Multiplicity dependence on Xic0 via semileptonic decay in pp 13 TeV

Sanghoon Lim

Pusan National University

- Reported a significant variation of corrected yields with different eXi mass cuts
- Analysis procedure:
 - (RS-WS) with analysis cuts (different eXi mass cuts)
 - Unfolding eXi $p_T = Xic0 p_T$
 - Efficiency correction
 - MC: PYTHIA8 with a fixed decay mode (Xic0→e nu Xi)
- Comments:
 - How about MB events?
 - Decay modes other than Xic0→e nu Xi?

- Reported a significant variation of corrected yields with different eXi mass cuts
- Analysis procedure:
 - (RS-WS) with analysis cuts (different eXi mass cuts)
 - $\quad \text{Unfolding eXi } p_T = \rangle \text{ Xic0 } p_T$
 - Efficiency correction
 - MC: PYTHIA8 with a fixed decay mode (Xic0→e nu Xi)
- Comments:
 - How about MB events?
 →Simialr behavior is seen in MB events
 - Decay modes other than Xic0→e nu Xi ?

• Reported a significant variation of corrected yields with different eXi mass cuts

ma

- Analysis procedure:
 - (RS-WS) with analysis cuts (different eXi mass cuts)
 - $\quad \text{Unfolding eXi } p_T = \ \text{Xic0 } p_T$
 - Efficiency correction
 - MC: PYTHIA8 with a fixed decay mode (Xic0→e nu Xi)
- Comments:
 - How about MB events?
 → Simialr behavior is seen in MB events
 - Decay modes other than Xic0→e nu Xi?
 →Run PYTHIA8 with the default decay
 →Look for e and Xi from Xic (not only mother but also grandmother)

				110					and an an an an an an
4132	Xi_c0		Xi_cbar	0	2	0	0	2.47088	0.00000
	0	0	0.0200000	22	-11		12	3	3101
	1	0	0.0050000	22	-11		12	3	3103
	2	õ	0.0200000	22	-13		14	3	3101
	3	ä	0 0050000	22	-13		14	3	3103
	4	å	0.5400000	42	13		1	2	2101
			0.5400000	42	2			2	2101
	5	0	0.2100000	42	3		3201		
	6	0	0.1000000	42	3		3203		
	7	0	0.1000000	42	2		3303		
4232	Xi c+		Xi char	_	2	3	0	2.46780	0.00000
	0	0	0 0280000	22	_11	-	12	3	3201
			0.0200000	22	-11		12	5	3201
	1	0	0.00/0000	22	-11		12	3	3203
	2	0	0.0280000	22	-13		14	3	3201
	3	0	0 0070000	22	-13		14	3	3203
			0.0070000	42	13		14	2	2203
	4	0	0.9300000	42	2		-1	3	3201

3101: (sd)₀, 3103: (sd)₁ 3201: (su)₀, 3203: (su)₁

Note: Only Xi(1530) is in PYTHIA

- Reported a significant variation of corrected yields with different eXi mass cuts
- Analysis procedure:
 - (RS-WS) with analysis cuts (different eXi mass cuts)
 - Unfolding eXi p_T => Xic0 p_T
 - Efficiency correction
 - MC: PYTHIA8 with a fixed decay mode (Xic0→e nu Xi)
- Comments:
 - How about MB events?
 → Simialr behavior is seen in MB events
 - Decay modes other than XicO→e nu Xi ?
 →Run PYTHIA8 with the default decay
 →Look for e and Xi from Xic (not only mother but also grandmother)

4132	Xi_c0	0	Xi_cbar0)	2	0	0	2.47088	0.00000
	0	0	0.0200000	22	-11		12	2	2101
	1	0	0.0020000	22	-11		12	3	3103
	2	0	0.0200000	22	-13		14	3	3101
	3	0	0.0050000	22	-13		14	3	3103
	4	0	0.5400000	42	2		-1	3	3101
	5	0	0.2100000	42	3		3201		
	6	0	0.1000000	42	3		3203		
	7	0	0.1000000	42	2		3303		
4232	Xi c+		Xi cbar-		2	3	0	2.46780	0.00000
	_ 0	0	0.0280000	22	-11		12	3	3201
	1	0	0.0070000	22	-11		12	3	3203
	2	0	0.0280000	22	-13		14	3	3201
	3	0	0.0070000	22	-13		14	3	3203
	4	ø	0.9300000	42	2		-1	3	3201

3101: (sd)₀, 3103: (sd)₁ 3201: (su)₀, 3203: (su)₁

- Reported a significant variation of corrected yields with different eXi mass cuts
- Analysis procedure:
 - (RS-WS) with analysis cuts (different eXi mass cuts)
 - $\quad \text{Unfolding eXi } p_T = \rangle \text{ Xic0 } p_T$
 - Efficiency correction
 - MC: PYTHIA8 with a fixed decay mode (Xic0→e nu Xi)
- Decrease the upper limit of eXi mass cut
 - Efficiency correction with MC for Xic0→e nu Xi
 - Signal loss is smaller for cases with Xi*
 →Over-correction with the efficiency for Xic0→e nu Xi

- Reported a significant variation of corrected yields with different eXi mass cuts
- Analysis procedure:
 - (RS-WS) with analysis cuts (different eXi mass cuts)
 - Unfolding eXi $p_T = Xic0 p_T$
 - Efficiency correction
 - MC: PYTHIA8 with a fixed decay mode (Xic0→e nu Xi)
- Decrease the upper limit of eXi mass cut
 - Efficiency correction with MC for Xic0→e nu Xi
 - Signal loss is smaller for cases with Xi*
 →Over-correction with the efficiency for Xic0→e nu Xi
- Incrase the lower limit of eXi mass cut
 - Signal loss is larger for cases with Xi*
 →Under-correction with the efficiency for Xic0→e nu Xi

Toy MC (truth level analysis): Corrected yields with different eXi mass cuts (mixture of three decay modes) Efficiency with the decay mode, Xic0→e nu Xi Unfolding with the decay mode, Xic0→e nu Xi

• Toy MC can reproduce the trend but underestimate the magnitude of the variation

Note: no other topological/kinematic cuts are applied

eXi invariant mass (HMV0, 0-0.1%)

- MC distribution is scaled to match counts in $1.8\langle M\langle 2.4 \text{ GeV}/c^2 (\text{where Xic} \rightarrow e \text{ nu Xi is dominant})$
- Clear and significant difference at low mass

eXi invariant mass (MB, 0-100%)

- MC distribution is scaled to match counts in $1.8\langle M\langle 2.4 \text{ GeV}/c^2 (\text{where Xic} \rightarrow e \text{ nu Xi is dominant})$
- Clear and significant difference at low mass

