND OR

https://www.caen.it

CAEN N455 Quad Coincidence Logic Unit

Coincidence with 3 inputs

When events occur, the input signals from many detectors can be matched with Logic Unit.

Coincidence with timing walk

Time measurements with TDC

Operation mode of TDC: COMMON STOP/START?

Time-to-Digital Converter (TDC)

How to record time in TDC?

Block diagram of TAC section in CAEN V775N 16ch MultiEvent TDCs

A Start signal closes the **switch SW1** thus allowing a constant current to flow through an integrator; a Stop signal opens the **switch SW1** again.

The constant current generates a linear ramp voltage which is stopped at an amplitude proportional to the time interval between Start and Stop pulses. \rightarrow accumulation on C1

After digitization the **SW2 switch** is closed by the CLEAR signal which allows the discharge of the **capacitor C1**.

Both the COMMON and CLEAR signals are controlled by the CONTROL LOGIC section.

TDC and signal conversion timing

CAEN V775N 16ch MultiEvent TDCs

TDC calibration

 $T_full = 100$ ns with 10 bit (1024) data set

100	ns
1024	bin
0.09765625	ns/bin

delay (ns)	unit time (ns/bin)	TDC (bin)
1(0.09765625	102.4
20	0.09765625	204.8
30	0.09765625	307.2
40	0.09765625	409.6
50	0.09765625	512
60	0.09765625	614.4
70	0.09765625	716.8
80	0.09765625	819.2
90	0.09765625	921.6
100	0.09765625	1024

TDC (bin) vs Delay time (ns)

Charge measurements with ADC

Scintillation counter/detector: Scintillator + **P**hoto**M**ultiplier **T**ube (PMT)

https://www.caen.it

How to record charge in ADC?

Block diagram of PEAK section in CAEN V1785 8ch Dual Range Peak ADC

COMMON STOP mode

The **GATE signal** closes the **switch SW1** thus allowing the **capacitor C1** to be charged as the **diode D1** is forward-biased by the signal.

As the SW1 is open again, the signal is digitized by the 12-bit ADCs.

After digitization the SW2 switch is closed by the CLEAR signal which allows the discharge of the capacitor C1.

Both the GATE and CLEAR signals are controlled by the CONTROL LOGIC section.

ADC and signal conversion timing

CAEN V1785 8ch Dual Range Peak ADC

Dual input range: $0 \div 4 \text{ V} / 0 \div 500 \text{ mV}$ Gain: 1 mV/count and 125 uV/count for High and Low ranges

ADC calibration

 $Q_full = 1 pC$ with 10 bit (1024) data set

1	рС
1024	bin
0.00097656	pC/bin

Q_in (pC)	unit time (pC/bin)	ADC (bin)
0.1	0.000976563	102.4
0.2	0.000976563	204.8
0.3	0.000976563	307.2
0.4	0.000976563	409.6
0.5	0.000976563	512
0.6	0.000976563	614.4
0.7	0.000976563	716.8
0.8	0.000976563	819.2
0.9	0.000976563	921.6
1	0.000976563	1024

ADC (bin) vs input charge (pC)

Time domain of signals for ADC calibration

 Δt_1 and Δt_2 depends on charge and shape of signal (ex, 10 ns or more).

Summary: Event in HEP experiment

"Fast Electronics" are a main component of particle detection system to see what happens in the HEP experiments.

First Pb collision of ALICE experiment at \sqrt{s} = 5.02 TeV in 2018 https://cds.cern.ch/record/2646381

Thank you

RD51 Scalable Readout System (SRS)

https://indico.cern.ch/event/77597/contributions/2088463/attachments/1056845/1506857/RD51-SRS-Description.pdf

physical overview SRS of RD51

Radio Guide (RG) Cables

RG174/U

0	
Si.	
is	
Ч	
S	
പ	
Ę	
Ξ	
č	
60	
S	

HV transmission

· · · · · · · · · · · · · · · · · · ·	MHz	db/100 ft	db/100n	
00.110 in.	50	5.8	19.0	
Nominal	100	8.4	27.6	
	200	12.5	41.0	
50 Ohm Impedance	400	19.0	62.3	
	1000	34.0	111.5	
RG316/U	NO	MINAL ATTEN	UATION	
¥	MHz	db/100 ft	db/100n	
(20.098 in.	50	5.6	18.4	
Nominal	100	8.3	27.2	
	200	12.0	39.4	
50 Ohm Impedance	400	17.5	57.4	
	1000	29.0	95.1	
RG58C/U	NO	MINAL ATTEN	UATION	
and an and a second sec	- MHz	db/100 ft	db/100n	
80.195	in. 50	3.3	10.8	
Nomin Nomin	ul 100	4.9	16.1	
	_ 200	7.3	23.9	
50 Ohm Impedance	400	11.0	36.1	
	1000	2010		
RG59A/U	NO	NOMINAL ATTENUATION		
and the second second	MHz	db/100 ft	db/100m	
00.240	50	2.8	9.2	
Nomina	100	4.0	13.1	
and the second s	200	5.9	19.4	
	400	8.5	27.9	
75 Ohm Impedance	1000	15.8	45,3	
RG59B/U	NO	NOMINAL ATTENUATION		
and the second se	MHz	db/100 ft	db/100m	
00.242 is	n. 50	2.4	7.9	
Nomina	100	3.4	11.1	
and the second se	200	4.9	16.1	
75 Ohm Impadance	400	7.0	23.0	
75 Onin Impedance	1000	12.0	39.3	
RG6/U	NOM	AINAL ATTEN	JATION	
	MHz	db/100 ft	db/100m	
20.270	n 50	1.5	4.9	
Nomin	100	2.1	6.9	
and the second se	200	3.1	10.2	
	1.000			
75 Ohm Impedance	400	4.5	14,8	

http://www.l-com.com/content/Article.aspx?Type=N&ID=10336	How	tast	signal	s move

NOMINAL ATTENUATION

					-	
	c (m/s)	Velocity Fraction (%)	v (m/s)	v (m/ns)	v (cm/ns)	Connector type
Vacuum	3.00E+08	1	3.00E+08	0.300	30.0	
RG174	3.00E+08	0.66	1.98E+08	0.198	19.8	LEMO
RG316	3.00E+08	0.79	2.37E+08	0.237	23.7	LEMO
RG58	3.00E+08	0.66	1.98E+08	0.198	19.8	BNC

in cables? $v_{signal} = \sim 5 \text{ ns/m}$

Power loss
$$\alpha_P(dB/km) = \frac{10}{L} log_{10}^{(P_1/P_2)}$$

 α_{P} = power attenuation, or loss between source and destination, unit (dB/km) P₁ = power at the beginning (Source), unit (W) P₂ = power at the end (Destination), unit (W)

L = distance between P₁ and P₂, unit (km)

If P₁ = 1 W, P₂ = 0.5 W, and L = 0.1 km,
$$\alpha_P = \frac{10}{0.1} log_{10}^{(1/0.5)} = 3.01 \text{ dB/100m}$$

Power at the distance (L) : $P_2 = P_1 \cdot \exp(-\alpha_P L)$

RG58/U: 20 AWG (Φ0.812 mm) bare copper (28.5 pF/ft) RG58A/U: 20 AWG standard thin copper (30.8 pF/ft) RG58C/U: same as RG58A/U but not same outer jacket material

RG59A/U: 22 AWG (Φ0.644 mm) bare compacted copper RG59B/U: 22 AWG solid bare copper covered steel

U: Universal AWG: American Wire Gauge

28

Connectors for signal and high voltage

Signal connection

LEMO (company founder, engineer **Lé**on **Mo**uttet) name of an electronic and fibre optic connector manufacturer push-pull connectors NIM, CAMAC, VME, detector, and etc

BNC (Bayonet Neill-concelman) connector: miniature quick connect/disconnect 50 or 75 ohm impedance

frequencies below 4 GHz voltage below 500 V NIM, audio, video, detector and etc

SMA (Sub Miniature version A): semi-precision coaxial RF connectors screw-type coupling mechanism male Φ0.312 in (Φ7.9 mm) 0-18 GHz passband (some up to 26.5 GHz) detector and etc

High voltage connection

MHV (miniature high voltage): type of RF connector used for terminating a coaxial cable

SHV (safe high voltage) connector: safer handling HV than other connectors standard: up to5 kV (5 A) higher-version: 20 kV or more NIM, detector, and etc

CAMAC

CAMAC Pin assignment (viewed from front)

Computer Aided Measurement And Control (CAMAC): a joint specification of the U.S. NIM and the European ESONE committees for a modular, high-performance, real-time data acquisition and control system concept.

CAMAC was introduced in 1969 by ESONE and fully defined in 1971 with the standards EUR4100 and EUR4600 / IEEE Standard 583-1982 (reaffirmed 1994) "Modular Instrumentation and Digital Interface System (CAMAC)".

It represents a complementation of the NIM standard for computer based experiment control and data acquisition. Main field of CAMAC use are computer based control and data acquisition systems in nuclear and highenergy physics experiments but in the past also in industrial applications, aerospace, and defense test systems.

All CAMAC bus signals are TTL logic levels as given in the following table:

	Logic 0	Logic 1
Input must accept	+2.0 to 5.5V	0 to +0.8V
Output must accept	+3.5 to 5.5V	0 to +0.5V

Size: H222xW17.6xD300 mm (except backplane power connector)

Controller station		Normal station	
P1	В	P1	В
P2	F16	P2	F16
P3	F8	P3	F8
P4	F4	P4	F4
P5	F2	P5	F2
X	F1	х	F1
1	A8	1	A8
C	A4	C	A4
P6	A2	N	A2
P7	A1	L	A1
S1	Z	S1	Z
S2	Q	S2	Q
L24	N24	W24	W23
L23	N23	W22	W21
L22	N22	W20	W19
L21	N21	W18	W17
L20	N20	W16	W15
L19	N19	W14	W13
L18	N18	W12	W11
L17	N17	W10	W9
L16	N16	W8	W7
L15	N15	W6	W5
L14	N14	W4	W3
L13	N13	W2	W1
L12	N12	R24	R23
L11	N11	R22	R21
L10	N10	R20	R19
19	N9	R18	R17
L8	N8	R16	R15
17	N7	R14	R13
L6	N6	R12	R11
15	N5	R10	R9
L4	N4	R8	R7
B	NB	R6	R5
12	N2	K4	K3
11	NI	KZ	K1
-12	-24	-12	-24
NC	-6	NC	-6
NC	NC	NC	NC
YI	Ł	¥1	E
12	24	+12	+24
¥2	6	¥2	6
0	0	0	0

VME

Height

Width of VME modules: 20.3 mm

1 U rack size = 4.445 cm

	VME bus J1/P1 Pinouts					
	PIN	ROW A	ROW B	ROW C		
	1	D00	BBSY*	D08		
	2	D01	BCLR*	D09		
	3	D02	ACFAIL*	D10		
	4	D03	BG0IN*	D11		
	5	D04	BG0OUT*	D12		
	6	D05	BG1IN*	D13		
	7	D06	BG1OUT*	D 14		
	8	D07	BG2IN*	D15		
	9	GND	BG2OUT*	GND		
	10	SYSCLK	BG3IN*	SYSFAIL*		
	11	GND	BG3OUT*	BERR*		
	12	DS1*	BR0*	SYSRESET*		
	13	DS0*	BR 1*	LWORD*		
	14	WRITE*	BR2*	AM5		
	15	GND	BR3*	A23		
	16	DTACK*	AMO	A22		
- E	17	GND	AM1	A21		
	18	AS*	AM2	A20		
	19	GND	AM3	A 19		
	20	IACK*	GND	A 18		
	21	IACKIN	SERCLK	A17		
	22	IACKOUT*	SERDAT	A 16		
	23	AM4	GND	A 15		
	24	A07	IRQ7 [×]	A 14		
	25	A06	IRQ6*	A13		
	26	A05	IRQ5*	A12		
	27	A04	IRQ4*	A11		
	28	A03	IRQ3*	A10		
	29	A02	IRQ2*	A09		
	30	A01	IRQ 1*	A08		
	31	-12V	+5VSTDBY	+12V		
	32	+5V	+5V	+5V		

VME bus J2/P2 Pinouts

+5 GND

A24

A25

A26

A27

A28

A29

A30

A31

GND

+5

D16

D17

D 18

D 19

D20

D21

D22

D23

GND

D24

D25

D26

D27

D28

D29

D30

D31

GND

+5V

ROW B

RESERVED

ROW C

User Defined

ROW A

User Defined

User Defined User Defined

User Defined

User Defined

User Defined

User Defined

User Defined

User Defined

User Defined

User Defined

User Defined

User Defined

User Defined

User Defined

User Defined

User Defined

User Defined

PIN

3

5

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

*

VME bus J3/P3 Pinouts

BOW B

User Defined

User Defined -5V

User Defined GND

GNE

GND

GND GND

GND GND

GND GND

GND

GND

GND

GND

GND

GND

GND

+12V

+12V

-12V

-12V

-5V

-5V

BOW

+5V

+5V

+5V

+5V

+5V

+5V

+5V

+5V

+5V 11

+5V

+5V 14

+5V +5V

+5V

+5V

+5V

24 +5V

15 +5V 16 +5V

2

3

4 +5V

5 +5V

6

8

9

10

12 13 +5V

17 +5V +5V

18

19

20

21 22 23 +5V

25 26 +12V

27 +12V

28 -12V

29 -12V

30 -5V

31 -5V

32 -5V

Oscilloscope

Bandwidth:

maximum frequency of an input signal which can pass through the analog front end of the scope with minimal amplitude loss

If you require 3% accuracy, you need to derate it by a factor of ~0.3x, so a **350 MHz scope** can **accurately measure 105 MHz to 3%**.

Sampling rate:

maximum number of samples per second

