2018 VdM Analysis

Lumi-PAG Meeting, Apr. 14, Chong Kim (PNU)

Outline

- Reviewed analysis processes
 - a. Went through all of Guillermo's guide
 - Now I can estimate cross-sections in certain conditions
 (ex. BPTX for intensity + V0 for rate + GP2 for fit)
- Items in this report
 - a. Overview of analysis
 - b. Implemented a "retry fit" routine in hxhy calculation
 - * it wasn't necessary at this time, but "shake the parameters for each retry" also implemented
 - c. Results for Fill 6864
 - c-1. Cross-sections by various conditions
 - c-2. Systematic errors: effect of BG correction and pileup correction

Overview Goal and Adjustable conditions

Goal and Conditions

- Goal of the analysis: visible cross section $\sigma_{vis} = R(0,0)/L$
 - R(0,0): head-on rate a.
 - $L = N_1 N_2 f_{rev} / h_x h_y$ b.

N₁, N₂: particle intensity of each bunch

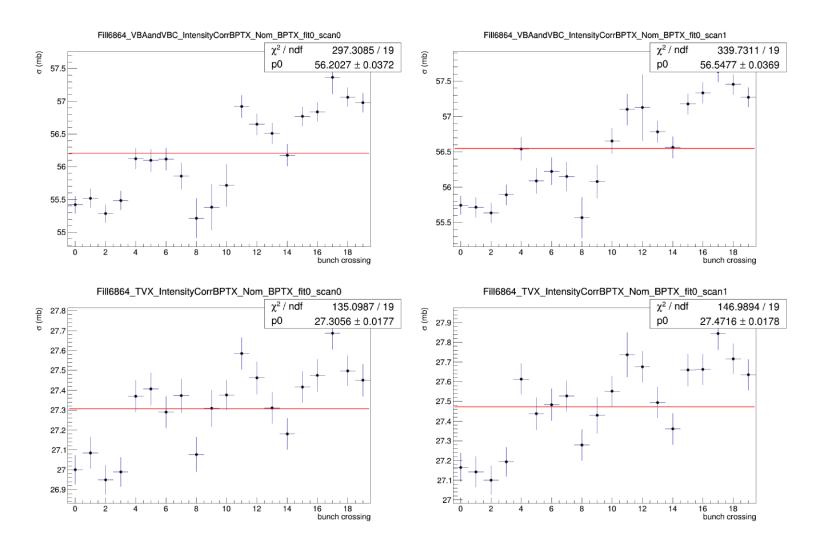
f_{rev}: accelerator revolution frequency

 $h_x h_y$: scanned area under the $R(\Delta x, 0)$ and $R(0, \Delta y)$

- Conditions in actual analysis
 - <u>Scan direction</u>: x or y (variables highlighted in green are tested in this time) a.
 - b. Separation points determination by method:
 - b-1. Nominal
 - b-2. BBD (beam-beam dynamics)
 - b-3. ORD (orbit-drift correction)
 - <u>Intensity</u> by external source: c.
 - c-1. BPTX (ATLAS Beam-Picking Timing System)
 - c-2. FBCT (Fast Beam Current Transformers)
 - d. Rate by ALICE detector:
 - d-1. VBAandVBC (V0)
 - d-2. TVX (T0)
 - Fit by model: GP2 (Gaussian + pol2), GP6, G, Numeric Integration, and Double G e.

* What are the "standard" conditions?

(ex. Std = x + Nominal + BPTX + VO + GP2)


Overview Analysis process

Analysis process (technical)

- 1. Set input: Fill 6864
- 2. Get the separation points: only "Nominal" method used
- 3. Get the intensity, bunch-crossing by bunch-crossing
 - a. Options: BPTX or FBCT
 - b. Correction: normalization by using DCCT (DC Current Transformer)
- 4. Get the rate
 - a. Options: VBAandVBC (V0) or TVX (T0)
 - b. Corrections: Raw \rightarrow BG correction \rightarrow Pileup correction \rightarrow Intensity correction
 - c. <u>Systematic studies</u> in next page:
 - c-1 Pileup: modified only the pileup correction factors and re-ran later analysis chain RatioA (V0) = 0.07684 ± 0.0004 , RatioC (V0) = 0.06193 ± 0.0004 RatioA (T0) = 0.49 ± 0.0007 , RatioC (T0) = 0.49 ± 0.0007
 - c-2. BG: input branch changes separately produced an output continually, for later analysis chain use Branch w/ tag "sys" instead of "acc" (ex. bv0acc setv0 → bv0sys setv0), in "Create bkgd correction file.C"
- 5. Get the hxhy and Cross-sections
 - a. Options: fit models (GP2, GP6, G, NI, and DG)
 - b. Extracted final, single cross section value by using QA_xs.C (pol0 fit on all ~20 bunches)

Cross section results

Sample output, by Nominal + BPTX + GP2

- Top: VBAandVBC (V0), Bottom: TVX (T0), Left: scan X, Right: scan Y
- Make sure all fit succeeded for each bunch (used fit retry routine, * backup)

Cross section results

Summary table with BG/Pileup systematic study

Intensity	Rate	Error sign	Scan X	Scan Y
Default				
FBCT	VBAandVBC	N/A	56.1710 ± 0.0370	56.5432 ± 0.0362
BPTX	VBAandVBC		56.2027 ± 0.0372	56.5477 ± 0.0369
FBCT	TVX		27.2836 ± 0.0181	27.4603 ± 0.0179
BPTX	VTX		27.3056 ± 0.0177	27.4716 ± 0.0178
Systematic: pileup				
ВРТХ	VBAandVBC	+ A/ + C	56.2020 ± 0.0373	56.5473 ± 0.0369
	VBAandVBC	+ A/ - C	56.1950 ± 0.0370	56.5476 ± 0.0369
	VBAandVBC	- A/ + C	56.1952 ± 0.0370	56.5374 ± 0.0368
	VBAandVBC	- A/ - C	56.1960 ± 0.0370	56.5807 ± 0.0359
	TVX	+ A/ + C	27.2970 ± 0.0181	27.4702 ± 0.0178
Systematic: BG				
FBCT	VBAandVBC	N/A	56.3851 ± 0.0333	56.7433 ± 0.0331
ВРТХ	VBAandVBC		56.4085 ± 0.0333	56.7849 ± 0.0329
FBCT	TVX		27.3009 ± 0.0177	27.4769 ± 0.0173
BPTX	TVX		27.3079 ± 0.0181	27.4929 ± 0.0174

- Fixed conditions:
 - a. Separation: nominal
 - b. Fit model: GP2
- If I pick an arbitrary "std" setup
 as "x + BPTX + VBAandVBC",
 systematic errors are:
 - a. Scan direction:

b. Intensity source:

c. Pileup effect in rate:

d. BG effect in rate:

e. Total: 0.5902

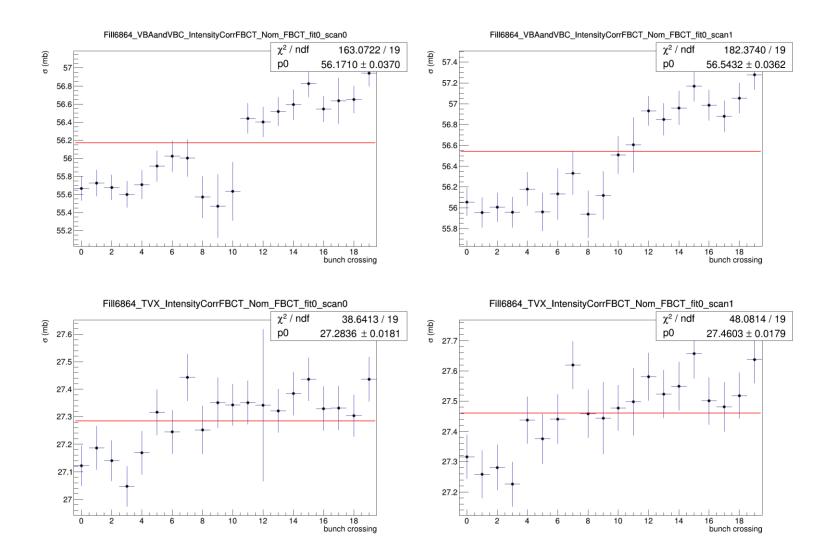
e-2. separation/fit syst. are missing

Backup

Fit retry routine under FitUtils.h/Fit_rate_separation()

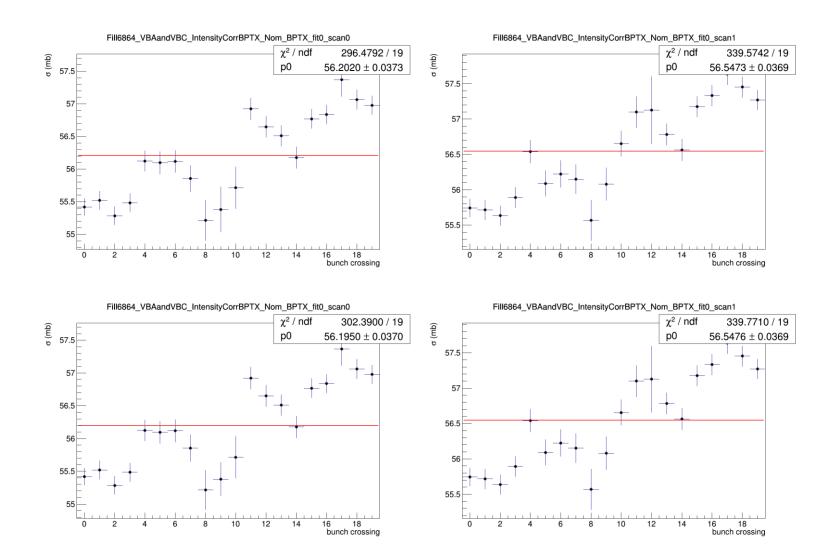
```
₽ NPL
                                                                                                               X
   gStyle->SetOptFit(1);
   char name[120];
   if (scan_type == 1) sprintf(name, "Scan_%d_x_bc_%d", scan, bc);
   if (scan_type == 2) sprintf(name, "Scan_%d_y_bc_%d", scan, bc);
   const char* cName = Form("%s_%s_%s_%s", rate_name, rate_type, g_fit_model_name[fit_type], name);
   if (!gMinuit->fCstatu.Contains("CONVERGED"))
      TH1* H1Temp = new TH1F(Form("H1Temp_%s", cName), "", n*2, sep[0], sep[n-1]); H1Temp->Sumw2();
      for (int a=0; a<n; a++)
          const int xBin = H1Temp->GetXaxis()->FindBin(sep[a]);
          const float yVal = rate[a];
          const float yErr = rate err[a];
          H1Temp->SetBinContent(xBin, yVal);
          H1Temp->SetBinError (xBin, yErr);
      const double tMax = H1Temp->GetMaximum();
      const double tMean = H1Temp->GetMean();
      const double tRMS = H1Temp->GetRMS();
      H1Temp->Delete();
      int reFit = 0;
      while (reFit < 10)
          cout <<Form("Retry fit for %s: %i...", cName, reFit) <<endl;</pre>
           if (reFit > 0) //from 2nd iteration, for the case of simple retry doesn't work
               TDatime DT:
               TRandom2 RD2(DT.GetTime() + reFit);
              double tPar[3] = {0};
              tPar[0] = RD2.Uniform(tMax*0.9, tMax*1.1);
               tPar[1] = RD2.Uniform(-2*fabs(tMean), 2*fabs(tMean));
              tPar[2] = RD2.Uniform(tRMS*0.5, tRMS*2);
              cout <<Form(" trying: max %4.3f, mean %4.f, and sigma %4.3f", tPar[0], tPar[1], tPar[1] <<endl;
               for (int a=0; a<Get_number_par(fit_type); a++)
                  fit model->ReleaseParameter(a);
                  fit_model->SetParameter(a, tPar[a]);
          r = gr->Fit("fit_model","QORS");
          if (gMinuit->fCstatu.Contains("CONVERGED")) break; //Converged: stop
      cName = Form("%s_reFit%i", cName, reFit);
                                                                                                     516,0-1
```

Processing Create_intensity_corrected_rate_file.C+(6864, "VBAandVBC", "BPTX", 0)... KEBI Library Loaded

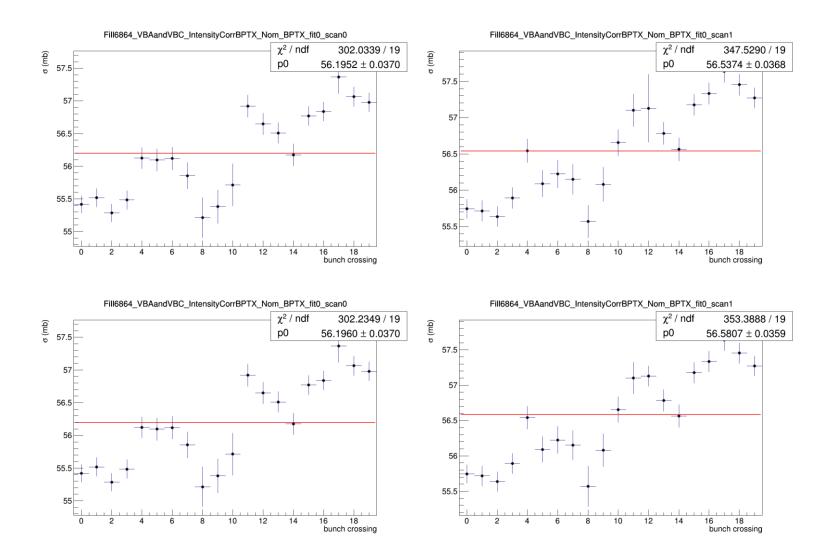

```
Processing Create_hxhy_file.C+(6864, "VBAandVBC", "IntensityCorrBPTX", "Nom", 0, 0)...
Retry fit for VBAandVBC_IntensityCorrBPTX_GP2_Scan_0_x_bc_12: 0...
Retry fit for VBAandVBC_IntensityCorrBPTX_GP2_Scan_1_x_bc_12: 0...
Retry fit for VBAandVBC_IntensityCorrBPTX_GP2_Scan_1_x_bc_14: 0...
Retry fit for VBAandVBC_IntensityCorrBPTX_GP2_Scan_1_y_bc_5: 0...
Retry fit for VBAandVBC_IntensityCorrBPTX_GP2_Scan_1_y_bc_13: 0...
Retry fit for VBAandVBC_IntensityCorrBPTX_GP2_Scan_1_y_bc_13: 0...
Retry fit for VBAandVBC_IntensityCorrBPTX_GP2_Scan_1_y_bc_14: 0...
KEBI Library Loaded
```

Processing Create_xs_file.C+(6864, "VBAandVBC", "IntensityCorrBPTX", "Nom", "BPTX", 0, 1,1,1,1, 0)... KEBI Library Loaded

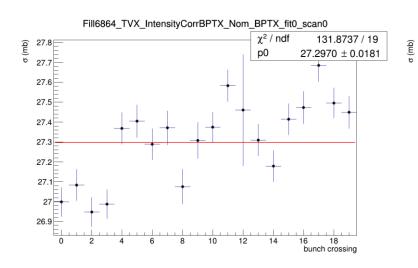
Processing QA_xs.C+(6864, "VBAandVBC","IntensityCorrBPTX","Nom","BPTX", 0,0,0)...

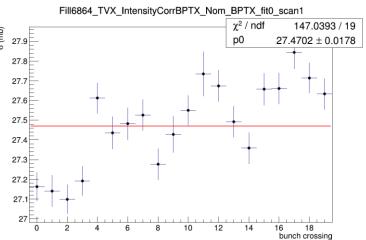

```
Minimizer is Linear
Chi2 = 297.309
NDf = 19
p0 = 56.2027 +/- 0.0372317
KEBI Library Loaded
```

Backup XS results: default, Nominal + FBCT + GP2

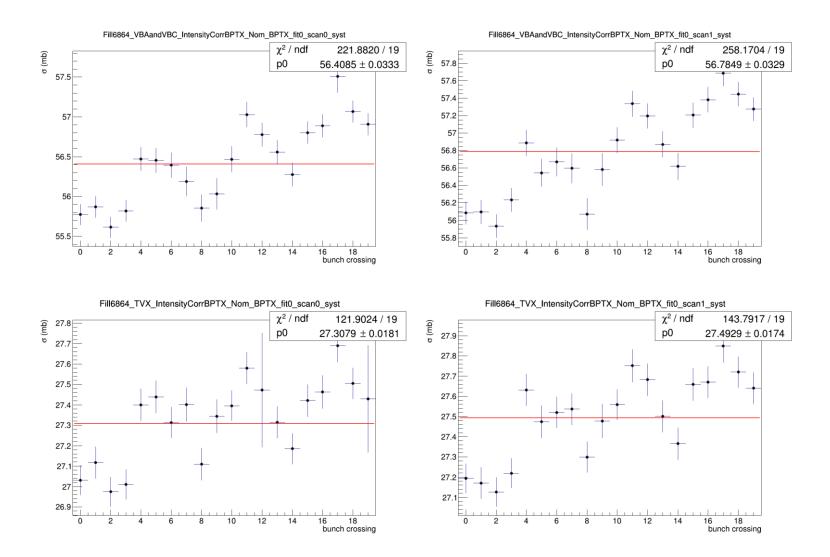


Backup

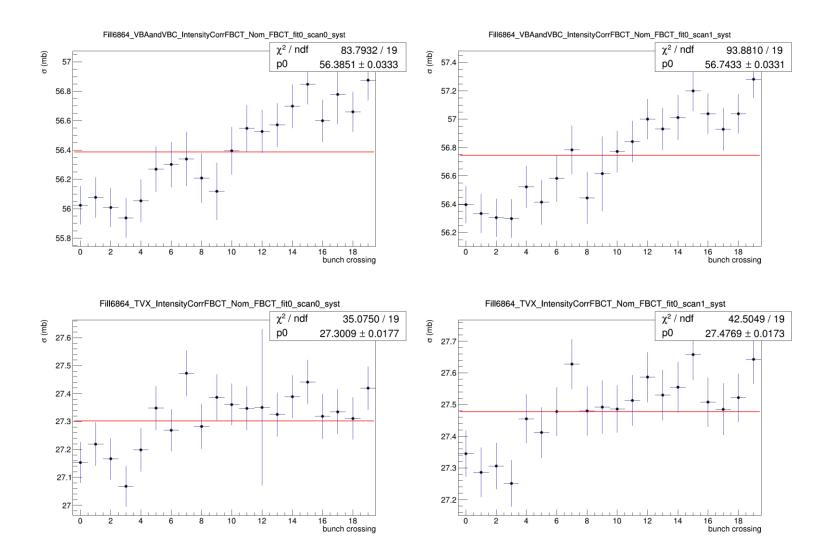

XS results: pileup syst. study, BPTX + V0 + "+A/+C" and "+A/-C"



Backup XS results: pileup syst. study, BPTX + V0 + "-A/+C" and "-A/-C"



Backup XS results: pileup syst. study, BPTX + T0 + "+A/+C"



Backup XS results: BG syst. study, BPTX

Backup XS results: BG syst. study, FBCT

