내부 코로나 디스차징 방법을 이용 한 코팅 구조 TENG 연구

스마트나노소자 연구실 박 상혁

Triboelectric nanogenerator (TENG)

Corona discharge treatment (CDT)

Another treatment method:

Interlayer-corona discharge treatment (i-CDT)

Unstable surface condition:

*Decreased output over time *Easy charge discharge on surface

Surface CDT (s-CDT) : Laminated structure with AgNWs

Interlayer CDT (i-CDT)

=> It's the opposite sign as each other.

Fabrication of i-CDT film

Laminating Structure with Ag NWs for TNEG applications

s-CDT vs i-CDT : Triboelectric output (2.5 x 2.5 cm²)

Triboelectric voltage by the polarity of CDT (10kV)

Triboelectric voltage by the applied voltage of CDT

Triboelectric output of i-CDT

Large area (4"-scale)

i-CDT: Where did the negative charge come from?

s-CDT < i-CDT : Charge retention in various temperature

s-CDT < i-CDT : Charge retention in high humidity condition

Contact angle measurement & Surface energy calculation

s-CDT < i-CDT : Charge retention in high humidity condition

i-CDT is relatively lower surface energy than s-CDT and is better resistant to water.

i-CDT s-CDT

45

Q & A

Supporting information 1. EFM image of Non-CDT laminating structure

Supporting information 2. Long-lasting stability test of i-CDT and s-CDT

Supporting information 3. Long-lasting stability test of i-CDT and s-CDT in high humidity condition

Supporting information 4. Surface roughness and images measurement by optical profilometer

