Reconstruction efficiency

- Little multiplicity dependence
- Not enough statistics to check the efficiency in 0-0.1% VOM multiplicity

Reconstruction efficiency

• Clear z-vertex dependence (probably due to variation of tracking efficiency in eta?)

- A small offset in z-vertex between MB and HMV0 events
- z-vertex distribution in MC is in between distributions from MB and HMV0 events
- Very small change with weight as a function of z-vertex

Corrected yield with various eXi mass cuts

Corrected yield with various eXi mass cuts

Clear difference with different eXi mass cut

Xic decay in PYTHIA

- Lc/D0 ratio in PYTHIA
- Confirmation of CR mode 2 configuration

Xib conbtirubtion

- Fraction of Xib in various multiplicity bins (multiplicity at VOM acceptance)
- Monash:
 0-0.1% VOM: 5.5%
 0.1-30% VOM: 66.7%
 30-100% VOM: 27.8%
- CR mode 2: 0-0.1% VOM: 7.2%
 0.1-30% VOM: 74.0%
 30-100% VOM: 18.8%

Prompt fraction

- b-quark cross section vs. p_T from FONLL
- Scale with $BR(b \to \Lambda_b^0)BR(\Lambda_b^0 \to \Lambda_c^+)$ and apply the 2D respnose matrix for p_T smearing of $\Lambda_b^0 \to \Lambda_c^+$ (b $p_T \to \Lambda_b^0 p_T$) \Rightarrow obtain non-prompt Λ_c^+ cross section vs. p_T (explicitly, Λ_c^+ from Λ_b^0)
- Cross section of $\Lambda_c^+ \rightarrow pK\pi$ from b-hadron
- Scale with $BR(\Lambda_c^+ \rightarrow pK\pi)$ (scale factor is 1e-6/(0.068*20), '20' is dp_T (bin width)) \rightarrow obtain non-prompt Λ_c^+ cross section vs. p_T
- Scale with the yield ratio ^{inclusive Ξ⁰}/_{prompt Λ⁺_c} ≈ ^{inclusive Ξ⁰}/_{inclusive Λ⁺_c}
 (Q. additional correction for ^{non-prompt Ξ⁰}/_{non-prompt Λ⁺_c}? A. 0.616)
 →obtain non-prompt Ξ⁰_c cross section vs. p_T
- $\Lambda_b^0 \times \frac{\Lambda_b^0 \to \Lambda_c^+}{\Lambda_b^0} \times \frac{\frac{\Xi_b^- \to \Xi_c^0}{\Xi_b^-}}{\frac{\Lambda_b^0 \to \Lambda_c^+}{\Lambda_b^0}} = \Lambda_b^0 \times \frac{\Xi_b^- \to \Xi_c^0}{\Xi_b^-}$
- Scale with the efficiency for inclusive and non-prompt Ξ_c^0 (gen level \rightarrow reco level) \rightarrow obtain the spectra of reconstructed inclusive and non-prompt Ξ_c^0

• $BR(\Xi_b^- \to \Xi_c^0)/BR(\Lambda_b \to \Lambda_c^+) = 50.5 \% / 82.0 \% = 0.616$

Prompt fraction

- No multiplicity dependence in Xic0/Lc
- Monash Similar ratio for prompt and non-prompt
- CR mode 2
 Slightly lower ratio than Monash

 $\begin{array}{l} \textbf{BRs check for } B \rightarrow \Xi_c^0 \ \textbf{and } B \rightarrow \Lambda_c^+ \\ \bullet \ \textbf{Hb} \rightarrow \textbf{Lc} + \textbf{X} \ \textbf{BRs in PYTHIA8:} \\ \bullet \ \textbf{B0} \rightarrow \textbf{Lc+-} + \textbf{X} = 0.0184059 \ (ignore) \\ \bullet \ \textbf{Bt} \rightarrow \textbf{Lc+-} + \textbf{X} = 0.0169298 \ (ignore) \\ \bullet \ \textbf{Bs} \rightarrow \textbf{Lc+-} + \textbf{X} = 0.0195037 \ (ignore) \\ \bullet \ \textbf{Lb} \rightarrow \textbf{Lc+-} + \textbf{X} = 0.0195037 \ (ignore) \\ \bullet \ \textbf{Lb} \rightarrow \textbf{Lc+-} + \textbf{X} = 0.819539 \ (dominate) \\ \hline \textbf{Hb} \rightarrow \textbf{Xic0} + \textbf{X} \ \textbf{BRs in PYTHIA8:} \\ \bullet \ \textbf{B0} \rightarrow \textbf{Xic0} + \textbf{X} = 0.00267 \ (ignore) \\ \bullet \ \textbf{Bt} \rightarrow \textbf{Xic0} + \textbf{X} = 0.00267 \ (ignore) \\ \bullet \ \textbf{Bs} \rightarrow \textbf{Xic0} + \textbf{X} = 0.00269 \ (ignore) \\ \bullet \ \textbf{Bs} \rightarrow \textbf{Xic0} + \textbf{X} = 0.002089 \ (ignore) \\ \bullet \ \textbf{Lb} \rightarrow \textbf{Xic0} + \textbf{X} = 0.00126 \ (ignore) \\ \bullet \ \textbf{Xib0} \rightarrow \textbf{Xic0} + \textbf{X} = 0.00094 \ (ignore) \\ \bullet \ \textbf{Xib0} \rightarrow \textbf{Xic0} + \textbf{X} = 0.505056 \ (dominate) \end{array}$

• BR $(\Xi_{\rm b}^{-} \to \Xi_{\rm c}^{0})/{\rm BR}(\Lambda_{\rm b} \to \Lambda_{\rm c}^{+}) = 50.5 \% / 82.0 \% = 0.616$

- Small multiplicity dependence at low pT in Monash
- Slightly lower prompt fraction in CR mode2

BRs check for $B \to \Xi_c^0$ and $B \to \Lambda_c^+$ Hb -> Lc + X BRs in PYTHIA8: → B0 -> Lc+- + X = 0.0184059 (ignore) → B+ -> Lc+- + X = 0.0169298 (ignore) → Bs -> Lc+- + X = 0.0195037 (ignore) → Lb -> Lc+- + X = 0.819539 (dominate) Hb -> XicO + X BRs in PYTHIA8: → B0 -> Xic0 + X = 0.00267 (ignore) → B+ -> XicO + X = 0.002089 (ignore) → Bs -> Xic0 + X = 0.0126 (ignore) → Lb -> Xic0 + X = 0.00094 (ignore) → Xib0 -> Xic0 + X = 0.00104 (ignore) → Xib- -> Xic0 + X = 0.505056 (dominate)

P BR(
$$\Xi_{\rm b}^{-}$$
 → $\Xi_{\rm c}^{0}$)/BR($\Lambda_{\rm b}$ → $\Lambda_{\rm c}^{+}$) = 50.5 % /82.0 % = 0.616

