Is ACTIVE sub-eV neutrino (v),
 "Dirac or Majorana"?, that is the question!

CONTENTS

- Introduction (nu Mass, Seesaw \& OnuBB)
- Prelude (Quantum Statistics \& practical DMCT)
- Back-to-back muons (ie. $v-\bar{v}$), exception to DMCT
- Detailed Analysis \& Discussion on B2B muons
- Summary
- Back-up (Details on Helicity, B2B muons, ...)

INTRODUCTION

Sub-eV active neutrino mass
Seesaw mechanism
$\Delta L=2$ processes \& 0-nu-Beta-Beta

(sub-eV active) neutrinos have mass

* Neutrinos are massless in SM, $m_{v}=0$.

All neutrinos are only left-handed $\left(v_{L}\right)$.

$$
\mathscr{L}_{\text {mass }}^{D}=-m_{v}\left(\overline{v_{R}} v_{L}+\overline{v_{L}} v_{R}\right), \quad m_{v}=\frac{Y_{v} v}{\sqrt{2}}
$$

where $Y_{v}=$ Higgs-neutrino Yukawa coupling constant, and $\mathrm{v}=$ Higgs VEV.
No way to generate mass without right-handed neutrinos (v_{R}).

* But observations of neutrino oscillation imply that neutrinos have mass, $m_{v} \neq 0$.

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita (Super-Kamiokande) and Arthur B. McDonald (Sudbury Neutrino Observatory) "for the discovery of neutrino oscillations, which shows that neutrinos have mass".

How to give neutrinos mass?

There are various suggestions as to how neutrinos can get mass.

* Dirac mass:

Assumption: v_{R} exists.
\bigcirc Lagrangian:

$$
\mathscr{L}_{\text {mass }}^{D}=-m_{v}^{D}\left(\overline{v_{R}} v_{L}+\overline{v_{L}} v_{R}\right) .
$$Disadvantage: No reason for m_{v}^{D} to be small.

* Majorana mass:
\bigcirc Assumption: neutrino \equiv anti-neutrino.
O Lagrangian:

$$
\mathscr{L}_{\text {mass }}^{M}=\frac{1}{2} m_{v}^{M}\left(\overline{v_{L}^{C}} v_{L}+\overline{v_{L}} v_{L}^{C}\right) .
$$Disadvantage: $\mathscr{L}_{\text {mass }}^{M}$ is not invariant under $S U(2)_{L} \times U(1)_{Y}$ gauge group, so not allowed by SM.

How to give neutrinos (very small) mass?

* See-saw mechanism: A simpler version of Dirac-Majorana mass, with a nice twist.

Assumptions: $m_{v}^{L}=0$ and $m_{v}^{D} \ll m_{v}^{R}$.
O Lagrangian:
$\mathscr{L}_{\text {mass }}^{D+M}=\frac{1}{2} m_{v}^{R}\left(\overline{v_{R}^{C}} v_{R}\right)-m_{v}^{D}\left(\overline{v_{R}} v_{L}\right)+$ H.c. $=\frac{1}{2} \overline{N_{L}^{C}} M N_{L}+$ H.c., where
$N_{L}=\binom{v_{L}}{v_{R}^{C}}$ and $M=\left(\begin{array}{cc}0 & m_{v}^{D} \\ m_{v}^{D} & m_{v}^{R}\end{array}\right)$ is the mass matrix.
○ Mass eigenvalues:

$$
\begin{aligned}
m_{2,1} & =\frac{1}{2}\left(m_{v}^{R} \pm \sqrt{\left(m_{v}^{R}\right)^{2}+4\left(m_{v}^{D}\right)^{2}}\right) \\
& \approx \frac{1}{2} m_{v}^{R}\left(1 \pm 1 \pm 2\left(\frac{m_{v}^{D}}{m_{v}^{R}}\right)^{2}\right) . \\
\Longrightarrow m_{1} & \approx-\frac{\left(m_{v}^{D}\right)^{2}}{m_{v}^{R}} \text { and } m_{2} \approx m_{v}^{R} .
\end{aligned}
$$

O Advantage: $m_{1} \ll m_{2}$, so light neutrinos are possible.
Challenges:

- To find the heavy v_{2} experimentally.
- To prove that both the light v_{1} and heavy v_{0} are Majorana neutrinos.

Looking for Majorana neutrinos via $\Delta L=2$ processes (1)

* Neutrinos are the only elementary fermions known to us that can have Majorana nature.
* Majorana neutrinos: $v \equiv \bar{v}$.
* Majorana neutrinos violate lepton flavor number (L), they mediate $\Delta L=2$ processes.

$$
\propto \int \frac{d^{4} p}{(2 \pi)^{4}} \sum_{k} U_{\ell_{i} k} U_{\ell_{j} k} \frac{m_{k}+\not p}{p^{2}-m_{k}^{2}}
$$

* $\Delta L=2$ processes play crucial rule to probe Majorana nature of v 's.

O neutrinoless double-beta ($0 v \beta \beta$) decay
\bigcirc Rare meson decays with $\Delta L=2$
Collider searches at LHC

Looking for Majorana neutrinos via $\Delta L=2$ processes (2)

* Decay rate of any $\Delta L=2$ process with final leptons $\ell_{1}^{+} \ell_{2}^{+}$:

$$
\Gamma_{\Delta L=2} \propto\left|\sum_{k} U_{\ell_{1} k} U_{\ell_{2} k} \frac{m_{k}}{p^{2}-m_{k}^{2}+i m_{k} \Gamma_{k}}\right|^{2}
$$

where we have used the fact that $\left(1-\gamma^{5}\right) \not p\left(1-\gamma^{5}\right)=0$.
\bigcirc Light v :

$$
\Gamma_{\Delta L=2} \propto\left|\sum_{k} U_{\ell_{1} k} U_{\ell_{2} k} m_{k}\right|^{2}=\left|m_{\ell_{1} \ell_{2}}\right|^{2}
$$

O Heavy v :

$$
\Gamma_{\Delta L=2} \propto\left|\sum_{k} \frac{U_{\ell_{1} k} U_{\ell_{2} k}}{m_{k}}\right|^{2}
$$

O Resonant v :

$$
\Gamma_{\Delta L=2} \propto \frac{\Gamma(N \rightarrow i) \Gamma(N \rightarrow f)}{m_{N} \Gamma_{N}} .
$$

Neutrino-less double-beta decay $(0 \nu \beta \beta)(1)$

* Process:

Lepton Number Violation (LNV)

not allowed within SM

* The half-life of a nucleus decaying via $0 v \beta \beta$ is,

$$
\left[T_{1 / 2}^{0 v}\right]^{-1}=G_{\mathrm{O} v}\left|M_{\mathrm{O} v}\right|\left|m_{\beta \beta}\right|^{2}
$$

Neutrino-less double-beta decay $(0 \nu \beta \beta)$ (2)

* Double-beta ($2 \nu \beta \beta$) decay has been observed in 10 isotopes, ${ }^{48} \mathrm{Ca},{ }^{76} \mathrm{Ge},{ }^{82} \mathrm{Se},{ }^{96} \mathrm{Zr},{ }^{100} \mathrm{Mo},{ }^{116} \mathrm{Cd},{ }^{128} \mathrm{Te},{ }^{130} \mathrm{Te},{ }^{150} \mathrm{Nd},{ }^{238} \mathrm{U}$, with half-life $T_{1 / 2} \approx 10^{18}-10^{24}$ years.

Giovanni Benato (for the GERDA collaboration), arXiv:1509.07792

* $0 \nu \beta \beta$ (forbidden in SM) is yet to be observed in any experiment.

$$
T_{1 / 2}^{0 v}\left[{ }^{76} \mathrm{Ge}\right]>2.1 \times 10^{25} \text { years }(90 \% \text { C.L. })
$$

M. Agostini et al. (GERDA Collaboration) Phys. Rev. Lett. 111, 122503 (2013).

Neutrino-less double-beta decay $(0 v \beta \beta)$ (3)

NH: Normal hierarchy IH: Inverted hierarchy
S. M. Bilenky and C. Giunti

Mod. Phys. Lett. A 27, 1230015 (2012),
arXiv:1203.5250

* If $m_{\beta \beta}<10^{-2}$, only NH is viable and the $T_{1 / 2}^{0 v}$ will be much larger

Looking for Majorana neutrinos via $\Delta L=2$ processes (1)

(Rare meson decays for massive sterile neutrinos)

* Processes: $M^{+} \rightarrow M^{\prime-} \ell_{1}^{+} \ell_{2}^{+}$, where $M=K, D, D_{s}, B, B_{c}$ and $M^{\prime}=\pi, K, D, \ldots$
G. Cvetic, C.S. Kim, arXiv:1606.04140 (PRD 94, 053001, 2016) G. Cvetic, C. Dib, S. Kang, C. S. Kim, arXiv:1005.4282 (PRD 82, 053010, 2010)

* No nuclear matrix element unlike $0 v \beta \beta$, but probes Majorana nature of massive neutrino(s) N.

Looking for Majorana neutrinos via $\Delta L=2$ processes (2)

(tau lepton decays \& pion decays)

* Process:
$\pi^{ \pm} \rightarrow e^{ \pm} N \rightarrow e^{ \pm} e^{ \pm} \mu^{\mp} v$
G. Cvetič, C. S. Kim and J. Zamora-Saá, arXiv:1311.7554 [hep-ph]
(J. Phys. G 41, 075004 (2014))
* Mass range:
$106 \mathrm{MeV} \leqslant m_{N} \leqslant 139 \mathrm{MeV}$
\& Process: $\tau^{-} \rightarrow \pi^{-} \mu^{-} e^{+} \nu / \bar{v}$
C.S. Kim, G. L. Castro and D. Sahoo, arXiv:1708.00802 [hep-ph] (PRD 96, 075016 (2017))
* Mass range:
$106 \mathrm{MeV} \leqslant m_{N} \leqslant 1637 \mathrm{MeV}$.

Looking for Majorana neutrinos via $\Delta L=2$ processes (3)

(Collider searches at LHC)
\& Processes: $W^{+} \rightarrow e^{+} e^{+} \mu^{-} \bar{v}_{\mu}, W^{+} \rightarrow \mu^{+} \mu^{+} e^{-} \bar{v}_{e}$. Involves heavy neutrino N which can have Majorana nature as well.
C. Dib, C.S. Kim, arXiv:1509.05981 (PRD 92, 093009, 2015);
C. Dib, C.S. Kim, K. Wang, J. Zhang, arXiv:1605.01123 (PRD 94, 013005, 2016)

* Decay widths:
\bigcirc LNV: $\Gamma\left(W^{+} \rightarrow e^{+} e^{+} \mu^{-} \bar{v}_{\mu}\right)=\left|U_{N e}\right|^{4} \hat{\Gamma}$,
\bigcirc LNC: $\Gamma\left(W^{+} \rightarrow e^{+} e^{+} \mu^{-} \bar{v}_{\mu}\right)=\left|U_{N e} U_{N \mu}\right|^{2} \hat{\Gamma}$,
where $\hat{\Gamma}=\frac{G_{F}^{3} M_{W}^{3}}{12 \times 96 \sqrt{2} \pi^{4}} \frac{m_{N}^{5}}{\Gamma_{N}}\left(1-\frac{m_{N}^{2}}{M_{W}^{2}}\right)^{2}\left(1-\frac{m_{N}^{2}}{2 M_{W}^{2}}\right)$.

Looking for eV-scale sterile neutrino, not via Oscillation

 (compared to LSND, miniBoone, searches light neutrino via neutrino Oscillation)* If an eV scale sterile neutrino is present, its mixing with active flavor neutrinos would affect,

1. muon decay \rightarrow extraction of Fermi constant,
2. leptonic decays of tau \rightarrow testing unitarity of neutrino mixing matrix,
3. semi-leptonic decays of tau \& leptonic decays of pion and kaon \rightarrow additional tests of unitarity of neutrino mixing matrix,
4. invisible width of the Z boson \& number of light active neutrinos, \rightarrow extract individual active-sterile mixing parameters.

* Our analysis, taking precision measurements into account, supports the hypothesis that there are no such light sterile neutrinos.

> C. S. Kim, G. L. Castro and D. Sahoo,
> arXiv:1809.02265 [hep-ph]
> (PRD 98 11, 115021 (2018)

PRELUDE

Neutrino Casimir Force
Fermi-Dirac Statistics for Fermion (nu)
practical Dirac-Majorana Confusion Theorem (DMCT)

Neutrino-less Double Beta Decay 0nuBB ($\Delta L=2$ process)

Lepton Number Violation (LNV)
 not allowed within SM

NH: Normal hierarchy IH: Inverted hierarchy

The half-life of a nucleus decaying via $O \nu \beta \beta$ is,

```
S. M. Bilenky and C. Giunti
\[
\left[T_{1 / 2}^{\mathrm{O} v}\right]^{-1}=G_{\mathrm{O} v}\left|M_{\mathrm{O} v}\right|\left|m_{\beta \beta}\right|^{2}
\]
\[
\text { Mod. Phys. Lett. A 27, } 1230015 \text { (2012), }
\]
arXiv:1203.5250
```

Possibility of very small $\operatorname{maSS}\left(m_{v_{e}} \sim m_{\beta \beta}\right)$
May fail to observe !!

* If $m_{\beta \beta}<10^{-2}$, only NH is viable and the $T_{1 / 2}^{0 v}$ will be much larger than the current experimental lower bound.

Alternative to 0nuBB (1) - Neutrino Casimir force

Principle: Exchange of pair of neutrinos can give rise to long-range quantum force (aka neutrino Casimir force or the neutrino exchange force) between macroscopic objects, and the effective potential can differentiate Dirac and Majorana neutrinos.

Issue: The potential (and hence the force) is proportional to product of the tiny neutrino masses in the loop.
** thermal fluctuation, van der Waals force

Status: Experimental study is still awaited.

Alternative to 0nuBB (2) - Quantum Statistics

practical Dirac-Majorana Confusion Theorem (1)

Consider the SM allowed decay, e.g.

$$
B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)
$$

Amplitude for Dirac case

$$
\mathscr{M}^{D}=\mathscr{M}\left(p_{1}, p_{2}\right)
$$

For Majorana case

$$
\mathscr{M}^{M}=\frac{1}{\sqrt{2}}\left(\mathscr{M}\left(p_{1}, p_{2}\right)-\mathscr{M}\left(p_{2}, p_{1}\right)\right) . ~ . ~ . ~ \begin{aligned}
& \text { required to know 4-momenta } \\
& \text { of } p_{1} \text { and } p_{2}, \text { to be useful }
\end{aligned}
$$

Difference between D and M

$$
\begin{aligned}
&\left|\mathscr{M}^{D}\right|^{2}-\left|\mathscr{M}^{M}\right|^{2}= \frac{1}{2} \\
&(\underbrace{\left|\mathcal{M}\left(p_{1}, p_{2}\right)\right|^{2}}_{\text {Direct term }}-\underbrace{\left|\mathscr{M}\left(p_{2}, p_{1}\right)\right|^{2}}_{\text {Exchange term }}) \\
&+\underbrace{\operatorname{Re}\left(\mathscr{M}\left(p_{1}, p_{2}\right)^{*} \mathscr{M}\left(p_{2}, p_{1}\right)\right)}_{\text {Interfernce erm }} .
\end{aligned}
$$

Dirac-Majorana Confusion Theorem (2)

Interference term

$$
\operatorname{Re}\left(\mathscr{M}\left(p_{1}, p_{2}\right)^{*} \mathscr{M}\left(p_{2}, p_{1}\right)\right) \propto m_{v}^{2}
$$

In general
$\begin{gathered}\text { (useful if } \\ \text { are known) }\end{gathered}$
and/or

$$
\underbrace{\left|\mathscr{M}\left(p_{1}, p_{2}\right)\right|^{2}}_{\text {Direct term }} \neq \underbrace{\left|\mathscr{M}\left(p_{2}, p_{1}\right)\right|^{2}}_{\text {Exchange term }} .
$$

(= , only for very special BSM case)

However, after integration (required if momenta p_{1} and
p_{2} are unobservable)

$$
\iint \underbrace{\left|\mathscr{M}\left(p_{1}, p_{2}\right)\right|^{2}}_{\text {Direct term }} \mathrm{d}^{4} p_{1} \mathrm{~d}^{4} p_{2}=\iint \underbrace{\left|\mathscr{M}\left(p_{2}, p_{1}\right)\right|^{2}}_{\text {Exchange term }} \mathrm{d}^{4} p_{1} \mathrm{~d}^{4} p_{2}
$$

Different distribution, but the same total rate (DMCT)

$$
\begin{array}{cc}
\mathscr{M}^{D}=\mathscr{M}\left(p_{1}, p_{2}\right), & \mathscr{M}^{M}=\frac{1}{\sqrt{2}}\left(\mathscr{M}\left(p_{1}, p_{2}\right)-\mathscr{M}\left(p_{2}, p_{1}\right)\right) . \\
\text { Dirac case } & \text { Majorana case }
\end{array}
$$

$$
\underbrace{\left|\mathscr{M}\left(p_{1}, p_{2}\right)\right|^{2}}_{\text {Direct term }} \neq \underbrace{\left|\mathscr{M}\left(p_{2}, p_{1}\right)\right|^{2}}_{\text {Exchange term }}
$$

$D=$ in general, no reason to be symmetric
$M=a l$ ways, must be symmetric

$$
\iint_{\text {Is nu Dirac or Majorana? }}\left(\left|\mathscr{M}^{D}\right|^{2}-\left|\mathscr{M}^{M}\right|^{2}\right) \mathrm{d}^{4} p_{1} \mathrm{~d}^{4} p_{2} \quad \propto m_{v}^{2}
$$

Dirac-Majorana Confusion Theorem (3)

Therefore, (if momenta p_{1} and p_{2} are unobservable)

$$
\begin{aligned}
& \iint\left(\left|\mathscr{M}^{D}\right|^{2}-\left|\mathscr{M}^{M}\right|^{2}\right) \mathrm{d}^{4} p_{1} \mathrm{~d}^{4} p_{2} \\
& \quad=2 \iint \underbrace{\operatorname{Re}\left(\mathscr{M}\left(p_{1}, p_{2}\right)^{*} \mathscr{M}\left(p_{2}, p_{1}\right)\right)}_{\text {Interference term }} \mathrm{d}^{4} p_{1} \mathrm{~d}^{4} p_{2} \\
& \quad \propto m_{v}^{2}
\end{aligned}
$$

Practical Dirac-Majorana confusion theorem: By looking at the total decay rate or any other kinematic test of a process allowed in the SM, it is practically impossible to distinguish between the Dirac and Majorana neutrinos in the limit neutrino mass goes to zero.
No general proof
B. Kayser, Phys. Rev. D 26, 1662 (1982). independent of process
or observable

History trying to overcome DMCT, but only confirming

All for weak neutral current process in SM

$$
\begin{aligned}
& \gamma^{\star} \rightarrow \nu \bar{v} \\
& Z \rightarrow \nu \bar{v} \\
& e^{+} e^{-} \rightarrow \nu \bar{v} \\
& K^{+} \rightarrow \pi^{+} \nu \bar{v} \\
& e^{+} e^{-} \rightarrow \nu \bar{v} \gamma \\
& |e s>\rightarrow| g s>+\gamma \nu \bar{v} \\
& e^{-} \gamma \rightarrow e^{-} \nu \bar{\nu} \\
& \text { [B Kayser, PRD26(1982)] } \\
& \text { [RE Shrock, eConf(1982)] } \\
& \text { [E Ma, JT Pantaleone, PRD40(1989)] } \\
& \text { [JF Nieves, PB Pal, PRD32(1985)] ** } \\
& \text { [T Chabra, PR Babu, PRD46(1992)] ** } \\
& \text { [Y Yoshimura, PRD75(2007)], } \\
& \text { [JM Berryman etal, PRD98(2018)] } \\
& \text { ** All practically impossible to measure momenta of nu-nubar } \boldsymbol{\rightarrow} \text { Need integrate out } \boldsymbol{\rightarrow} \text { pDMCT }
\end{aligned}
$$

[0] B.Kayser,PRD26(1982)
[1] S.P.Rosen,PRL48(1982); CSK,etal. (2022)
[2] T.Chabra,PR.Babu,PRD46(1992)

Choose a process (decay/scattering)

Are the 4-momenta of ν and/or \bar{v} measurable or deducible?
involving neutrinos

1. There is no general proof, independent of process or observable, for this "theorem". 2. Shown to hold only in the presence of neutral current interactions allowed in the SM.
2. Not sacrosanct and can be violated under special circumstances.

No need to fully integrate over 4-momenta of v and/or \bar{v}.

Full integration over 4-momenta of
v and/or \bar{v} is necessary.
s the process

another Comment on pDMCT

* *

Is there smooth transition between Majorana to Dirac neutrinos under $m \rightarrow 0$ limit ??
(a) When $m=0$ both Dirac and Majorana neutrinos can be described as Weyl fermions. The reduction of neutrino degrees of freedom from 4 to 2 for $m=0$ is a discrete jump, and not a continuous change. So the massless neutrino is an entirely different species than a massive one even with extremely tiny mass.
(b) Dirac neutrino and antineutrino are fully distinguishable, while Majorana neutrino and antineutrino are quantum mechanically indistinguishable. There is no smooth limit that takes indistinguishable particles and makes them distinguishable. There is no intermediate state between distinguishable and indistinguishable particles.
(c) Majorana neutrino and antineutrino pair have to obey Fermi-Dirac statistics while Dirac neutrino and antineutrino pair do not. We emphasize that statistics of particles does not depend on a parameter like mass.

BACK-TO-BACK muons (ie. B2B $\boldsymbol{v}-\bar{v}$)

- experimentally observable exception to DMCT

Thought experiment, exception to DMCT Back-to-back muons (ie. B2B $v-\bar{v}$) Helicity consideration

Study on $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)$,

(a) For Dirac neutrinos: $v_{\mu} \equiv v^{D}, \bar{v}_{\mu} \equiv \bar{v}^{D}$.

(b) For Majorana neutrinos: $v_{\mu}=\bar{v}_{\mu} \equiv v^{M}$.

Thought experiment, exception to DMCT

$$
\text { CONSIDER the SM allowed decay } \quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{\nu}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right),
$$

At a special case when nu and nu-bar are collinear, $p_{1}=p_{2}$.

For Majorana case (Anti-symmetrization of nu-nubar): $\mathscr{M}_{\text {collinear }}^{M}=0$
For Dirac Case : in general $\mathscr{M}_{\text {collinear }}^{D} \neq 0$.

$$
\left.\left.\langle | \mathscr{M}_{\text {collinear }}^{D}\right|^{2}\right\rangle=64 G_{F}^{4}\left|\mathbb{F}_{a}\right|^{2}\left(p_{v} \cdot p_{+}\right)\left(p_{v} \cdot p_{-}\right), \text {not } \propto m_{v}^{2} .
$$

THEREFORE, in collinear case $\iint\left(\left|\mathscr{M}^{D}\right|^{2}-\left|\mathscr{M}^{M}\right|^{2}\right) \mathrm{d}^{4} p_{1} \mathrm{~d}^{4} p_{2}$ not $\propto m_{v}^{2}$.

Back-to-back muons, (easily measurable exception to DMCT)

$$
B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)
$$

In the rest frame of parent B meson,
IF muon- and muon+ are back-to back, ie. flying with 3 momenta of equal magnitude but opposite direction
\rightarrow nu and nu-bar also back-to-back

$$
\begin{gathered}
E_{1}=E_{2}=E_{v}=m_{B} / 2-E_{\mu} \\
m_{v v}^{2}=4 E_{v}^{2} \\
m_{\mu \mu}^{2}=\left(m_{B}-2 E_{v}\right)^{2} \\
Y_{m}=\sqrt{\left(m_{B} / 2-E_{v}\right)^{2}-m_{\mu}^{2}} \\
Y_{n}=\sqrt{E_{v}^{2}-m_{v}^{2}}
\end{gathered}
$$

\rightarrow All kinematic variables are calculable or measurable ,
Only the angle (between $v-\bar{v}$ and $\mu_{-}-\mu_{+}$) UNKNOWN

Need not integrate out nu-nubar full phase space, only unmeasurable angle (θ) integrate out

Helicity \& Chirality

and the smaller components are

$$
\begin{aligned}
& u_{C, L}^{(+)}(p)=+\frac{m}{2 E} \chi^{(+)}(\vec{p}), \\
& u_{C, R}^{(-)}(p)=-\frac{m}{2 E} \chi^{(-)}(\vec{p}), \\
& v_{C, R}^{(+)}(p)=-\frac{m}{2 E} \chi^{(-)}(\vec{p}), \\
& v_{C, L}^{(-)}(p)=+\frac{m}{2 E} \chi^{(+)}(\vec{p}) .
\end{aligned}
$$

$$
\mathrm{C} \mathrm{P}\left|v_{\ell}\left(\vec{s}, E_{v}, \vec{p}_{v}\right)\right\rangle=\eta_{P}\left|\bar{v}_{\ell}\left(\vec{s}, E_{v},-\vec{p}_{v}\right)\right\rangle
$$

$B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)$, to test parity violation \& CP conservation

Helicity Configuration of back-to-back muons

 in rest frame of \mathbf{B} in decay $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)$,
(a) Helicity configuration involving Dirac neutrinos $v_{\mu} \equiv v^{D}, \bar{v}_{\mu} \equiv \bar{v}^{D}$.

$$
\left|\mathscr{M}_{\leftrightarrow}^{D}\right|^{2} \propto \underbrace{(1-\cos \theta)^{2}}_{\text {Direct term }} .
$$

$$
\left|\mathscr{M}_{\leftrightarrow}^{M}\right|^{2} \propto \frac{1}{2}[\underbrace{(1-\cos \theta)^{2}}_{\text {Direct term }}+\underbrace{(1-\cos (\pi-\theta))^{2}}_{\text {Exchange term }}-\underbrace{O\left(m_{v}^{2}\right)}_{\text {Interference term }}]
$$

$$
\simeq 1+\cos ^{2} \theta
$$

(b) Helicity configuration involving Majorana neutrinos, $v_{\mu}=\bar{v}_{\mu} \equiv v^{M}$.

The antisymmetrization for Majorana case gives the exchange term (via $p_{1} \leftrightarrow p_{2}$ exchange) and is not associated with any helicity flip, as shown

Helicity Configuration of back-to-back muons

 in rest frame of \mathbf{B} in decay $B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)$,$$
\left|\mathscr{M}_{\leftrightarrow}^{D}\right|^{2} \propto \underbrace{(1-\cos \theta)^{2}}_{\text {Direct term }}
$$

$$
\left|\mathscr{M}_{\leftrightarrow}^{M}\right|^{2} \propto \frac{1}{2}[\underbrace{(1-\cos \theta)^{2}}_{\text {Direct term }}+\underbrace{(1-\cos (\pi-\theta))^{2}}_{\text {Exchange term }}-\underbrace{O\left(m_{v}^{2}\right)}_{\text {Interference term }}]
$$

$$
\simeq 1+\cos ^{2} \theta
$$

** Presently nu nu-bar totally missing, the angle $\boldsymbol{\theta}$ is completely unknown, therefore, need to integrate out. $\quad \rightarrow B R(M) \gg B R(D)$

Detailed study of $B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right), \quad-\quad \mathbf{B} 2 \mathbf{B}$ muons

(Comments on Measurement of angular distribution)
$\theta=$ angle between (mu mu-nu nu) \Rightarrow angle between (μ^{+}and \bar{v}) $\quad \quad$ ** Presently nu nu-bar totally missing
With futuristic detector (ie. neutrino near detector), v from μ^{-}and \bar{v} from μ^{+}can be detected!
(i) Assuming Dirac neutrino, $\quad v \neq \bar{v}$, the angle θ uniquely decided

$$
\left|\mathscr{M}_{\leftrightarrow}^{D}\right|^{2} \propto \underbrace{(1-\cos \theta)^{2}}_{\text {Direct term }} .
$$

(a) Helicity configuration involving Dirac neutrinos,
$v_{\mu} \equiv v^{D}, \bar{v}_{\mu} \equiv \bar{v}^{D}$.
(ii) Assuming Majorana neutrino, $v \equiv \bar{v}$, the angle not uniquely decided \Rightarrow need symmetrized

$$
\left|\mathscr{M}_{\leftrightarrow}^{M}\right|^{2} \propto \frac{1}{2}[\underbrace{(1-\cos \theta)^{2}}_{\text {Direct term }}+\underbrace{(1-\cos (\pi-\theta))^{2}}_{\text {Exchange term }}-\underbrace{O\left(m_{v}^{2}\right)}_{\text {Interference term }}] \simeq 1+\cos ^{2} \theta .
$$

DETAILED ANALYSIS \& DISCUSSION ON B2B MUONS

[CSK,MM,DS, arXiv://2106.11785 (PRD, in press)]
Detailed study of $B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)$,
Detailed study of $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right), \quad$ w/ B2B muons
Discussions on $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right), \quad$ w/ B2B muons

Detailed study of $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)$,

Doubly weak charged current process in SM

(a) For Dirac neutrinos: $v_{\mu} \equiv v^{D}, \bar{v}_{\mu} \equiv \bar{v}^{D}$

$$
\begin{aligned}
\mathscr{M}^{M} & =\frac{G_{F}^{2}}{2 \sqrt{2}}\left(H^{\alpha \beta} L_{\alpha \beta}-H^{\prime \alpha \beta} L_{\alpha \beta}^{\prime}\right) \\
& \equiv \frac{1}{\sqrt{2}}\left(\mathscr{Q}_{12}-\mathscr{Q}_{21}+\mathscr{R}_{12}-\mathscr{R}_{21}\right),
\end{aligned}
$$

(b) For Majorana neutrinos: $v_{\mu}=\bar{v}_{\mu} \equiv \nu^{M}$

Detailed study of $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)$,

Doubly weak charged current process in SM

(a) For Dirac neutrinos: $v_{\mu} \equiv v^{D}, \bar{v}_{\mu} \equiv \bar{v}^{D}$.

$$
\mathscr{M}^{D}=\frac{G_{F}^{2}}{2} H^{\alpha \beta} L_{\alpha \beta} \equiv \mathscr{Q}_{12}+\mathscr{R}_{12}
$$

$$
\begin{aligned}
\mathscr{M}^{M} & =\frac{G_{F}^{2}}{2 \sqrt{2}}\left(H^{\alpha \beta} L_{\alpha \beta}-H^{\prime \alpha \beta} L_{\alpha \beta}^{\prime}\right) \\
& \equiv \frac{1}{\sqrt{2}}\left(\mathscr{Q}_{12}-\mathscr{Q}_{21}+\mathscr{R}_{12}-\mathscr{R}_{21}\right),
\end{aligned}
$$

(b) For Majorana neutrinos: $v_{\mu}=\bar{v}_{\mu} \equiv \nu^{M}$.

Detailed study of $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)$,

$$
\begin{align*}
& L_{a \beta}=\left[\bar{u}\left(p_{p}\right) \gamma_{q}\left(1-\gamma^{5}\right) \nu\left(p_{1}\right)\right]\left[\bar{u}\left(p_{2}\right) \gamma_{\beta}\left(1-\gamma^{5}\right) \nu\left(p_{+}\right)\right] \quad L_{\alpha \beta}^{\prime}=\left[\bar{u}\left(p_{-}\right) \gamma_{a}\left(1-\gamma^{5}\right) \cup\left(p_{2}\right)\right]\left[\overline{\bar{u}}\left(p_{1}\right) \gamma_{\beta}\left(1-\gamma^{5}\right) \nu\left(p_{+}\right)\right] \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \mathscr{2}_{12}=\frac{G_{F}^{2}}{2}\left(\sum_{Q=u c s t} V_{Q b}^{*} V_{Q d} V_{Q}^{\nu \beta}\right) L_{\alpha \beta}=\frac{G_{F}^{2}}{2} H^{{ }^{1 \beta}} L_{\alpha \beta}, \\
& \mathbb{V}_{Q}^{(\prime) \alpha \beta}=F_{a}^{(\prime) Q} g^{\alpha \beta}+F_{b}^{() Q} p_{B}^{\alpha} p_{B}^{\beta}+i F_{c}^{()) Q} \epsilon^{\alpha \beta \mu v} q_{+\mu}^{(\prime)} q_{-v}^{(,)}, \\
& \mathbb{H}^{\alpha \beta}=\mathbb{F}_{a} g^{\alpha \beta}+\mathbb{F}_{b} p_{B}^{\alpha} p_{B}^{\beta}+i \mathbb{F}_{c} \epsilon^{\alpha \beta \mu v} q_{+\mu} q_{-v}, \quad \mathbb{F}_{i} \equiv \mathbb{F}_{i}\left(q_{+}^{2}, q_{-}^{2}\right)=\sum_{Q=u, c, t} V_{Q_{b}}^{*} V_{Q^{d}} F_{i}^{Q}\left(q_{+}^{2}, q_{-}^{2}\right), \\
& \mathscr{Q}_{21}=\frac{G_{F}^{2}}{2} \mathbb{H}^{\prime \alpha \beta} L_{\alpha \beta}^{\prime} \quad \mathbb{H}^{\prime \alpha \beta}=\mathbb{F}_{a}^{\prime} g^{\alpha \beta}+\mathbb{F}_{b}^{\prime} p_{B}^{\alpha} p_{B}^{\beta}+i \mathbb{F}_{c}^{\prime} \epsilon^{\alpha \beta \mu \nu} q_{+\mu}^{\prime} q_{-v}^{\prime},
\end{aligned}
$$

Detailed study of $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{\nu}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)$,

$$
\frac{\mathrm{d}^{5} \Gamma^{D / M}}{\mathrm{~d} m_{\mu \mu}^{2} \mathrm{~d} m_{v v}^{2} \mathrm{~d} \cos \theta_{m} \mathrm{~d} \cos \theta_{n} \mathrm{~d} \phi}=\frac{\left.\left.Y Y_{m} Y_{n}\langle | \mathscr{M}^{D / M}\right|^{2}\right\rangle}{(4 \pi)^{6} m_{B}^{2} m_{\mu \mu} m_{v v}},
$$

$$
\begin{aligned}
& Y=\frac{\sqrt{\lambda\left(m_{B}^{2}, m_{\mu \mu}^{2}, m_{\nu \nu}^{2}\right)}}{2 m_{B}}, \\
& Y_{m}=\frac{\sqrt{m_{\mu \mu}^{2}-4 m_{\mu}^{2}}}{2},
\end{aligned}
$$

After integrating out unobservable neutrino phase space

$$
Y_{n}=\frac{\sqrt{m_{v v}^{2}-4 m_{v}^{2}}}{2},
$$

$$
\frac{\mathrm{d}^{3} \Gamma^{M}}{\mathrm{~d} m_{\mu \mu}^{2} \mathrm{~d} m_{v v}^{2} \mathrm{~d} \cos \theta_{m}}-\frac{\mathrm{d}^{3} \Gamma^{D}}{\mathrm{~d} m_{\mu \mu}^{2} \mathrm{~d} m_{v v}^{2} \mathrm{~d} \cos \theta_{m}} \propto m_{v}^{2}, \quad \text { (confirming pDMCT) }
$$

Detailed study of $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)$,

Detailed study of $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)$,

$$
\begin{aligned}
& \frac{\mathrm{d}^{3} \Gamma^{M}}{\mathrm{~d} m_{\mu \mu}^{2} \mathrm{~d} m_{v v}^{2} \mathrm{~d} \cos \theta_{m}}-\frac{\mathrm{d}^{3} \Gamma^{D}}{\mathrm{~d} m_{\mu \mu}^{2} \mathrm{~d} m_{v v}^{2} \mathrm{~d} \cos \theta_{m}}=\frac{G_{F}^{4} Y Y_{m} Y_{n}}{2(4 \pi)^{6} m_{B}^{2} m_{\mu \mu} m_{v v}} \int_{-1}^{1} \int_{0}^{2 \pi} \mathrm{~d} \cos \theta_{n} \mathrm{~d} \phi \\
& \times\left(-\left|\mathbb{F}_{a}\right|^{2} S_{a a}^{M}-\left|\mathbb{F}_{b}\right|^{2} S_{b b}^{M}-\left|\mathbb{F}_{c}^{2}\right| S_{c c}^{M}-\left|\mathbf{F}_{+}\right|^{2} S_{p p}^{M}-\left|\mathbf{F}_{-}\right|^{2} S_{m m}^{M}+\left|\mathbb{F}_{a}^{\prime}\right|^{2} S_{a^{\prime} a^{\prime}}^{M}+\left|\mathbb{F}_{b}^{\prime}\right|^{2} S_{b^{\prime} b^{\prime}}^{M}+\left|\mathbb{F}_{c}^{\prime}\right|^{2} S_{c^{\prime} c^{\prime}}^{M}+\left|\mathbf{F}_{+}^{\prime}\right|^{2} S_{p^{\prime} p^{\prime}}^{M}+\left|\mathbf{F}_{-}^{\prime}\right|^{2} S_{m^{\prime} m^{\prime}}^{M}\right. \\
& -\operatorname{Re}\left(\mathbb{F}_{a} \mathbb{F}_{b}^{*}\right) R_{a b}^{M}-\operatorname{Re}\left(\mathbb{F}_{a} \mathbb{F}_{c}^{*}\right) R_{a c}^{M}-\operatorname{Re}\left(\mathbb{F}_{a} \mathbf{F}_{+}^{*}\right) R_{a p}^{M}-\operatorname{Re}\left(\mathbb{F}_{a} \mathbf{F}_{-}^{*}\right) R_{a m}^{M}-\operatorname{Re}\left(\mathbb{F}_{b} \mathbb{F}_{c}^{*}\right) R_{b c}^{M}-\operatorname{Re}\left(\mathbb{F}_{b} \mathbf{F}_{+}^{*}\right) R_{b p}^{M}-\operatorname{Re}\left(\mathbb{F}_{b} \mathbf{F}_{-}^{*}\right) R_{b m}^{M} \\
& -\operatorname{Re}\left(\mathbb{F}_{c} \mathbf{F}_{-}^{*}\right) R_{c m}^{M}+\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbb{F}_{b}^{\prime *}\right) R_{a^{\prime} b^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbb{F}_{c}^{\prime *}\right) R_{a^{\prime} c^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{+}^{\prime *}\right) R_{a^{\prime} p^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{-}^{\prime *}\right) R_{a^{\prime} m^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{b}^{\prime} \mathbb{F}_{c}^{\prime *}\right) R_{b^{\prime} c^{\prime}}^{M} \\
& +\operatorname{Re}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{+}^{\prime *}\right) R_{b^{\prime} p^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{-}^{\prime *}\right) R_{b^{\prime} m^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{-}^{\prime *}\right) R_{c^{\prime} m^{\prime}}^{M}-\operatorname{Re}\left(\mathbf{F}_{+} \mathbf{F}_{-}^{*}\right) R_{p m}^{M}+\operatorname{Re}\left(\mathbf{F}_{+}^{\prime} \mathbf{F}_{-}^{\prime *}\right) R_{p^{\prime} m^{\prime}}^{M} \\
& -\operatorname{Im}\left(\mathbb{F}_{a} \mathbb{F}_{b}^{*}\right) I_{a b}^{M}-\operatorname{Im}\left(\mathbb{F}_{a} \mathbb{F}_{c}^{*}\right) I_{a c}^{M}-\operatorname{Im}\left(\mathbb{F}_{a} \mathbf{F}_{-}^{*}\right) I_{a m}^{M}-\operatorname{Im}\left(\mathbb{F}_{b} \mathbb{F}_{c}^{*}\right) I_{b c}^{M}-\operatorname{Im}\left(\mathbb{F}_{c} \mathbf{F}_{+}^{*}\right) I_{c p}^{M}-\operatorname{Im}\left(\mathbb{F}_{c} \mathbf{F}_{-}^{*}\right) I_{c m}^{M} \\
& +\operatorname{Im}\left(\mathbb{F}_{a}^{\prime} \mathbb{F}_{b}^{\prime *}\right) I_{a^{\prime} b^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{a}^{\prime} \mathbb{F}_{c}^{\prime *}\right) I_{a^{\prime} c^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{-}^{\prime *}\right) I_{a^{\prime} m^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{b}^{\prime} \mathbb{F}_{c}^{* *}\right) I_{b^{\prime} c^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{+}^{\prime *}\right) I_{c^{\prime} p^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{-}^{\prime *}\right) I_{c^{\prime} m^{\prime}}^{M} \\
& +m_{v}^{2}\left(\operatorname{Re}\left(\mathbb{F}_{a} \mathbb{F}_{a}^{\prime *}\right) R_{a a^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{a} \mathbb{F}_{b}^{\prime *}\right) R_{a b^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{a} \mathbf{F}_{+}^{\prime *}\right) R_{a p^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{b} \mathbb{F}_{a}^{\prime *}\right) R_{b a^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{b} \mathbb{F}_{b}^{\prime *}\right) R_{b b^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{b} \mathbb{F}_{c}^{\prime *}\right) R_{b c^{\prime}}^{M}\right. \\
& +\operatorname{Re}\left(\mathbb{F}_{b} \mathbf{F}_{+}^{\prime *}\right) R_{b p^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{b} \mathbf{F}_{-}^{\prime *}\right) R_{b m^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{c} \mathbb{F}_{b}^{\prime *}\right) R_{c b^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{c} \mathbb{F}_{c}^{* *}\right) R_{c c^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{c} \mathbf{F}_{+}^{\prime *}\right) R_{c p^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{c} \mathbf{F}_{-}^{\prime *}\right) R_{c m^{\prime}}^{M} \\
& +\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{+}^{*}\right) R_{a^{\prime} p}^{M}+\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{-}^{*}\right) R_{a^{\prime} m}^{M}+\operatorname{Re}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{+}^{*}\right) R_{b^{\prime} p}^{M}+\operatorname{Re}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{-}^{*}\right) R_{b^{\prime} m}^{M}+\operatorname{Re}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{+}^{*}\right) R_{c^{\prime} p}^{M}+\operatorname{Re}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{-}^{*}\right) R_{c^{\prime} m}^{M} \\
& +\operatorname{Im}\left(\mathbb{F}_{a} \mathbb{F}_{c}^{\prime *}\right) I_{a c^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{a} \mathbf{F}_{-}^{\prime *}\right) I_{a m^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{b} \mathbf{F}_{+}^{\prime *}\right) I_{b p^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{b} \mathbf{F}_{-}^{\prime *}\right) I_{b m^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{c} \mathbb{F}_{a}^{\prime *}\right) I_{c a^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{c} \mathbb{F}_{c}^{\prime *}\right) I_{c c^{\prime}}^{M} \\
& \left.\left.+\operatorname{Im}\left(\mathbb{F}_{c} \mathbf{F}_{+}^{\prime *}\right) I_{c p^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{c} \mathbf{F}_{-}^{\prime *}\right) I_{c m^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{+}^{*}\right) I_{b^{\prime} p}^{M}+\operatorname{Im}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{-}^{*}\right) I_{b^{\prime} m}^{M}+\operatorname{Im}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{+}^{*}\right) I_{c^{\prime} p}^{M}+\operatorname{Im}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{-}^{*}\right) I_{c^{\prime} m}^{M}\right)\right) . \quad \propto m_{v}^{2},
\end{aligned}
$$

Detailed study of $B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right), \quad-\quad$ B2B muons (1)

Kinematics of back-to-back muons at B-rest frame

(ie. B2B nu-nubar)

$$
\begin{gathered}
E_{1}=E_{2}=E_{v}=m_{B} / 2-E_{\mu} \\
m_{v v}^{2}=4 E_{v}^{2} \\
m_{\mu \mu}^{2}=\left(m_{B}-2 E_{v}\right)^{2} \\
Y_{m}=\sqrt{\left(m_{B} / 2-E_{v}\right)^{2}-m_{\mu}^{2}} \\
Y_{n}=\sqrt{E_{v}^{2}-m_{v}^{2}}
\end{gathered}
$$

$$
\cos \theta_{n}=0
$$

$$
\phi=0
$$

$$
\theta_{m}=\pi / 2-\theta
$$

$$
\left(\cos \theta_{m}=\sin \theta\right)
$$

\Rightarrow Only $\left(\boldsymbol{E}_{\boldsymbol{\mu}}, \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}\right)$ are independent variable

Detailed study of $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right), \quad--\quad$ B2B muons (1-1)

$$
\begin{align*}
& \frac{\mathrm{d}^{3} \Gamma_{\leftrightarrow}^{D}}{\mathrm{~d} E_{\mu}^{2} \mathrm{~d} \sin \theta}-\frac{\mathrm{d}^{3} \Gamma_{\leftrightarrow}^{M}}{\mathrm{~d} E_{\mu}^{2} \mathrm{~d} \sin \theta}=\frac{G_{F}^{4} \sqrt{E_{\mu}^{2}-m_{\mu}^{2}}}{(4 \pi)^{6} m_{B} E_{\mu}}\left(\frac{m_{B}}{2}-E_{\mu}\right)^{2} \\
& \times\left(\left(\left|\mathbb{F}_{a}\right|^{2}-\left|\mathbb{F}_{a}^{\prime}\right|^{2}\right) \Delta_{a a}+\left(\left|\mathbb{F}_{b}\right|^{2}-\left|\mathbb{F}_{b}^{\prime}\right|^{2}\right) \Delta_{b b}+\left(\left|\mathbb{F}_{c}\right|^{2}-\left|\mathbb{F}_{c}^{\prime}\right|^{2}\right) \Delta_{c c}\right. \\
& +\left(\left|\mathbf{F}_{+}\right|^{2}-\left|\mathbf{F}_{+}^{\prime}\right|^{2}\right) \Delta_{p p}+\left(\left|\mathbf{F}_{-}\right|^{2}-\left|\mathbf{F}_{-}^{\prime}\right|^{2}\right) \Delta_{m m}+\left(\operatorname{Re}\left(\mathbb{F}_{a} \mathbb{F}_{b}^{*}\right)-\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbb{F}_{b}^{\prime *}\right)\right) \Delta_{a b} \\
& +\left(\operatorname{Re}\left(\mathbb{F}_{a} \mathbf{F}_{+}^{*}\right)-\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{+}^{\prime * *}\right)\right) \Delta_{a p}+\left(\operatorname{Re}\left(\mathbb{F}_{b} \mathbf{F}_{+}^{*}\right)-\operatorname{Re}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{+}^{\prime *}\right)\right) \Delta_{b p}+\left(\operatorname{Re}\left(\mathbb{F}_{a} \mathbf{F}_{-}^{*}\right)-\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{m}^{\prime *}\right)\right) \Delta_{a m} \\
& +\left(\operatorname{Re}\left(\mathbb{F}_{b} \mathbf{F}_{-}^{*}\right)-\operatorname{Re}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{-}^{\prime *}\right)\right) \Delta_{b m}+\left(\operatorname{Re}\left(\mathbb{F}_{c} \mathbf{F}_{-}^{*}\right)-\operatorname{Re}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{-}^{\prime *}\right)\right) \Delta_{c m}+\left(\operatorname{Re}\left(\mathbf{F}_{+} \mathbf{F}_{-}^{*}\right)-\operatorname{Re}\left(\mathbf{F}_{+}^{\prime} \mathbf{F}_{-}^{\prime *}\right)\right) \Delta_{p m} \\
& +\cos \theta\left(\left(\left|\mathbb{F}_{a}\right|^{2}+\left|\mathbb{F}_{a}^{\prime}\right|^{2}\right) \boldsymbol{\Sigma}_{a a}+\left(\left|\mathbb{F}_{b}\right|^{2}+\left|\mathbb{F}_{b}^{\prime}\right|^{2}\right) \boldsymbol{\Sigma}_{b b}+\left(\left|\mathbf{F}_{+}\right|^{2}+\left|\mathbf{F}_{+}^{\prime}\right|^{2}\right) \boldsymbol{\Sigma}_{p p}+\left(\left|\mathbf{F}_{-}\right|^{2}+\left|\mathbf{F}_{-}^{\prime}\right|^{2}\right) \boldsymbol{\Sigma}_{m m}\right. \\
& +\left(\operatorname{Re}\left(\mathbb{F}_{a} \mathbb{F}_{b}^{*}\right)+\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbb{F}_{b}^{\prime *}\right)\right) \Sigma_{a b}+\left(\operatorname{Re}\left(\mathbb{F}_{a} \mathbf{F}_{-}^{*}\right)+\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{m}^{\prime *}\right)\right) \Sigma_{a m} \\
& \left.\left.+\left(\operatorname{Re}\left(\mathbb{F}_{b} \mathbf{F}_{-}^{*}\right)+\operatorname{Re}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{-}^{\prime *}\right)\right) \Sigma_{b m}+\left(\operatorname{Re}\left(\mathbf{F}_{+} \mathbf{F}_{-}^{*}\right)+\operatorname{Re}\left(\mathbf{F}_{+}^{\prime} \mathbf{F}_{-}^{\prime *}\right)\right) \Sigma_{p m}\right)\right), \quad \neq \propto \boldsymbol{m}_{\boldsymbol{v}}^{2} \tag{47}
\end{align*}
$$

Detailed study of $B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right), \quad-\quad \mathbf{B} 2 \mathbf{B}$ muons (2)

$$
\left.\frac{\mathrm{d}^{3} \Gamma_{\leftrightarrow}^{D / M}}{\mathrm{~d} E_{\mu}^{2} \mathrm{~d} \sin \theta}=\left.\frac{2 \sqrt{E_{\mu}^{2}-m_{\mu}^{2}}}{(4 \pi)^{6} m_{B} E_{\mu}}\left(\left(\frac{m_{B}}{2}-E_{\mu}\right)^{2}-m_{v}^{2}\right)\langle | M_{\leftrightarrow}^{D / M}\right|^{2}\right\rangle,
$$

Consider a simple case for numerical purpose only:
(1) neglect muon \& neutrino mass \Rightarrow we consider only non-resonant contributions
(2) consider only dominant form factor, ($H^{\alpha \beta}=F_{a} g^{q \beta}+\mathbb{F}_{b} p_{B}^{\alpha} P_{B}^{\beta}+i \mathrm{~F}_{\mathrm{c}} \varepsilon^{q \beta \mu} q_{+\mu} q_{-r}$)
(3) assume the form factor to be a constant

$$
\begin{array}{r}
\frac{\mathrm{d}^{3} \Gamma_{\leftrightarrow}^{D}}{\mathrm{~d} E_{\mu}^{2} \mathrm{~d} \sin \theta}=\frac{G_{F}^{4}\left|\mathbb{F}_{a}\right|^{2}\left(m_{B}-2 E_{\mu}\right)^{4} K_{\mu}}{512 \pi^{6} m_{B} E_{u}}\left(E_{\mu}-K_{\mu} \cos \theta\right)^{2}, \\
\frac{\mathrm{~d}^{3} \Gamma_{\leftrightarrow}^{M}}{\mathrm{~d} E_{\mu}^{2} \mathrm{~d} \sin \theta}=\frac{G_{F}^{4}\left|\mathbb{F}_{a}\right|^{2}\left(m_{B}-2 E_{\mu}\right)^{4} K_{\mu}}{512 \pi^{6} m_{B} E_{\mu}}\left(E_{\mu}^{2}+K_{\mu}^{2} \cos ^{2} \theta\right), \\
K_{\mu}=\sqrt{E_{\mu}^{2}-m_{\mu}^{2}}
\end{array}
$$

(4) approximate $E_{\mu} \approx K_{\mu}$

$$
\begin{aligned}
& \frac{\mathrm{d}^{3} \Gamma_{\leftrightarrow}^{D}}{\mathrm{~d} E_{\mu}^{2} \mathrm{~d} \sin \theta}=\frac{G_{F}^{4}\left|\mathbb{F}_{a}\right|^{2}\left(m_{B}-2 E_{\mu}\right)^{4} E_{\mu}^{2}}{512 \pi^{6} m_{B}}(1-\cos \theta)^{2}, \\
& \frac{\mathrm{~d}^{3} \Gamma_{\leftrightarrow}^{M}}{\mathrm{~d} E_{\mu}^{2} \mathrm{~d} \sin \theta}=\frac{G_{F}^{4}\left|\mathbb{F}_{a}\right|^{2}\left(m_{B}-2 E_{\mu}\right)^{4} E_{\mu}^{2}}{512 \pi^{6} m_{B}}\left(1+\cos ^{2} \theta\right),
\end{aligned}
$$

Detailed study of $B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right), \quad-\quad$ B2B muons (3)

$$
\frac{512 \pi^{6} m_{B}}{G_{F}^{4}\left|\mathbb{F}_{a}\right|^{2}} \frac{\mathrm{~d}^{3} \Gamma_{\mu}^{D}}{\mathrm{~d} \mathrm{D}_{\mu}^{2} \sin \theta}\left(\mathrm{GeV}^{6}\right)
$$

$$
\frac{512 \pi^{6} m_{B}}{G_{F}^{4}\left|\mathbb{d}_{a}\right|^{2} \Gamma^{M}} \mathrm{~d}_{\mu}^{2} \mathrm{~d} \sin \theta\left(\mathrm{GeV}^{6}\right)
$$

(a) Three dimensional view of the differential decay rate for Dirac case with an appropriate normalization as mentioned.
(b) Three dimensional view of the differential decay rate for Majorana case with an appropriate normalization as mentioned.

Detailed study of $B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right), \quad-\quad$ B2B muons (4)

(d) Comparison of $\sin \theta$ distribution alone between Dirac and Majorana cases. Compare with Fig. 2.
** Presently nu nu-bar totally missing, the angle θ is completely unknown, therefore, need to integrate out. $\Rightarrow \quad B R(M)>B R(D)$

(a) Helicity configuration involving Dirac neutrinos, $v_{\mu} \equiv v^{D}, \bar{v}_{\mu} \equiv \bar{v}^{D}$.

(b) Helicity configuration involving Majorana neutrinos, $v_{\mu}=\bar{v}_{\mu} \equiv v^{M}$.

Detailed study of $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{\nu}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right), \quad$-- B2B muons (5)

Integrating over currently unobservable angle θ, we get

$$
\begin{aligned}
\frac{\mathrm{d}^{2} \Gamma_{\leftrightarrow}^{D}}{\mathrm{~d} E_{\mu}^{2}}= & \frac{G_{F}^{4}\left|\mathbb{F}_{a}\right|^{2}}{1536 \pi^{6} m_{B} E_{\mu}}\left(m_{B}-2 E_{\mu}\right)^{4} K_{\mu} \\
& \times\left(10 E_{\mu}^{2}-3 \pi E_{\mu} K_{\mu}-4 m_{\mu}^{2}\right), \\
\frac{\mathrm{d}^{2} \Gamma_{\leftrightarrow}^{M}}{\mathrm{~d} E_{\mu}^{2}}= & \frac{G_{F}^{4}\left|\mathbb{F}_{a}\right|^{2}}{1536 \pi^{6} m_{B} E_{\mu}}\left(m_{B}-2 E_{\mu}\right)^{4} K_{\mu}\left(10 E_{\mu}^{2}-4 m_{\mu}^{2}\right),
\end{aligned}
$$

$$
\text { ** } \quad B R(D-M)=\int\left(D_{\leftrightarrow}-M_{\leftrightarrow}\right) \neq m_{v}^{2}
$$

due to very restricted phase space of B2B muons

(c) Comparison of muon energy distributions between Dirac and Majorana cases in the back-to-back scenario.

Discussions on $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{\nu}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right),--\mathbf{B} 2 \mathbf{B}$ muons (1)

(1) Branching ratio of B 2 B muons
(only w/ non-resonant contributions)

$$
\begin{aligned}
& \mathcal{B}_{\leftrightarrow}^{D}=\Gamma_{\leftrightarrow}^{D} / \Gamma_{B} \approx 1.1 \times 10^{-12} \mathrm{GeV}^{-2} \times\left|\mathbb{F}_{a}\right|^{2}, \\
& \mathcal{B}_{\leftrightarrow}^{M}=\Gamma_{\leftrightarrow}^{M} / \Gamma_{B} \approx 1.8 \times 10^{-11} \mathrm{GeV}^{-2} \times\left|\mathbb{F}_{a}\right|^{2},
\end{aligned}
$$

(2) Adding $B^{0}\left(\bar{B}^{0}\right) \rightarrow \mu^{-} \mu^{+} v_{\mu} \bar{v}_{\mu} \quad B^{0}\left(\bar{B}^{0}\right) \rightarrow \dot{e}^{+} \dot{e}^{-} v_{e} \bar{v}_{e}^{\prime}, \quad$ increasing BR four-fold
(3) Futuristic detectors, e.g. FASER, MATHUSLA, SHiP, GAZELLA, could enable to probe the angular distribution, $\quad D \propto(1-\cos \theta)^{2}, M \propto\left(1+\cos \theta^{2}\right)$
(4) Bg processes, B2B muons + "missing momentum" 1. $B^{0} \rightarrow \tau^{+} v_{\tau} \mu^{-} \bar{v}_{\mu} \rightarrow \mu^{-} \mu^{+} v_{\mu} \bar{y}_{\mu} v_{\tau} \bar{v}_{\tau}$, and small due to additional vertices, phase space suppression
2. $B^{0} \rightarrow \tau^{+} \tau^{-} \rightarrow \mu^{-} \mu^{+} \nu_{\mu} \bar{\nu}_{\mu} v_{T} \overline{\bar{T}}_{\tau}$.
(5) Many similar processes,

$$
\begin{gathered}
H \rightarrow \mu^{+} \mu^{-} v_{\mu} \bar{v}_{\mu}, D \rightarrow \mu^{+} \mu^{-} v_{\mu} \bar{v}_{\mu}, J / \psi \rightarrow \mu^{+} \mu^{-} v_{\mu} \bar{v}_{\mu} \\
\psi(2 S) \rightarrow \pi^{+} \pi^{-} v_{\tau} \bar{v}_{\tau}, K^{0} \rightarrow \mu^{+} \mu^{-} v_{\mu} \bar{v}_{\mu}, \cdot
\end{gathered}
$$

Discussions on $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{\nu}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right),--\mathbf{B} 2 \mathbf{B}$ muons (2)

Further Discussions:

(1) Discussion on Form Factor
(2) On Collinear case: $\quad\left(p_{1}=p_{2}\right), m_{\nu v}^{2}=4 m_{v}^{2} \approx 0 \quad$ [missing mass $\wedge 2=0$, measurable]
(3) On pDMCT
(4) On neutrino mass generation mechanism, scale dependence, mixing matrix (PMNS), any symmetry on phase space, ...
(5) On non-zero nu mass, Helicity-Chirality, Weyl-Dirac-Majorana, ...

Comments on New physics effects to pDMCT

Choose Process: $X\left(p_{X}\right) \rightarrow Y\left(p_{Y}\right) v\left(p_{1}\right) \bar{v}\left(p_{2}\right)$
(a) $X, Y=$ single/multi-particle states, Y can also be null,
(b) 4-momenta p_{X}, p_{Y} are well measured.

Decay Amplitudes: Showing p_{1}, p_{2} dependencies alone for brevity of expression,
(a) DIRAC case: $\mathscr{M}^{D}=\mathscr{M}\left(p_{1}, p_{2}\right)$,
(b) MAJORANA case: $\mathscr{M}^{M}=\frac{1}{\sqrt{2}}(\underbrace{\mathscr{M}\left(p_{1}, p_{2}\right)}_{\text {Direct amplitude }}-\underbrace{\mathscr{M}\left(p_{2}, p_{1}\right)}_{\text {Exchange amplitude }})$.

$$
\left|\mathscr{M}^{D}\right|^{2}-\left|\mathscr{M}^{M}\right|^{2}=\frac{1}{2}(\underbrace{\left|\mathscr{M}\left(p_{1}, p_{2}\right)\right|^{2}}_{\text {Direct term }}-\underbrace{\left|\mathscr{M}\left(p_{2}, p_{1}\right)\right|^{2}}_{\text {Exchange term }})+\underbrace{\operatorname{Re}\left(\mathscr{M}\left(p_{1}, p_{2}\right)^{*} \mathscr{M}\left(p_{2}, p_{1}\right)\right)}_{\text {Interference term }}
$$

$$
\text { In general, } \underbrace{\left|\mathscr{M}\left(p_{1}, p_{2}\right)\right|^{2}}_{\text {Direct term }} \neq \underbrace{\left|\mathscr{M}\left(p_{2}, p_{1}\right)\right|^{2}}_{\text {Exchange term }} . \quad \text { (e.g. SM z-> nu nu-bar) }
$$

$$
\text { Special cases } \underbrace{\left|\mathscr{M}\left(p_{1}, p_{2}\right)\right|^{2}}_{\text {Direct term }}=\underbrace{\left|\mathscr{M}\left(p_{2}, p_{1}\right)\right|^{2}}_{\text {Exchange term }}, \quad \boldsymbol{Z} \rightarrow \boldsymbol{v} \bar{v}
$$

$$
\underbrace{\left|\mathscr{M}\left(p_{1}, p_{2}\right)\right|^{2}}_{\text {Direct term }}=\underbrace{\left|\mathcal{M}\left(p_{2}, p_{1}\right)\right|^{2}}_{\text {Exchange term }} \Rightarrow \begin{cases}p_{1}=p_{2} \equiv p, & (\text { special scenario } \boxed{A}) \\ \mathscr{M}\left(p_{1}, p_{2}\right)=+\mathscr{M}\left(p_{2}, p_{1}\right), & (\text { special scenario } \boxed{B}) \\ \mathscr{M}\left(p_{1}, p_{2}\right)=-\mathscr{M}\left(p_{2}, p_{1}\right) . & (\text { special scenario } \boxed{\mathrm{C}})\end{cases}
$$

$\mathrm{A} \quad \Longrightarrow\left|\mathscr{M}_{\text {collinear }}^{D}\right|^{2}-\left|\mathcal{M}_{\text {collinear }}^{M}\right|^{2}=|\mathscr{M}(p, p)|^{2} \neq 0$.
$\mathrm{B} \quad \Longrightarrow\left|\mathscr{M}_{\text {symmetric }}^{D}\right|^{2}-\left|\mathscr{M}_{\text {symmetric }}^{M}\right|^{2}=\left|\mathscr{M}\left(p_{1}, p_{2}\right)\right|^{2} \neq 0$.

$$
\mathscr{M}\left(p_{1}, p_{2}\right) \propto \begin{cases}{\left[\bar{u}\left(p_{1}\right) \gamma^{\alpha} v\left(p_{2}\right)\right],} & \text { (neutral vector current) } \\ {\left[\bar{u}\left(p_{1}\right) \sigma^{\alpha \beta} v\left(p_{2}\right)\right],} & \text { (neutral tensor current) }\end{cases}
$$

$$
\mathrm{C} \Rightarrow\left|\mathscr{M}_{\text {anti-symm }}^{D}\right|^{2}-\left|\mathscr{M}_{\text {anti-symm }}^{M}\right|^{2}=-\left|\mathcal{M}\left(p_{1}, p_{2}\right)\right|^{2} \neq 0
$$

$$
\mathscr{M}\left(p_{1}, p_{2}\right) \propto \begin{cases}{\left[\bar{u}\left(p_{1}\right) v\left(p_{2}\right)\right],} & \text { (neutral scalar current) } \\ {\left[\bar{u}\left(p_{1}\right) \gamma^{5} v\left(p_{2}\right)\right],} & \text { (neutral pseudo-scalar current) } \\ {\left[\bar{u}\left(p_{1}\right) \gamma^{a} \gamma^{5} v\left(p_{2}\right)\right],} & \text { (neutral axial-vector current) }\end{cases}
$$

$$
Z \rightarrow v \bar{v} \quad\left|\mathcal{M}^{D}\right|^{2}-\left|\mathcal{M}^{M}\right|^{2}=\frac{g_{Z}^{2}}{3}\left(\left(C_{V}^{2}-C_{A}^{2}\right)\left(m_{Z}^{2}+2 m_{v}^{2}\right)+6 C_{A}^{2} m_{v}^{2}\right)
$$

$$
C_{V}=C_{A}=\frac{1}{2} \quad\left|\mathscr{M}^{D}\right|^{2}-\left|\mathscr{M}^{M}\right|^{2}=\frac{g_{Z}^{2}}{2} m_{v}^{2}
$$

SUMMARY

Conclusion
Acknowledgements

Conclusion

(1) We consider the B decay, $B^{0} \rightarrow \mu^{-} \mu^{+} v_{\mu} \bar{v}_{\mu}$, implementing the Fermi-Dirac statistics to find the difference between Dirac and Majorana neutrino, and to test the practical Dirac-Majorana Confusion Theorem.
(2) If we consider the special kinematic configuration of back-to-back muons in the B rest frame, there exists striking difference between D and M cases, which do not depend on neutrino mass, hence, overcoming pDMCT.
(3) We give full details of analysis, including resonant and non-resonant contributions, tiny neutrino mass dependence, helicity consideration, etc, also confirming pDMC if we integrate out full nu nu-bar phase space.
(4) Finally, we give similar decay examples, such as Higgs, K, D, J/psi, etc.

Conclusion - Final Comment

** The neutrino-less double beta decay (NDBD) has a limitation that it is dependent on the unknown tiny mass of the neutrino. If it is too small there is no possibility of establishing the nature of the neutrino through NDBD. Our proposals are the only viable alternatives to NDBD as far as probing Majorana nature of sub-eV active neutrinos is concerned.
[0] B.Kayser,PRD26(1982)
[1] S.P.Rosen,PRL48(1982); CSK,etal. (2022)
[2] T.Chabra,PR.Babu,PRD46(1992)

Choose a process (decay/scattering)

Are the 4-momenta of ν and/or \bar{v} measurable or deducible?
involving neutrinos

1. There is no general proof, independent of process or observable, for this "theorem".
2. Shown to hold only in the presence of neutral current interactions allowed in the SM.
3. Not sacrosanct and can be violated under special circumstances.

No need to fully integrate over 4-momenta of v and/or \bar{v}.

Full integration over 4-momenta of
v and/or \bar{v} is necessary.
s the process

Conclusion - Another Final Comment

** 1. Practical Dirac Majorana confusion theorem: It is believed to suggest that all difference between Dirac and Majorana neutrinos must be proportional to some power of neutrino mass (m_{v}).

Truth: (a) There is no model-independent, process-independent and observableindependent proof of this so-called "theorem". All processes where it was shown to hold involved full integration over the 4-momenta of missing neutrinos.
(b) Our manuscript is a testament to the fact that this "theorem" can be overcome, if energy and/or momentum of neutrino can be inferred or measured. The interesting question is to find out a way to realize this, which we do by measuring muon energy in the back-to-back muons configuration in the B rest frame, $E_{v}=m_{B} / 2-E_{\mu}$.

Conclusion - Another Final Comment

** 2. Massless neutrino limit: It is believed that there should be smooth transition between Majorana and Dirac neutrinos under $m_{v} \rightarrow 0$ limit.

Truth: (a) Dirac neutrino and antineutrino are fully distinguishable, while Majorana neutrino and antineutrino are quantum mechanically indistinguishable. There is no smooth limit that takes indistinguishable particles and makes them distinguishable. There is no intermediate state between distinguishable and indistinguishable particles.
(b) The reduction of neutrino degrees of freedom from 4 to 2 for $m_{v} \rightarrow 0$ is a discrete jump, and not a continuous change. So the massless neutrino is an entirely different species than the massive one even with extremely tiny mass. Therefore, the presumed smooth transitional difference between Majorana and Dirac neutrinos at $m_{v} \rightarrow 0$ is only a misperception.
(c) Majorana neutrino and antineutrino pair have to obey Fermi-Dirac statistics while Dirac neutrino and antineutrino pair do not. We emphasize that statistics of particles does not depend on a parameter like mass, but its spin.

MEET OUR COLLABORATORS

Choong Sun Kim
Professor

M V N Murthy
Professor

Dibyakrupa Sahoo
Postdoctor

Back-up (Details)

Helicity \& Chirality
Helicity configuration of back-to-back muons
Detailed study of $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)$,
Back-to-back muons in B-rest frame

Helicity \& Chirality

Dirac equation

A free fermion of mass m is described by a fermionic field $\psi(x)$ which satisfies the Dirac equation,

$$
\begin{equation*}
(i \not \partial-m) \psi(x)=0, \tag{1}
\end{equation*}
$$

where $\not \partial \equiv \gamma^{\mu} \partial_{\mu}$ with the Dirac γ matrices having two useful representations:

Dirac representation:

$$
\gamma_{D}^{0}=\left(\begin{array}{cc}
\mathbf{1} & \mathbf{0} \tag{2}\\
\mathbf{0} & -\mathbf{1}
\end{array}\right), \quad \gamma_{D}^{i}=\left(\begin{array}{cc}
\mathbf{0} & \sigma^{i} \\
-\sigma^{i} & \mathbf{0}
\end{array}\right),
$$

and

$$
\gamma_{D}^{5} \equiv i \gamma_{D}^{0} \gamma_{D}^{1} \gamma_{D}^{2} \gamma_{D}^{3}=\left(\begin{array}{ll}
\mathbf{0} & \mathbf{1} \tag{3}\\
\mathbf{1} & \mathbf{0}
\end{array}\right),
$$

Weyl or Chiral representation:

$$
\gamma_{C}^{0}=\left(\begin{array}{cc}
\mathbf{0} & -1 \tag{4}\\
-1 & \mathbf{0}
\end{array}\right), \quad \gamma_{C}^{i}=\left(\begin{array}{cc}
\mathbf{0} & \sigma^{i} \\
-\sigma^{i} & \mathbf{0}
\end{array}\right),
$$

and

$$
\gamma_{C}^{5} \equiv i \gamma_{C}^{0} \gamma_{C}^{1} \gamma_{C}^{2} \gamma_{C}^{3}=\left(\begin{array}{cc}
\mathbf{1} & \mathbf{0} \tag{5}\\
\mathbf{0} & -1
\end{array}\right)
$$

where $i=1,2,3,1=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), 0=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, and the Pauli σ matrices are given by $\sigma^{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma^{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$, and $\sigma^{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
Note:
$\gamma_{D}^{i}=\gamma_{C}^{i}, \gamma_{D}^{0}=\gamma_{C}^{5}$ and $\gamma_{D}^{5}=-\gamma_{C}^{0}$.

Helicity \& Chirality

Helicity / Spin projection operator

For a spin $1 / 2$ fermion, the spin could have projection along the direction of 3-momentum (helicity $\equiv h=+1$) or opposite to it $(h=-1)$. The helicity operator is given by

$$
\begin{equation*}
\widehat{h} \equiv \frac{\vec{S} \cdot \vec{P}}{s|\vec{P}|}, \tag{6}
\end{equation*}
$$

where \vec{S} is the spin operator and \vec{P} is the 3-momentum operator and $s=1 / 2$ for the spin $1 / 2$ fermion. Thus, the field $\psi(x)$ can be split into a positive helicity part $\psi^{(+)}(x)$ and a negative helicity part $\psi^{(-)}(x)$ which are eigenfunctions of the helicity operator, i.e.

$$
\begin{equation*}
\widehat{h} \psi^{(h)}(x)=h \psi^{(h)}(x), \tag{7}
\end{equation*}
$$

for $h= \pm 1$, and

$$
\begin{equation*}
\psi(x)=\psi^{(+)}(x)+\psi^{(-)}(x) \tag{8}
\end{equation*}
$$

Chirality projection operator

The matrix γ^{5} is the chirality matrix. If $\psi_{R}(x)$ and $\psi_{L}(x)$ are the right and left chiral fields, then they satisfy the following eigenvalue equations,

$$
\begin{align*}
\gamma^{5} \psi_{R}(x) & =+\psi_{R}(x), \tag{9}\\
\gamma^{5} \psi_{L}(x) & =-\psi_{L}(x), \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
\psi(x)=\psi_{R}(x)+\psi_{L}(x) \tag{11}
\end{equation*}
$$

In other words,

$$
\begin{align*}
& \psi_{R}(x)=\frac{1+\gamma^{5}}{2} \psi(x) \equiv P_{R} \psi(x), \tag{12}\\
& \psi_{L}(x)=\frac{1-\gamma^{5}}{2} \psi(x) \equiv P_{L} \psi(x), \tag{13}
\end{align*}
$$

Helicity \& Chirality

where, in the chiral representation, we have

$$
\begin{align*}
& P_{R}=\frac{1+\gamma^{5}}{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \tag{14}\\
& P_{L}=\frac{1-\gamma^{5}}{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) . \tag{15}
\end{align*}
$$

Writing the general 4-component Dirac spinor ψ in terms of two 2-component (Weyl) spinors χ_{R} and χ_{L} as

$$
\begin{equation*}
\psi=\binom{\chi_{R}}{\chi_{L}} \tag{16}
\end{equation*}
$$

we get (in the chiral representation)

$$
\begin{equation*}
\psi_{R}=P_{R} \psi=\binom{\chi_{R}}{0}, \quad \psi_{L}=P_{L} \psi=\binom{0}{\chi_{L}} \tag{17}
\end{equation*}
$$

Thus the operators P_{R} and P_{L} are called the chirality projection operators. The chiral spinors ψ_{R} and ψ_{L} satisfy the field equations,

$$
\begin{align*}
& i \not \partial \psi_{R}=m \psi_{L} \tag{18}\\
& i \nexists \psi_{L}=m \psi_{R} . \tag{19}
\end{align*}
$$

This shows that space-time evolution of the chiral spinors ψ_{R} and ψ_{L} are related to one another by the mass m. If we consider the case of massless fermions, i.e. $m=0$, then we obtain the Weyl equations:

$$
\begin{align*}
& i \not \partial \psi_{R}=0 \tag{20}\\
& i \not \partial \psi_{L}=0 . \tag{21}
\end{align*}
$$

Helicity \& Chirality

Dirac spinors

For both helicity projections, we can have positive and negative frequency solutions of the Dirac equation. Thus,

$$
\begin{align*}
\psi^{(h)}(x)=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E} & {\left[a^{(h)}(p) u^{(h)}(p) e^{-i p \cdot x}\right.} \\
& \left.+b^{(h) \dagger}(p) v^{(h)}(p) e^{i p \cdot x}\right] \tag{22}
\end{align*}
$$

where the coefficients $a^{(h)}(p)$ and $b^{(h)}(p)$ are given by,

$$
\begin{align*}
& a^{(h)}(p)=\int d^{3} x u^{(h) \dagger}(p) \psi(x) e^{i p \cdot x}, \tag{23}\\
& b^{(h)}(p)=\int d^{3} x \psi^{\dagger}(x) u^{(h)}(p) e^{i p \cdot x}, \tag{24}
\end{align*}
$$

and they satisfy the condition that

$$
\int \frac{d^{3} p}{(2 \pi)^{3} 2 E} \sum_{h= \pm 1}\left[\left|a^{(h)}(p)\right|^{2}+\left|b^{(h)}(p)\right|^{2}\right]=1
$$

The Dirac equations satisfied by the four 4-component Dirac spinors $u^{(h)}(p)$ and $v^{(h)}(p)$ are

$$
\begin{align*}
& (p-m) u^{(h)}(p)=0, \tag{26}\\
& (p+m) v^{(h)}(p)=0, \tag{27}
\end{align*}
$$

where $\not p \equiv \gamma^{\mu} p_{\mu}$. For the Dirac spinor associated with either positive or negative frequency solution, we can further distinguish the left and right chiral spinors, i.e.

$$
\begin{align*}
u^{(h)}(p) & =u_{R}^{(h)}(p)+u_{L}^{(h)}(p), \tag{28}\\
v^{(h)}(p) & =v_{R}^{(h)}(p)+v_{L}^{(h)}(p) . \tag{29}
\end{align*}
$$

Let us introduce the 2 -component helicity eigenstate spinors $\chi^{(h)}(\vec{p})$ which satisfy the eigenvalue equation

$$
\begin{equation*}
\frac{\vec{p} \cdot \vec{\sigma}}{|\vec{p}|} \chi^{(h)}(\vec{p})=h \chi^{(h)}(\vec{p}) . \tag{30}
\end{equation*}
$$

The explicit form of Dirac spinors can be written using these 2 -component spinors. The explicit form of Dirac spinors also depends on the representation of the Dirac γ matrices.

Helicity \& Chirality

(1) In the Dirac representation we have,

$$
\begin{align*}
u_{D}^{(h)}(p) & =\binom{\sqrt{E+m} \chi^{(h)}(\vec{p})}{h \sqrt{E-m} \chi^{(h)}(\vec{p})} \\
& =\sqrt{E+m}\binom{\chi^{(h)}(\vec{p})}{h \frac{|\vec{p}|}{E+m} \chi^{(h)}(\vec{p})} \tag{31}\\
v_{D}^{(h)}(p) & =\binom{-\sqrt{E-m} \chi^{(-h)}(\vec{p})}{h \sqrt{E+m} \chi^{(-h)}(\vec{p})} \\
& =\sqrt{E+m}\binom{-\frac{|\vec{p}|}{E+m} \chi^{(-h)}(\vec{p})}{h \chi^{(-h)}(\vec{p})} . \tag{32}
\end{align*}
$$

For non-relativistic case we have $|\vec{p}| \ll m$ and $E \simeq m$, such that

$$
\begin{align*}
& u_{D}^{(h)}(p)=\sqrt{2 m}\binom{\chi^{(h)}(\vec{p})}{h \frac{|\vec{p}|}{2 m} \chi^{(h)}(\vec{p})}, \tag{33}\\
& v_{D}^{(h)}(p)=\sqrt{2 m}\binom{-\frac{|\vec{p}|}{2 m} \chi^{(-h)}(\vec{p})}{h \chi^{(-h)}(\vec{p})} . \tag{34}
\end{align*}
$$

Since, $\frac{|\vec{p}|}{2 m} \ll 1$, in the non-relativistic case, the two upper components of $u^{(h)}(p)$ are called the larger components and the two lower components are called the smaller components. The opposite is true for $v^{(h)}(p)$. This makes Dirac representation a useful choice while studying non-relativistic fermions.

Helicity \& Chirality

(2) In the Weyl or Chiral representation we have

$$
\begin{align*}
& u_{C}^{(h)}(p)=\binom{-\sqrt{E+h|\vec{p}|} \chi^{(h)}(\vec{p})}{\sqrt{E-h|\vec{p}|} \chi^{(h)}(\vec{p})}, \tag{35}\\
& v_{C}^{(h)}(p)=-h\binom{\sqrt{E-h|\vec{p}|} \chi^{(-h)}(\vec{p})}{\sqrt{E+h|\vec{p}|} \chi^{(-h)}(\vec{p})} . \tag{36}
\end{align*}
$$

Thus,

$$
\begin{aligned}
u_{C}^{(+)}(p) & =\binom{-\sqrt{E+|\vec{p}|} \chi^{(+)}(\vec{p})}{\sqrt{E-|\vec{p}|} \chi^{(+)}(\vec{p})} \\
& =\sqrt{E+|\vec{p}|}\binom{-\chi^{(+)}(\vec{p})}{\frac{m}{E+|\vec{p}|} \chi^{(+)}(\vec{p})},
\end{aligned}
$$

$$
u_{C}^{(-)}(p)=\binom{-\sqrt{E-|\vec{p}|} \chi^{(-)}(\vec{p})}{\sqrt{E+|\vec{p}|} \chi^{(-)}(\vec{p})}
$$

$$
\begin{aligned}
&=\sqrt{E+|\vec{p}|}\binom{-\frac{m}{E+|\vec{p}|} \chi^{(-)}(\vec{p})}{\chi^{(-)}(\vec{p})}, \\
& v_{C}^{(+)}(p)=-\binom{\sqrt{E-|\vec{p}|} \chi^{(-)}(\vec{p})}{\sqrt{E+|\vec{p}|} \chi^{(-)}(\vec{p})}
\end{aligned}
$$

$$
\begin{equation*}
=-\sqrt{E+|\vec{p}|}\binom{\frac{m}{E+|\vec{p}|} \chi^{(-)}(\vec{p})}{\chi^{(-)}(\vec{p})} \tag{39}
\end{equation*}
$$

$$
v_{C}^{(-)}(p)=\binom{\sqrt{E+|\vec{p}|} \chi^{(+)}(\vec{p})}{\sqrt{E-|\vec{p}|} \chi^{(+)}(\vec{p})}
$$

$$
\begin{equation*}
=\sqrt{E+|\vec{p}|}\binom{\chi^{(+)}(\vec{p})}{\frac{m}{E+|\vec{p}|} \chi^{(+)}(\vec{p})} \tag{40}
\end{equation*}
$$

Helicity \& Chirality

For ultra-relativistic case we have $m \ll E$ and $\vec{p} \simeq E$, such that

$$
\begin{gather*}
u_{C}^{(+)}(p)=\sqrt{2 E}\binom{-\chi^{(+)}(\vec{p})}{\frac{m}{2 E} \chi^{(+)}(\vec{p})}, \tag{41}\\
u_{C}^{(-)}(p)=\sqrt{2 E}\binom{-\frac{m}{2 E} \chi^{(-)}(\vec{p})}{\chi^{(-)}(\vec{p})}, \tag{42}\\
v_{C}^{(+)}(p)=-\sqrt{2 E}\binom{\frac{m}{2 E} \chi^{(-)}(\vec{p})}{\chi^{(-)}(\vec{p})}, \tag{43}\\
v_{C}^{(-)}(p)=\sqrt{2 E}\binom{\chi^{(+)}(\vec{p})}{\frac{m}{2 E} \chi^{(+)}(\vec{p})} \tag{44}
\end{gather*}
$$

Since, in the chiral representation, the upper two components of the 4-component Dirac spinor form the Right Weyl spinor and the lower two components form the Left Weyl spinor, let us introduce the following notation,

$$
\begin{equation*}
u_{C}^{(h)}(p)=\sqrt{2 E}\binom{u_{C, R}^{(h)}(p)}{u_{C, L}^{(h)}(p)}, \quad v_{C}^{(h)}(p)=\sqrt{2 E}\binom{v_{C, R}^{(h)}(p)}{v_{C, L}^{(h)}(p)} \tag{45}
\end{equation*}
$$

Using this notation and using the fact that for ultrarelativistic case $\frac{m}{2 E} \ll 1$, it is easy to show that the larger components are

$$
\begin{align*}
& u_{C, R}^{(+)}(p)=-\chi^{(+)}(\vec{p}), \tag{46a}\\
& u_{C, L}^{(-)}(p)=+\chi^{(-)}(\vec{p}), \tag{46b}\\
& v_{C, L}^{(+)}(p)=-\chi^{(-)}(\vec{p}), \tag{46c}\\
& v_{C, R}^{(-)}(p)=+\chi^{(+)}(\vec{p}), \tag{46d}
\end{align*}
$$

Helicity \& Chirality

and the smaller components are

$$
\begin{align*}
& u_{C, L}^{(+)}(p)=+\frac{m}{2 E} \chi^{(+)}(\vec{p}), \tag{47a}\\
& u_{C, R}^{(-)}(p)=-\frac{m}{2 E} \chi^{(-)}(\vec{p}), \tag{47b}\\
& v_{C, R}^{(+)}(p)=-\frac{m}{2 E} \chi^{(-)}(\vec{p}), \tag{47c}\\
& v_{C, L}^{(-)}(p)=+\frac{m}{2 E} \chi^{(+)}(\vec{p}) . \tag{47d}
\end{align*}
$$

In simple terms, these equations state that for a fermionic particle in ultra-relativistic case:
(i) positive helicity state is mostly right-handed, and
(ii) negative helicity state is mostly left-handed.

Similarly, for a fermionic anti-particle in ultra-relativistic case:
(i) positive helicity state is mostly left-handed, and
(ii) negative helicity state is mostly right-handed.
$\mathrm{CP}\left|v_{\ell}\left(\vec{s}, E_{v}, \vec{p}_{v}\right)\right\rangle=\eta_{P}\left|\bar{v}_{\ell}\left(\vec{s}, E_{v},-\vec{p}_{v}\right)\right\rangle$,

Helicity Configuration of back-to-back muons

Helicity-flip (X)

Momenta exchange (0)

Detailed study of $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)$,

$$
\begin{aligned}
& \frac{\mathrm{d}^{5} \Gamma^{D / M}}{\mathrm{~d} m_{\mu \mu}^{2} \mathrm{~d} m_{v v}^{2} \mathrm{~d} \cos \theta_{m} \mathrm{~d} \cos \theta_{n} \mathrm{~d} \phi}=\frac{\left.\left.Y Y_{m} Y_{n}\langle | \mathscr{M}^{D / M}\right|^{2}\right\rangle}{(4 \pi)^{6} m_{B}^{2} m_{\mu \mu} m_{v v}} \\
& \left.\left.\langle | \mathcal{M}^{D}\right|^{2}\right\rangle=G_{F}^{4}\left(\left|\mathbb{F}_{a}^{2}\right|^{2} S_{a a}^{D}+\left|\mathbb{F}_{b}\right|^{2} S_{b b}^{D}+\left|\mathbb{F}_{c}^{2}\right| S_{c c}^{D}+\left|\mathbb{F}_{+}\right|^{2} S_{p p}^{D}+\left|\mathbb{F}_{-}\right|^{2} S_{m m}^{D}+\operatorname{Re}\left(\mathbb{F}_{a} \mathbb{F}_{b}^{*}\right) R_{a b}^{D}+\operatorname{Re}\left(\mathbb{F}_{a} \mathbb{F}_{c}^{*}\right) R_{a c}^{D}+\operatorname{Re}\left(\mathbb{F}_{a} \mathbb{F}_{+}^{*}\right) R_{a p}^{D}\right. \\
& \quad+\operatorname{Re}\left(\mathbb{F}_{a} \mathbb{F}_{-}^{*}\right) R_{a m}^{D}+\operatorname{Im}\left(\mathbb{E}_{a} \mathbb{F}_{b}^{*}\right) I_{a b}^{D}+\operatorname{Im}\left(\mathbb{F}_{a} \mathbb{F}_{c}^{*}\right) I_{a c}^{D}+\operatorname{Im}\left(\mathbb{F}_{a} \mathbb{F}_{+}^{*}\right) I_{a p}^{D}+\operatorname{Im}\left(\mathbb{F}_{a} \mathbb{F}_{-}^{*}\right) I_{a m}^{D}+\operatorname{Re}\left(\mathbb{F}_{b} \mathbb{F}_{c}^{*}\right) R_{b c}^{D} \\
& \quad+\operatorname{Re}\left(\mathbb{F}_{b} \mathbf{F}_{+}^{*}\right) R_{b p}^{D}+\operatorname{Re}\left(\mathbb{F}_{b} \mathbb{F}_{-}^{*}\right) R_{b m}^{D}+\operatorname{Re}\left(\mathbb{F}_{c} \mathbb{F}_{+}^{*}\right) R_{c p}^{D}+\operatorname{Im}\left(\mathbb{F}_{b} \mathbb{F}_{c}^{*}\right) I_{b c}^{D}+\operatorname{Im}\left(\mathbb{F}_{b} \mathbb{F}_{+}^{*}\right) I_{b p}^{D}+\operatorname{Im}\left(\mathbb{F}_{b} \mathbf{F}_{-}^{*}\right) I_{b m}^{D} \\
& \left.\quad+\operatorname{Im}\left(\mathbb{F}_{c} \mathbf{F}_{+}^{*}\right) I_{c p}^{D}+\operatorname{Re}\left(\mathbb{F}_{c} \mathbb{F}_{-}^{*}\right) R_{c m}^{D}+\operatorname{Re}\left(\mathbf{F}_{+} \mathbb{F}_{-}^{*}\right) R_{p m}^{D}+\operatorname{Im}\left(\mathbb{F}_{c} \mathbb{F}_{-}^{*}\right) I_{c m}^{D}+\operatorname{Im}\left(\mathbb{F}_{+} \mathbf{F}_{-}^{*}\right) I_{p m}^{D}\right),
\end{aligned}
$$

Detailed study of $\quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right)$,

$$
\begin{aligned}
& \left.\left.\langle | \mathscr{M}^{M}\right|^{2}\right\rangle=\frac{G_{F}^{4}}{2}\left(\left|\mathbb{F}_{a}\right|^{2} S_{a a}^{M}+\left|\mathbb{F}_{b}\right|^{2} S_{b b}^{M}+\left|\mathbb{F}_{c}^{2}\right| S_{c c}^{M}+\left|\mathbf{F}_{+}\right|^{2} S_{p p}^{M}+\left|\mathbf{F}_{-}\right|^{2} S_{m m}^{M}+\left|\mathbb{F}_{a}^{\prime}\right|^{2} S_{a^{\prime} a^{\prime}}^{M}+\left|\mathbb{F}_{b}^{\prime}\right|^{2} S_{b^{\prime} b^{\prime}}^{M}+\left|\mathbb{F}_{c}^{\prime}\right|^{2} S_{c^{\prime} c^{\prime}}^{M}+\left|\mathbf{F}_{+}^{\prime}\right|^{2} S_{p^{\prime} p^{\prime}}^{M}\right. \\
& +\left|\mathbf{F}_{-}^{\prime}\right|^{2} S_{m^{\prime} m^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{a} \mathbb{F}_{b}^{*}\right) R_{a b}^{M}+\operatorname{Re}\left(\mathbb{F}_{a} \mathbb{F}_{c}^{*}\right) R_{a c}^{M}+\operatorname{Re}\left(\mathbb{F}_{a} \mathbf{F}_{+}^{*}\right) R_{a p}^{M}+\operatorname{Re}\left(\mathbb{F}_{a} \mathbf{F}_{-}^{*}\right) R_{a m}^{M}+\operatorname{Re}\left(\mathbb{F}_{b} \mid \mathbb{F}_{c}^{*}\right) R_{b c}^{M} \\
& +\operatorname{Re}\left(\mathbb{F}_{b} \mathbf{F}_{+}^{*}\right) R_{b p}^{M}+\operatorname{Re}\left(\mathbb{F}_{b} \mathbf{F}_{-}^{*}\right) R_{b m}^{M}+\operatorname{Re}\left(\mathbb{F}_{c} \mathbf{F}_{+}^{*}\right) R_{c p}^{M}+\operatorname{Re}\left(\mathbb{F}_{c} \mathbf{F}_{-}^{*}\right) R_{c m}^{M}+\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbb{F}_{b}^{\prime *}\right) R_{a^{\prime} b^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbb{F}_{c}^{* *}\right) R_{a^{\prime} c^{\prime}}^{M} \\
& +\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{+}^{\prime *}\right) R_{a^{\prime} p^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{-}^{\prime *}\right) R_{a^{\prime} m^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{b}^{\prime} \mathbb{F}_{c}^{\prime *}\right) R_{b^{\prime} c^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{+}^{\prime *}\right) R_{b^{\prime} p^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{-}^{\prime *}\right) R_{b^{\prime} m^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{+}^{\prime *}\right) R_{c^{\prime} p^{\prime}}^{M} \\
& +\operatorname{Re}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{-}^{\prime *}\right) R_{c^{\prime} m^{\prime}}^{M}+\operatorname{Re}\left(\mathbf{F}_{+} \mathbf{F}_{-}^{*}\right) R_{p m}^{M}+\operatorname{Re}\left(\mathbf{F}_{+}^{\prime} \mathbf{F}_{-}^{\prime *}\right) R_{p^{\prime} m^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{a} \mathbb{F}_{b}^{*}\right) I_{a b}^{M}+\operatorname{Im}\left(\mathbb{F}_{a} \mathbb{F}_{c}^{*}\right) I_{a c}^{M}+\operatorname{Im}\left(\mathbb{F}_{a} \mathbf{F}_{+}^{*}\right) I_{a p}^{M} \\
& +\operatorname{Im}\left(\mathbb{F}_{a} \mathbf{F}_{-}^{*}\right) I_{a m}^{M}+\operatorname{Im}\left(\mathbb{F}_{b} \mathbb{F}_{c}^{*}\right) I_{b c}^{M}+\operatorname{Im}\left(\mathbb{F}_{b} \mathbf{F}_{+}^{*}\right) I_{b p}^{M}+\operatorname{Im}\left(\mathbb{F}_{b} \mathbf{F}_{-}^{*}\right) I_{b m}^{M}+\operatorname{Im}\left(\mathbb{F}_{c} \mathbf{F}_{+}^{*}\right) I_{c p}^{M}+\operatorname{Im}\left(\mathbb{F}_{c} \mathbf{F}_{-}^{*}\right) I_{c m}^{M} \\
& +\operatorname{Im}\left(\mathbb{F}_{a}^{\prime} \mathbb{F}_{b}^{\prime *}\right) I_{a^{\prime} b^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{a}^{\prime} \mathbb{F}_{c}^{\prime *}\right) I_{a^{\prime} c^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{+}^{\prime *}\right) I_{a^{\prime} p^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{-}^{\prime *}\right) I_{a^{\prime} m^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{b}^{\prime} \mathbb{F}_{c}^{\prime *}\right) I_{b^{\prime} c^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{+}^{\prime *}\right) I_{b^{\prime} p^{\prime}}^{M} \\
& +\operatorname{Im}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{-}^{\prime *}\right) I_{b^{\prime} m^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{+}^{* *}\right) I_{c^{\prime} p^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{-}^{\prime *}\right) I_{c^{\prime} m^{\prime}}^{M}+\operatorname{Im}\left(\mathbf{F}_{+} \mathbf{F}_{-}^{*}\right) I_{p m}^{M}+\operatorname{Im}\left(\mathbf{F}_{+}^{\prime} \mathbf{F}_{-}^{\prime *}\right) I_{p^{\prime} m^{\prime}}^{M} \\
& +m_{v}^{2}\left(\operatorname{Re}\left(\mathbb{F}_{a} \mathbb{F}_{a}^{\prime *}\right) R_{a a^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{a} \mathbb{F}_{b}^{\prime *}\right) R_{a b^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{a} \mathbb{F}_{c}^{* *}\right) R_{a c^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{a} \mathbf{F}_{+}^{\prime *}\right) R_{a p^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{a} \mathbf{F}_{-}^{\prime *}\right) R_{a m^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{b} \mathbb{F}_{a}^{\prime *}\right) R_{b a}^{M}\right. \\
& +\operatorname{Re}\left(\mathbb{F}_{b} \mathbb{F}_{b}^{\prime *}\right) R_{b b^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{b} \mathbb{F}_{c}^{\prime *}\right) R_{b c^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{b} \mathbf{F}_{+}^{\prime *}\right) R_{b p^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{b} \mathbf{F}_{-}^{\prime *}\right) R_{b m^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{c} \mathbb{F}_{a}^{\prime *}\right) R_{c a^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{c} \mathbb{F}_{b}^{\prime *}\right) R_{c b^{\prime}}^{M} \\
& +\operatorname{Re}\left(\mathbb{F}_{c} \mathbb{F}_{c}^{\prime *}\right) R_{c c^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{c} \mathbf{F}_{+}^{\prime *}\right) R_{c p^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{c} \mathbf{F}_{-}^{\prime *}\right) R_{c m^{\prime}}^{M}+\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{+}^{*}\right) R_{a^{\prime} p}^{M}+\operatorname{Re}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{-}^{*}\right) R_{a^{\prime} m}^{M}+\operatorname{Re}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{+}^{*}\right) R_{b^{\prime} p}^{M} \\
& +\operatorname{Re}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{-}^{*}\right) R_{b^{\prime} m}^{M}+\operatorname{Re}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{+}^{*}\right) R_{c^{\prime} p}^{M}+\operatorname{Re}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{-}^{*}\right) R_{c^{\prime} m}^{M}+\operatorname{Im}\left(\mathbb{F}_{a} \mathbb{F}_{a}^{\prime *}\right) I_{a a^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{a} \mathbb{F}_{b}^{\prime *}\right) I_{a b^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{a} \mathbb{F}_{c}^{\prime *}\right) I_{a c^{\prime}}^{M} \\
& +\operatorname{Im}\left(\mathbb{F}_{a} \mathbf{F}_{+}^{\prime *}\right) I_{a p^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{a} \mathbf{F}_{-}^{\prime *}\right) I_{a m^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{b} \mathbb{F}_{a}^{* *}\right) I_{b a^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{b} \mathbb{F}_{b}^{\prime *}\right) I_{b b^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{b} \mathbb{F}_{c}^{\prime *}\right) I_{b c^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{b} \mathbf{F}_{+}^{\prime *}\right) I_{b p^{\prime}}^{M} \\
& +\operatorname{Im}\left(\mathbb{F}_{b} \mathbf{F}_{-}^{\prime *}\right) I_{b m^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{c} \mathbb{F}_{a}^{\prime *}\right) I_{c a^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{c} \mathbb{F}_{b}^{\prime *}\right) I_{c b^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{c} \mathbb{F}_{c}^{\prime *}\right) I_{c c^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{c} \mathbf{F}_{+}^{\prime *}\right) I_{c p^{\prime}}^{M}+\operatorname{Im}\left(\mathbb{F}_{c} \mathbf{F}_{-}^{\prime *}\right) I_{c m}^{M} \\
& \left.\left.+\operatorname{Im}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{+}^{*}\right) I_{a^{\prime} p}^{M}+\operatorname{Im}\left(\mathbb{F}_{a}^{\prime} \mathbf{F}_{-}^{*}\right) I_{a^{\prime} m}^{M}+\operatorname{Im}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{+}^{*}\right) I_{b^{\prime} p}^{M}+\operatorname{Im}\left(\mathbb{F}_{b}^{\prime} \mathbf{F}_{-}^{*}\right) I_{b^{\prime} m}^{M}+\operatorname{Im}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{+}^{*}\right) I_{c^{\prime} p}^{M}+\operatorname{Im}\left(\mathbb{F}_{c}^{\prime} \mathbf{F}_{-}^{*}\right) I_{c^{\prime} m}^{M}\right)\right),
\end{aligned}
$$

$$
\operatorname{Re}\left(\mathscr{M}\left(p_{1}, p_{2}\right)^{*} \cdot \mathscr{M}\left(p_{2}, p_{1}\right)\right) \propto m_{v}^{2} . \quad \text { of } \quad B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right),
$$

Since the squared diagram involves two helicity flips for the Majorana neutrinos, these contributions are directly proportional to m_{v}^{2}.

Detailed study of

$B^{0}\left(p_{B}\right) \rightarrow \mu^{-}\left(p_{-}\right) \mu^{+}\left(p_{+}\right) \bar{v}_{\mu}\left(p_{1}\right) v_{\mu}\left(p_{2}\right), \quad$ w/ B2B muons

Appendix B: Expressions for the various $\Sigma_{i j}$ and $\Delta_{i j}$ terms
The $\Delta_{i j}$ terms appearing in Eq. (47) are given by

$$
\begin{align*}
\Delta_{a a}= & -16\left(m_{B}-2 E_{\mu}\right)^{2}\left(\left(m_{\mu}^{2}-E_{\mu}^{2}\right) \cos ^{2} \theta-E_{\mu}^{2}\right) \tag{B1}\\
\Delta_{b b}= & -4 m_{B}^{4}\left(m_{B}-2 E_{\mu}\right)^{2}\left(\left(m_{\mu}^{2}-E_{\mu}^{2}\right) \cos ^{2} \theta-E_{\mu}^{2}\right) \tag{B2}\\
\Delta_{c c}= & -8 m_{\mu}^{2}\left(m_{\mu}^{2}-E_{\mu}^{2}\right) m_{B}^{2}\left(m_{B}-2 E_{\mu}\right)^{2} \sin ^{2} \theta \tag{B3}\\
\Delta_{p p}= & -4 m_{\mu}^{4}\left(m_{B}-2 E_{\mu}\right)^{2}\left(\left(m_{\mu}^{2}-E_{\mu}^{2}\right) \cos ^{2} \theta-E_{\mu}^{2}\right) \tag{B4}\\
\Delta_{m m}= & 4 m_{\mu}^{2}\left(m_{B}-2 E_{\mu}\right)^{2}\left(\left(m_{\mu}^{2}-E_{\mu}^{2}\right)\left(m_{B}^{2}-m_{\mu}^{2}\right) \cos ^{2} \theta\right. \\
& \left.+E_{\mu}\left(E_{\mu} m_{B}^{2}-2 m_{\mu}^{2} m_{B}+E_{\mu} m_{\mu}^{2}\right)\right) \tag{B5}\\
\Delta_{a b}= & -16 m_{B}^{2}\left(m_{B}-2 E_{\mu}\right)^{2} \\
& \times\left(\left(m_{\mu}^{2}-E_{\mu}^{2}\right) \cos ^{2} \theta-E_{\mu}^{2}\right) \tag{B6}\\
\Delta_{a p}= & 16 m_{\mu}^{4}\left(m_{B}-2 E_{\mu}\right)^{2} \tag{B7}\\
\Delta_{b p}= & 8 m_{\mu}^{4} m_{B}^{2}\left(m_{B}-2 E_{\mu}\right)^{2} \tag{B8}\\
\Delta_{a m}= & 16 m_{\mu}^{2}\left(m_{B}-2 E_{\mu}\right)^{2}\left(E_{\mu} m_{B}-m_{\mu}^{2}\right) \tag{B9}\\
\Delta_{b m}= & 8 m_{\mu}^{2} m_{B}^{2}\left(m_{B}-2 E_{\mu}\right)^{2}\left(E_{\mu} m_{B}-m_{\mu}^{2}\right) \tag{B10}
\end{align*}
$$

$$
\begin{align*}
\Delta_{c m}= & 8 m_{\mu}^{2} m_{B}^{2}\left(E_{\mu}^{2}-m_{\mu}^{2}\right)\left(m_{B}-2 E_{\mu}\right)^{2} \sin ^{2} \theta, \tag{B11}\\
\Delta_{p m}= & 8 m_{\mu}^{4}\left(m_{B}-2 E_{\mu}\right)^{2} \\
& \times\left(\left(m_{\mu}^{2}-E_{\mu}^{2}\right) \cos ^{2} \theta+E_{\mu}\left(m_{B}-E_{\mu}\right)\right), \tag{B12}
\end{align*}
$$

and the $\Sigma_{i j}$ terms are given by,

$$
\begin{align*}
& \Sigma_{a a}=-32 E_{\mu} \sqrt{E_{\mu}^{2}-m_{\mu}^{2}}\left(m_{B}-2 E_{\mu}\right)^{2}, \tag{B13}\\
& \Sigma_{b b}=-8 m_{B}^{4} E_{\mu} \sqrt{E_{\mu}^{2}-m_{\mu}^{2}}\left(m_{B}-2 E_{\mu}\right)^{2}, \\
& \Sigma_{p p}=8 E_{\mu} m_{\mu}^{4} \sqrt{E_{\mu}^{2}-m_{\mu}^{2}}\left(m_{B}-2 E_{\mu}\right)^{2},
\end{align*}
$$

