Hard coating films of fluorine-containing ladder-like structured polysilsesquioxane as negative triboelectric materials for highperformance triboelectric generators

> 스마트 나노소자 연구실 박용준

Fabrication and Characterization of LPEFSQ Films.

Fig. 1. Fabrication and characterization of LPEFSQ films. (a) Synthetic scheme of LPEFSQs. (b) Schematic illustration of LPEFSQ film fabrication with bar-coatingmethod. (c) Scanning tunneling microscope images of LPEFSQ films with various NFMS mol%. Insets show EDX mapping data representing fluorine contents withred-colored dot

Electrical characteristics of TENGs based on hard coated LPEFSQ Films.

Frequency = 1.3 Hz Sample Size : 2.5 cm X 2.5 cm

(a) Schematic illustration of a structure of the TENG and its energy conversion process.

(a) Schematic illustration of a structure of the TENG and its energy conversion process. (b) Voltage and current outputs of TENGs depending on NFMS mol%. (c) Dielectric constant of LPEFSQ films depending on NFMS mol%.

Voltage and Current output of TENGs based on hard coated LPEFSQ Films.

Frequency = 1.3 Hz Sample Size : 2.5 cm X 2.5 cm

 $V_{peak-to-peak} = 108 V$ $I_{peak-to-peak} = 3.37 \mu A$

PTFE-Al $V = 15 \sim 20 V$

The maximum power density was 305 mW/m² at a load resistance of $\sim 60 \text{ M}\Omega$

(d) Open-circuitvoltage Voc and (e) short-circuit current Isc outputs of a TENG based on a LPEFSQ-15 film. (f) Summary of peak-to-peak Voc, Isc outputs of a LPEFSQ-15-TENG in the function of a load resistance. (g) Summary of power outputs of a LPEFSQ-15-TENG in the function of a load resistance.

Effects of supporting substrates and coating thickness of LPEFSQ-15 film in TENG outputs.

Sample Size : 2.5 cm X 2.5 cm Frequency = 1.3 Hz

(a) Open-circuit voltage (Voc) outputs of TENGs based on various polymeric substrates with LPEFSQ-15 coating. (b) Voc outputs of TENGs with different thickness of LPEFSQ-15 films on a PET substrate.

Effects of supporting substrates and coating thickness of LPEFSQ-15 film in TENG outputs.

Frequency = 0.6 ~ 2.0 Hz Sample Size : 2.5 cm X 2.5 cm

 $V_{peak-to-peak} = 90 V$ $I_{peak-to-peak} = 2\mu A$

(c) Falsely-colored optical micrograph images of LPEFSQ-15 and PTFE films before and after contact rubbing process. (d) Analysis of deformation area depending on contact pressure in rubbing process. (e) Sliding-mode TENG applications with a LPEFSQ-15 film and AI plate. (f) Open-circuit voltage (Voc) and short-circuit current (Isc) outputs of a sliding-mode TENG. The outputs were found to be stable in a pressure of ~15 N/m2, which was a maximum value in a combination of a LPEFSQ-15 film and AI based TENG (see also Figure S9-S10).

Surface treatments on a LPEFSQ-15 film for the high performance TENG application.

(a) Schematic illustration of corona discharge process. (b) Open-circuit voltage Voc (upper) and short-circuit current Isc (bottom) outputs of a LPEFSQ-TENG after corona treatment. (c) Open-circuit voltage Voc (upper) and short-circuit current Isc (bottom) outputs of a LPEFSQ-TENG after corona treatment.

Surface treatments on a LPEFSQ-15 film for the high performance TENG application.

(f) A photograph image of a large-scale TENG. (g) Voc and Isc outputs of a large-scale TENG after corona treatments. (h) The demonstration of lighting up 400 LEDs by a large-scale TENG.

THANK YOU

Q&A