Photo- and electro-production of φ meson

Sang-Ho Kim (金相鎬)

Soongsil University, Seoul Origin of Matter and Evolution of Galaxy (OMEG) Institute

Inha HTG workshop: Modern issues in Hadronic Physics

07-08, July, 2022 Inha University, Incheon

Contents

1.
$$\gamma p \rightarrow \varphi(1020) p$$

1.
$$\gamma p \rightarrow \phi(1020) p$$

2. $\gamma^* p \rightarrow \phi(1020) p$

Introduction

Formalism

Results

Summary

Future work

Contents based on

[S.H.Kim, S.i.Nam, PRC.100.065208 (2019)] [S.H.Kim, S.i.Nam, PRC.101.065201 (2020)] [S.H.Kim, T.S.H.Lee, S.i.Nam, Y. Oh, PRC.104.045202 (2021)]

Introduction

♦ photoproduction

electroproduction

$$\gamma p \rightarrow (\phi, \rho, \omega, J/\psi,...) p$$

$$\Rightarrow$$

$$\gamma^* p \rightarrow (\phi, \rho, \omega, J/\psi,...) p$$

Regge model, at low W and Q²

production off nuclear targets

$$\Rightarrow \qquad \gamma^{(*)} A \rightarrow (\varphi, \rho, \omega, J/\psi,...) A, [A = {}^{2}H, {}^{4}He, {}^{12}C,...]$$

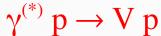
distorted-wave impulse approximation

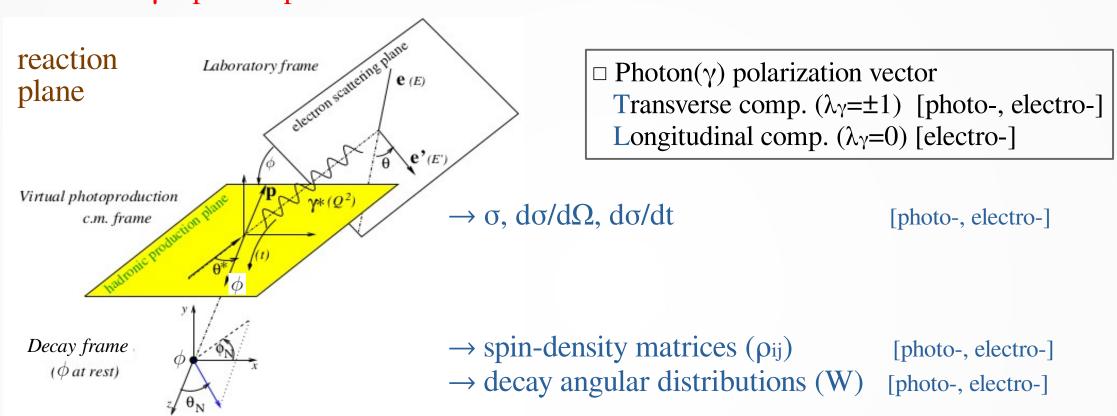
Introduction

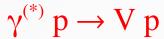
- ♦ Approved 12 GeV era experiments to date at Jafferson Labarotory:
 - [E12-09-003] Nucleon Resonances Studies with CLAS
 - [E12-11-002] Proton Recoil Polarization in the ⁴He(e,e'p)³H, ²He(e,e'p)n, ¹He(e,e'p)
 - [E12-11-005] Meson spectroscopy with low Q² electron scattering in CLAS12

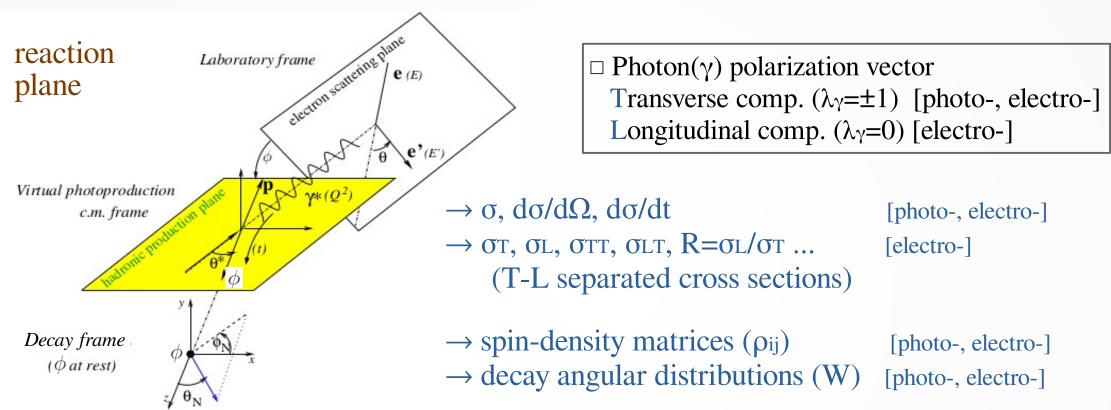
distorted-wave impulse approximation

- [E12-12-006] Near Threshold Electroproduction of J/ψ at 11 GeV
- [E12-12-007] Exclusive Phi Meson Electroproduction with CLAS12
- ♦ Electron-Ion Collider (EIC) will carry out the relevant experiments in the future.

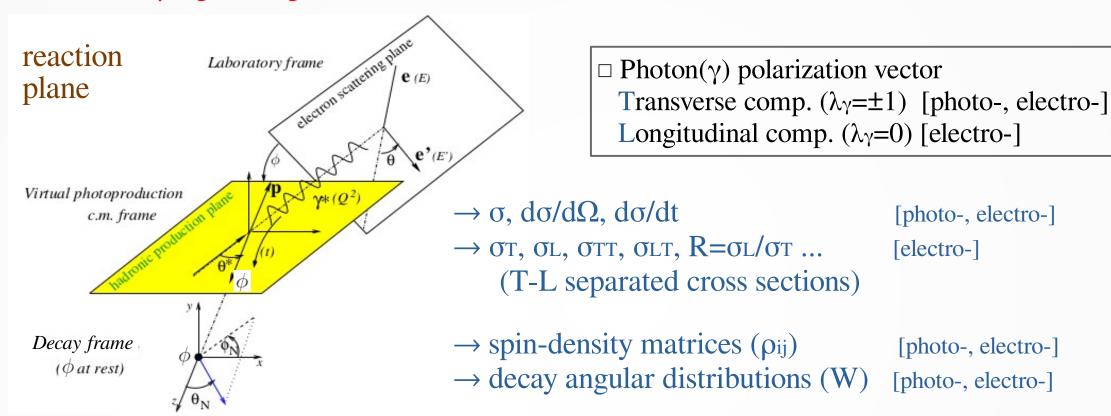




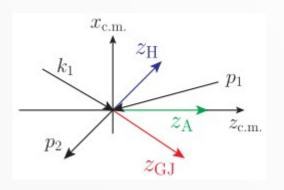




$$\gamma^{(*)} \; p \to V \; p$$



☐ Decay frame



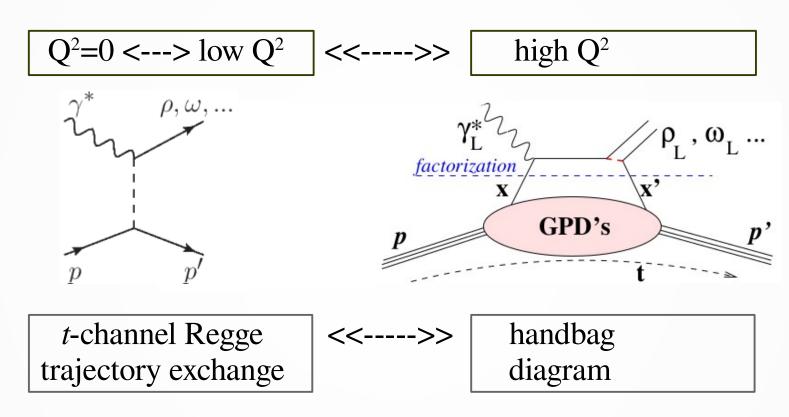
Adair frame

Helicty frame: in favor of s-channel helicity conservation (SCHC)

Gottfried-Jackson frame: in favor of t-channel helicity conservation (TCHC)

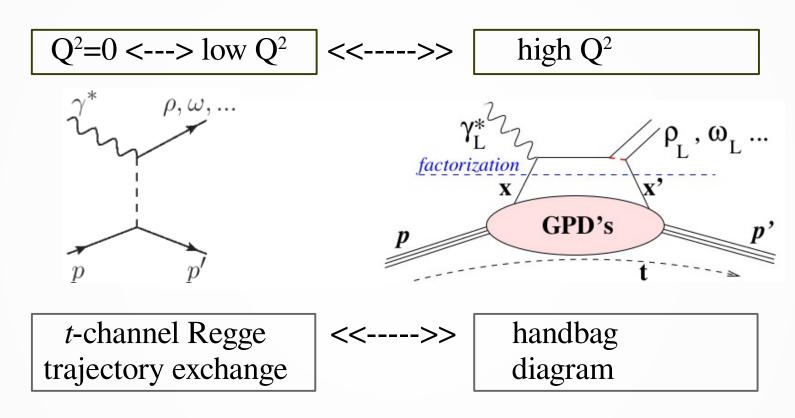
$$\gamma^* p \rightarrow V(\rho, \omega, \phi, J/\psi) p$$

theoretical framework



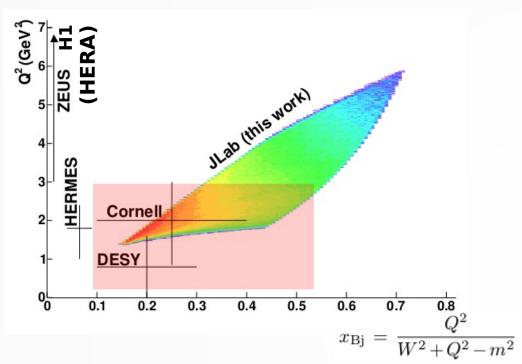
$$\gamma^* p \rightarrow V(\rho, \omega, \phi, J/\psi) p$$

theoretical framework



- ☐ Extending to "the virtual-photon sector" opens the way
 - > to tune hadronic component of the exchanged photon
 - > to explore to what extent meson exchange survives
 - > to observe hard-scattering mechanisms, with a second hard scale, "photon virtuality - $(k_e-k_e)^2=Q^2$ ".

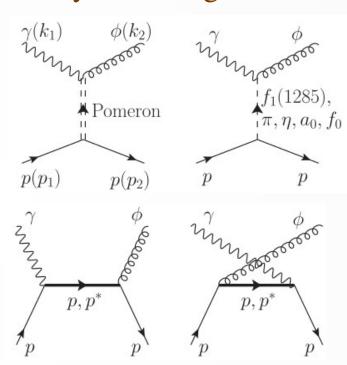
$$\gamma^* p \rightarrow V(\rho, \omega, \phi, J/\psi) p$$



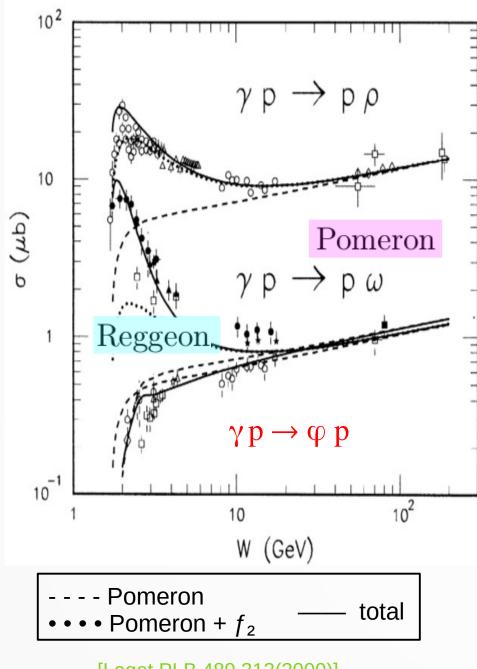
[Kinematical range covered by vector meson electoproduction experiments]

[Morand (CLAS), EPJ.A24.445 (2005)]

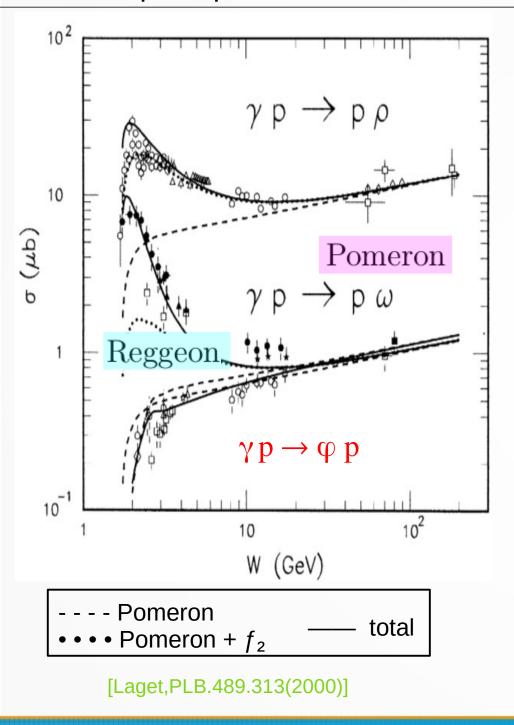
Feynman diagrams



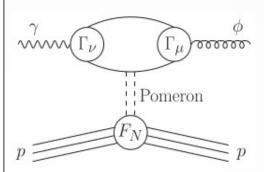
- ☐ We can test which of the two descriptions with "hadronic" or "quark" degrees of freedom applies in the considered kinematical domain.
- ☐ At low photon virtualities ($Q^2 \le Mv^2$) and low energies ($W \le$ several GeV), our hadronic effective model is applicable.



[Laget,PLB.489.313(2000)]



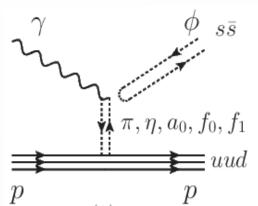
- \square We focus on $\gamma p \rightarrow \varphi p$.
- ☐ high energy



- $\square \sigma [\gamma p \rightarrow \varphi p] \approx \sigma [\gamma p \rightarrow \omega p]$
- □ Fn: isoscalar EM form factor of the nucleon

$$F_N(t) = \frac{4M_N^2 - a_N^2 t}{(4M_N^2 - t)(1 - t/t_0)^2}$$

□ low energy



- $\Box \sigma[\gamma p \to \varphi p] \ll \sigma[\gamma p \to (\rho, \omega)p]$
 - due to the OZI rule

☐ high energy:

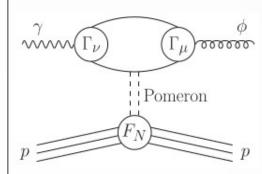
The two-gluon exchange is simplified by the Donnachie-Landshoff (DL) model which suggests that the Pomeron couples to the nucleon like a C = +1 isoscalar photon and its coupling is described in terms of $F_N(t)$.

[Pomeron Physics and QCD (Cambridge University, 2002)]

- □ low energy:
- We need to clarify the reaction mechanism.

[Exp: Dey, CLAS, PRC.89. 055208 (2014) Seraydaryan, CLAS, PRC.89.055206 (2014) Mizutani, LEPS, PRC.96.062201 (2017)]

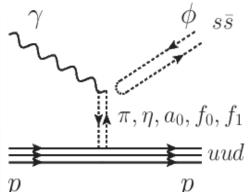
- \Box We focus on $\gamma p \rightarrow \varphi p$.
- ☐ high energy



- $\square \ \sigma \ [\gamma p \to \phi p] \approx \sigma \ [\gamma p \to \omega p]$
- ☐ Fn: isoscalar EM form factor of the nucleon

$$F_N(t) = \frac{4M_N^2 - a_N^2 t}{(4M_N^2 - t)(1 - t/t_0)^2}$$

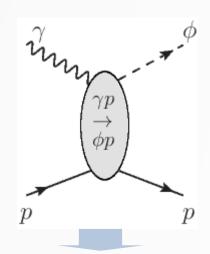
□ low energy

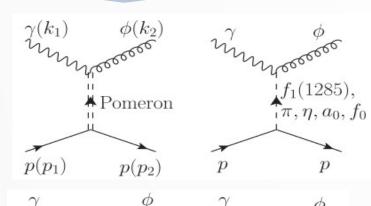


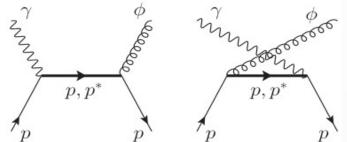
 $\Box \sigma[\gamma p \to \varphi p] << \sigma[\gamma p \to (\rho, \omega)p]$ due to the OZI rule

Born term

□ Scattering amplitude: $T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N}]$







□ Ward-Takahashi identity

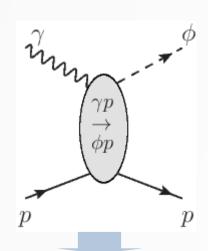
$$\mathcal{M}(k) = \epsilon_{\mu}(k)\mathcal{M}^{\mu}(k)$$

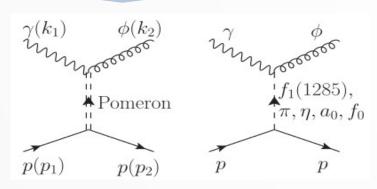
if we replace ϵ_{μ} with k_{μ} :

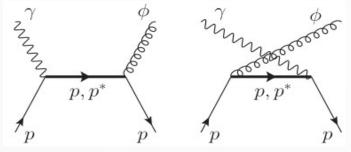
$$k_{\mu}\mathcal{M}^{\mu}(k)=0$$

Born term

 \square Scattering amplitude: $T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N}(E)]$







☐ Effective Lagrangians

□ EM vertex

$$\mathcal{L}_{\gamma\phi f_1} = g_{\gamma\phi f_1} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu} A_{\nu} \partial^{\lambda} \partial_{\lambda} \phi_{\alpha} f_{1\beta}$$

$$\mathcal{L}_{\gamma\Phi\phi} = \frac{eg_{\gamma\Phi\phi}}{M_{\phi}} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu} A_{\nu} \partial_{\alpha} \phi_{\beta} \Phi$$

$$\mathcal{L}_{\gamma S\phi} = \frac{eg_{\gamma S\phi}}{M_{\phi}} F^{\mu\nu} \phi_{\mu\nu} S$$

□ strong vertex

$$\mathcal{L}_{f_1NN} = -g_{f_1NN}\bar{N} \bigg[\gamma_{\mu} - i \frac{\kappa_{f_1NN}}{2M_N} \gamma_{\nu} \gamma_{\mu} \partial^{\nu} \bigg] f_1^{\mu} \gamma_5 N$$

$$\mathcal{L}_{\Phi NN} = -ig_{\Phi NN}\bar{N}\Phi\gamma_5N$$
$$\mathcal{L}_{SNN} = -g_{SNN}\bar{N}SN$$

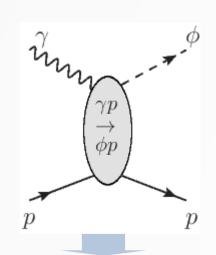
$$\mathcal{L}_{SNN} = -g_{SNN}\bar{N}SN$$

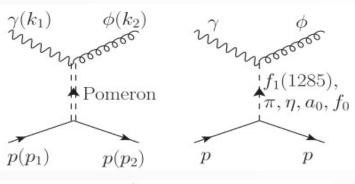
$$\left[\mathcal{L}_{\gamma NN} = -e\bar{N} \left[\gamma_{\mu} - \frac{\kappa_{N}}{2M_{N}} \sigma_{\mu\nu} \partial^{\nu} \right] N A^{\mu} \right]$$

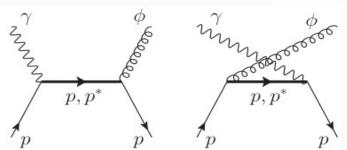
$$\mathcal{L}_{\phi NN} = -g_{\phi NN} \bar{N} \left[\gamma_{\mu} - \frac{\kappa_{\phi NN}}{2M_{N}} \sigma_{\mu\nu} \partial^{\nu} \right] N \phi^{\mu}$$

Born term

□ Scattering amplitude: $T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N}]$







$$\mathcal{M} = \varepsilon_{\nu}^{*} \bar{u}_{N'} \mathcal{M}^{\mu\nu} u_{N} \epsilon_{\mu}$$

$$\mathcal{M}_{f_{1}}^{\mu\nu} = i \frac{M_{\phi}^{2} g_{\gamma f_{1} \phi} g_{f_{1} NN}}{t - M_{f_{1}}^{2}} \epsilon^{\mu\nu\alpha\beta} \left[-g_{\alpha\lambda} + \frac{q_{t\alpha} q_{t\lambda}}{M_{f_{1}}^{2}} \right]$$

$$\times \left[\gamma^{\lambda} + \frac{\kappa_{f_{1} NN}}{2M_{N}} \gamma^{\sigma} \gamma^{\lambda} q_{t\sigma} \right] \gamma_{5} k_{1\beta},$$

$$\mathcal{M}_{\Phi}^{\mu\nu} = i \frac{e}{M_{\phi}} \frac{g_{\gamma} \Phi_{\phi} g_{\Phi NN}}{t - M_{\Phi}^{2}} \epsilon^{\mu\nu\alpha\beta} k_{1\alpha} k_{2\beta} \gamma_{5},$$

$$\mathcal{M}_{S}^{\mu\nu} = \frac{e}{M_{\phi}} \frac{2g_{\gamma} S_{\phi} g_{SNN}}{t - M_{S}^{2} + i \Gamma_{S} M_{S}} \left(k_{1} k_{2} g^{\mu\nu} - k_{1}^{\mu} k_{2}^{\nu} \right),$$

$$\mathcal{M}_{\phi \, \text{rad}, s}^{\mu\nu} = \frac{e g_{\phi NN}}{s - M_{S}^{2}} \left(\gamma^{\nu} - i \frac{\kappa_{\phi NN}}{2M_{N}} \sigma^{\nu\alpha} k_{2\alpha} \right) (\phi_{S} + M_{N})$$

$$\times \left(\gamma^{\mu} + i\frac{\kappa_{N}}{2M_{N}}\sigma^{\mu\beta}k_{1\beta}\right),$$

$$\mathcal{M}_{\phi \, \text{rad}, u}^{\mu\nu} = \frac{eg_{\phi NN}}{u - M_{N}^{2}} \left(\gamma^{\mu} + i\frac{\kappa_{N}}{2M_{N}}\sigma^{\mu\alpha}k_{1\alpha}\right) (\phi_{u} + M_{N})$$

$$\times \left(\gamma^{\nu} - i\frac{\kappa_{\phi NN}}{2M_{N}}\sigma^{\nu\beta}k_{2\beta}\right),$$

$$\mathcal{L}_{\gamma NN} = -e\bar{N} \left[\gamma_{\mu} - \frac{\kappa_{N}}{2M_{N}}\sigma_{\mu\nu}\partial^{\nu}\right] NA^{\mu}$$

$$\mathcal{L}_{\phi NN} = -g_{\phi NN}\bar{N} \left[\gamma_{\mu} - \frac{\kappa_{\phi NN}}{2M_{N}}\sigma_{\mu\nu}\partial^{\nu}\right] NA^{\mu}$$

☐ Effective Lagrangians

□ EM vertex

$$\mathcal{L}_{\gamma\phi f_1} = g_{\gamma\phi f_1} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu} A_{\nu} \partial^{\lambda} \partial_{\lambda} \phi_{\alpha} f_{1\beta}$$

$$\mathcal{L}_{\gamma\Phi\phi} = \frac{eg_{\gamma\Phi\phi}}{M_{\phi}} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu} A_{\nu} \partial_{\alpha} \phi_{\beta} \Phi$$

$$\mathcal{L}_{\gamma S\phi} = \frac{eg_{\gamma S\phi}}{M_{\phi}} F^{\mu\nu} \phi_{\mu\nu} S$$

□ strong vertex

$$\mathcal{L}_{f_1NN} = -g_{f_1NN}\bar{N} \left[\gamma_{\mu} - i \frac{\kappa_{f_1NN}}{2M_N} \gamma_{\nu} \gamma_{\mu} \partial^{\nu} \right] f_1^{\mu} \gamma_5 N$$

$$\mathcal{L}_{\Phi NN} = -ig_{\Phi NN}\bar{N}\Phi\gamma_5N$$

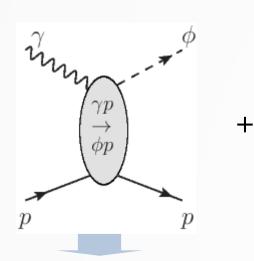
$$\mathcal{L}_{SNN} = -g_{SNN}\bar{N}SN$$

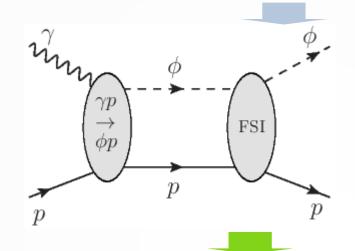
$$\mathcal{L}_{\gamma NN} = -e\bar{N} \left[\gamma_{\mu} - \frac{\kappa_{N}}{2M_{N}} \sigma_{\mu\nu} \partial^{\nu} \right] N A^{\mu}$$

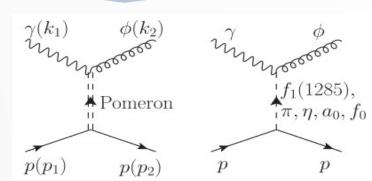
$$\mathcal{L}_{\phi NN} = -g_{\phi NN} \bar{N} \left[\gamma_{\mu} - \frac{\kappa_{\phi NN}}{2M_{N}} \sigma_{\mu\nu} \partial^{\nu} \right] N \phi^{\mu}$$

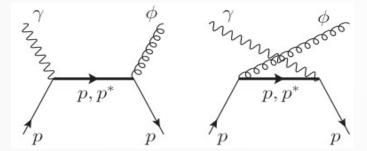
final state interaction (FSI)

☐ Scattering amplitude: $T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N} + T_{\phi N,\gamma N}^{FSI}(E)]$







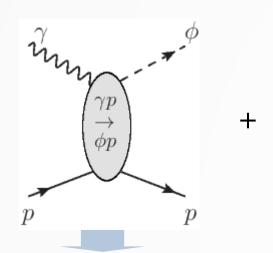


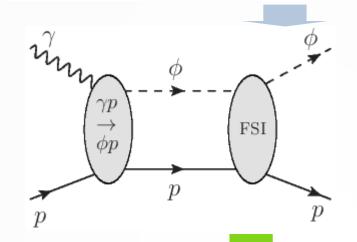
\Box decay mode of φ -meson

Γ_1	K^+K^-	$(49.2 \pm 0.5)\%$
Γ_2	K_L^0 K_S^0	$(34.0 \pm 0.4)\%$
Γ_3	$ ho\pi + \pi^+\pi^-\pi^0$	$(15.24 \pm 0.33)\%$
Γ_4	$ ho\pi$	
Γ_5	$\pi^+\pi^-\pi^0$	
Γ_6	$\eta\gamma$	$(1.303 \pm 0.025)\%$
Γ_7	$\pi^0\gamma$	$(1.32\pm0.06)\times10^{-3}$
Γ_8	$\ell^+\ell^-$	
Γ_9	e^+e^-	$(2.974 \pm 0.034) \times 10^{-4}$
Γ_{10}	$\mu^+\mu^-$	$(2.86\pm0.19) imes10^{-4}$
Γ_{11}	$\eta e^+ e^-$	$(1.08\pm0.04)\times10^{-4}$
Γ_{12}	$\pi^+\pi^-$	$(7.3\pm1.3) imes10^{-5}$
Γ_{13}	$\omega\pi^0$	$(4.7 \pm 0.5) \times 10^{-5}$
Γ_{14}	$\omega\gamma$	< 5%
Γ_{15}	$\rho\gamma$	$<1.2\times10^{-5}$

final state interaction (FSI)

☐ Scattering amplitude: $T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N} + T_{\phi N,\gamma N}^{FSI}(E)]$





\Box decay mode of φ -meson

Γ_1	K^+K^-	$(49.2 \pm 0.5)\%$
Γ_2	K_L^0 K_S^0	$(34.0 \pm 0.4)\%$
Γ_3	$ ho\pi + \pi^+\pi^-\pi^0$	$(15.24 \pm 0.33)\%$

Γ_4	$ ho\pi$

$$\Gamma_5$$
 $\pi^+\pi^-\pi^0$

$$\Gamma_6 \qquad \eta \gamma \qquad (1.303 \pm 0.025)\%$$

$$\Gamma_7$$
 $\pi^0\gamma$

$$(1.32\pm0.06)\times10^{-3}$$

$$\Gamma_8 \qquad \ell^+\ell^-$$

$$e^+e^-$$

$$(2.974 \pm 0.034) imes 10^{-4}$$

$$\Gamma_{10}$$
 $\mu^+\mu^-$

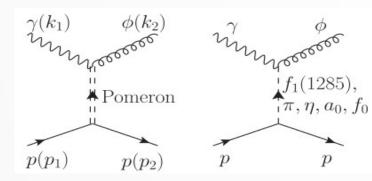
$$(2.86\pm0.19) imes10^{-4}$$

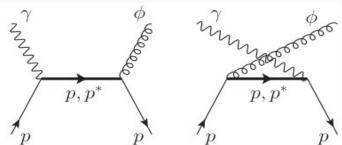
 $1.3) imes 10^{-5}$

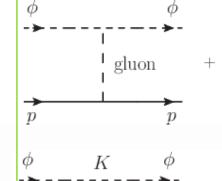
 $0.5) \times 10^{-5}$

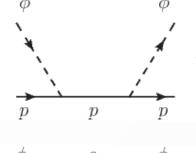
 10^{-5}

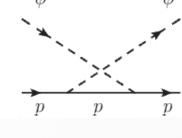
$$\eta e^+ e^- \qquad (1.08 \pm 0.04) imes 10^{-4}$$

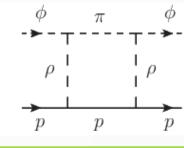


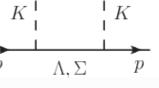


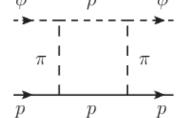




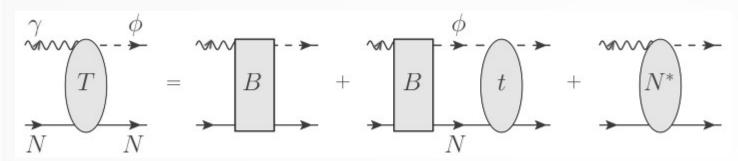






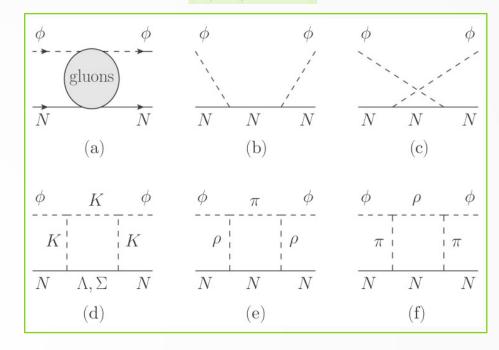


final state interaction (FSI)

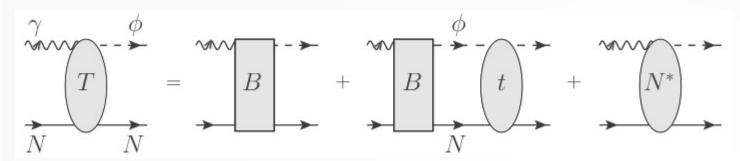


$$T_{\phi N,\gamma N}(E) = B_{\phi N,\gamma N} + T_{\phi N,\gamma N}^{\text{FSI}}(E) + T_{\phi N,\gamma N}^{N^*}(E)$$

$t_{\phi N,\phi N}(E)$



final state interaction (FSI)

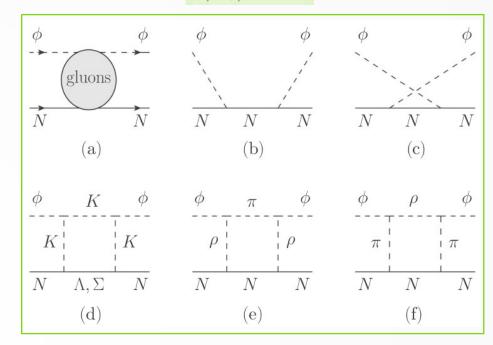


$$T_{\phi N,\gamma N}(E) = B_{\phi N,\gamma N} + T_{\phi N,\gamma N}^{\mathrm{FSI}}(E) + T_{\phi N,\gamma N}^{N^*}(E)$$
$$t_{\phi N,\phi N}(E)G_{\phi N}(E)B_{\phi N,\gamma N}$$

$$G_{MB}(E) = \frac{|MB\rangle \langle MB|}{E - H_0 + i\epsilon}$$
: meson-baryon propagator

$$t_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$t_{\phi N,\phi N}(E)$



final state interaction (FSI)

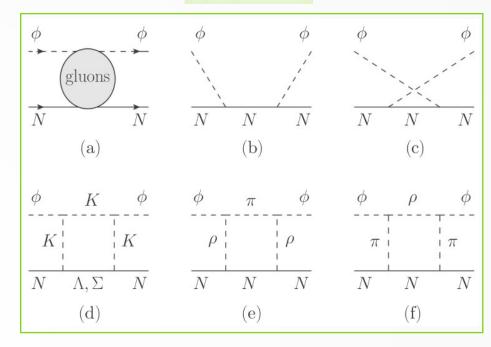
$$T_{\phi N,\gamma N}(E) = B_{\phi N,\gamma N} + T_{\phi N,\gamma N}^{\text{FSI}}(E) + T_{\phi N,\gamma N}^{N^*}(E)$$
$$t_{\phi N,\phi N}(E)G_{\phi N}(E)B_{\phi N,\gamma N}$$

$$G_{MB}(E) = \frac{|MB\rangle \langle MB|}{E - H_0 + i\epsilon}$$
: meson-baryon propagator

$$t_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$v_{\phi N,\phi N}^{\text{Gluon}} + v_{\phi N,\phi N}^{\text{Direct}} + \sum_{MB} v_{\phi N,MB} G_{MB}(E) v_{MB,\phi N}$$
(a) (b,c) (d,e,f) MB = (KA, K\S, \pi N, \rho N)

$t_{\phi N,\phi N}(E)$



☐ To leading order, we obtain these FSI diagrams.

final state interaction (FSI)

$$T_{\phi N,\gamma N}(E) = B_{\phi N,\gamma N} + T_{\phi N,\gamma N}^{\text{FSI}}(E) + T_{\phi N,\gamma N}^{N^*}(E)$$

$$t_{\phi N,\phi N}(E)G_{\phi N}(E)B_{\phi N,\gamma N}$$

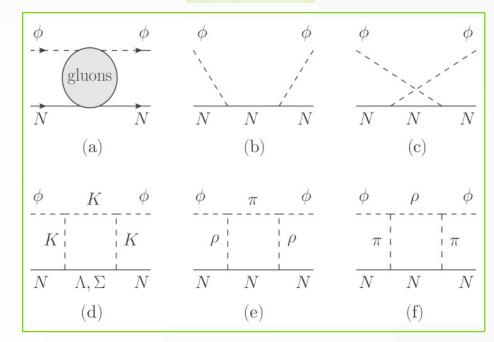
$$G_{MB}(E) = \frac{|MB\rangle \langle MB|}{E - H_0 + i\epsilon}$$
: meson-baryon propagator

$$t_{\phi N,\phi N}(E) = V_{\phi N,\phi N}(E) + V_{\phi N,\phi N}G_{\phi N}(E)t_{\phi N,\phi N}(E)$$

$$v_{\phi N,\phi N}^{\rm Gluon} + v_{\phi N,\phi N}^{\rm Direct} + \sum_{\mathit{MB}} v_{\phi N,\mathit{MB}} G_{\mathit{MB}}(E) v_{\mathit{MB},\phi N}$$

(a)
$$(b,c)$$
 (d,e,f) $MB = (K\Lambda, K\Sigma, \pi N, \rho N)$

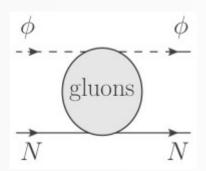
$t_{\phi N,\phi N}(E)$



$$\frac{1}{E - H_0 + i\epsilon} = P \frac{1}{E - H_0} - i\pi \delta(E - H_0)$$

□ We consider both parts numerically.

final state interaction (FSI)

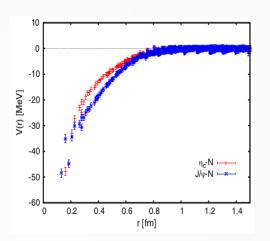


The J/ψ-N potential from the LQCD data ~ Yukawa form ($v_0 = 0.1$, $\alpha = 0.3$ GeV)

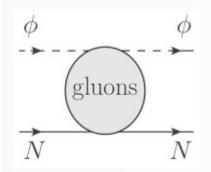
[Kawanai, Sasaki, PRD.82.091501(R) (2010)]

$$\mathcal{V}_{\text{gluon}} = -v_0 \frac{e^{-\alpha r}}{r}$$

 \Box which is assumed in our work, φ-N potential The best fit was obtained by ($\upsilon_0 = 0.2$, $\alpha = 0.5$ GeV).



final state interaction (FSI)

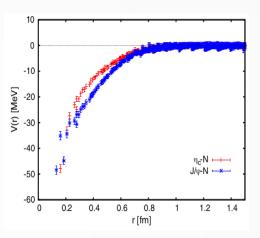


The J/ψ-N potential from the LQCD data ~ Yukawa form ($v_0 = 0.1$, $\alpha = 0.3$ GeV)

[Kawanai, Sasaki, PRD.82.091501(R) (2010)]

$$\mathcal{V}_{\text{gluon}} = -v_0 \frac{e^{-\alpha r}}{r}$$

 \Box which is assumed in our work, φ-N potential The best fit was obtained by ($\upsilon_0 = 0.2$, $\alpha = 0.5$ GeV).



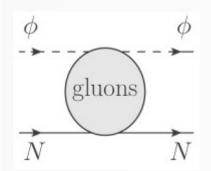
☐ The potential is obtained by taking the nonrelativistic limit of the scalar-meson exchange amplitude calculated from the Lagrangian:

$$\mathscr{L}_{\sigma} = V_0(\bar{\psi}_N \psi_N \Phi_{\sigma} + \phi^{\mu} \phi_{\mu} \Phi_{\sigma})$$

 Φ_{σ} is a scalar field with mass α ($V_0 = -8v_0 \pi M_{\phi}$).

$$\square \quad \mathcal{V}_{\text{gluon}}(k\lambda_{\phi}, pm_s; k'\lambda'_{\phi}, p'm'_s) = \frac{V_0}{(p-p')^2 - \alpha^2} \left[\bar{u}_N(p, m_s) u_N(p', m'_s) \right] \left[\epsilon_{\mu}^*(k, \lambda_{\phi}) \epsilon^{\mu}(k', \lambda'_{\phi}) \right]$$

final state interaction (FSI)

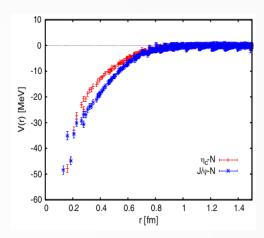


□ The J/ψ-N potential from the LQCD data ~ Yukawa form (v_0 = 0.1, α = 0.3 GeV)

[Kawanai, Sasaki, PRD.82.091501(R) (2010)]

$$\mathcal{V}_{\text{gluon}} = -v_0 \frac{e^{-\alpha r}}{r}$$

 \Box which is assumed in our work, φ-N potential The best fit was obtained by ($v_0 = 0.2$, $\alpha = 0.5$ GeV).



 \Box The ϕ -N potential from the LQCD [hep-lat] 2205.10544

Attractive N-\$\phi\$ Interaction and Two-Pion Tail from Lattice QCD near Physical Point

Yan Lyu, \(^1,^2,^\) Takumi Doi, \(^2,^\) Tetsuo Hatsuda, \(^2,^\) Yoichi Ikeda, \(^3,^\)

Jie Meng, \(^1,^4,^\) Kenji Sasaki, \(^3,^\) and Takuya Sugiura \(^2,^\) Ti

- ☐ The simple fitting functions such as "the Yukawa form" and "the van der Waals form ~ $1/r^k$ with k=6(7)" cannot reproduce the lattice data.
- > We need to update our results based on the LQCD data.

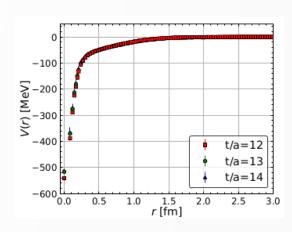
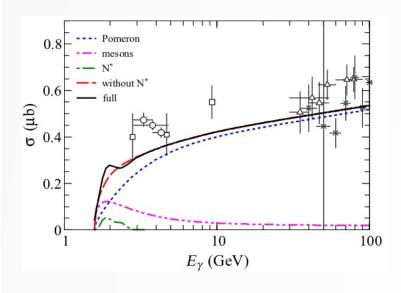


FIG. 1. (Color online). The N- ϕ potential V(r) in the $^4S_{3/2}$ channel as a function of separation r at Euclidean time t/a = 12 (red squares), 13 (green circles) and 14 (blue triangles).

Exclusive photoproduction of vector mesons [results]

Born term

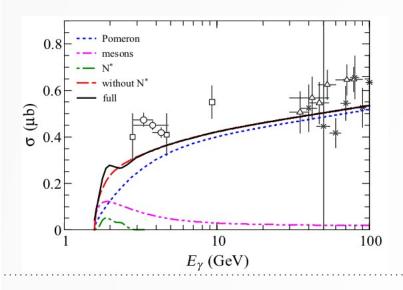
total cross section $[\gamma p \rightarrow \varphi p]$

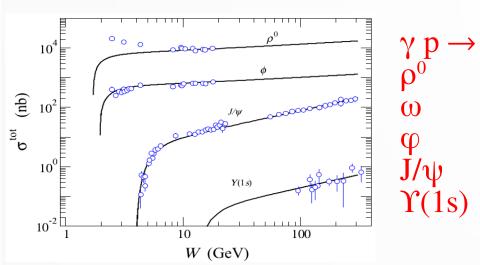


Exclusive photoproduction of vector mesons [results]

Born term

total cross section $[\gamma p \rightarrow \varphi p]$



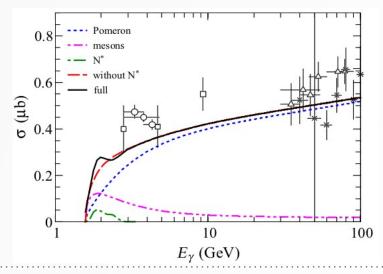


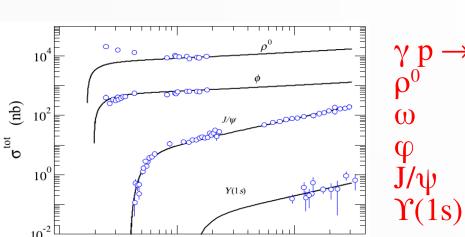
□ Our Pomeron model describes the high energy regions quite well.

Born term

total cross section $[\gamma p \rightarrow \varphi p]$

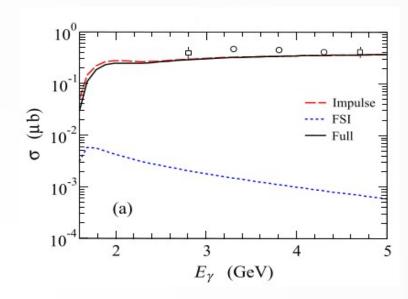
with FSI

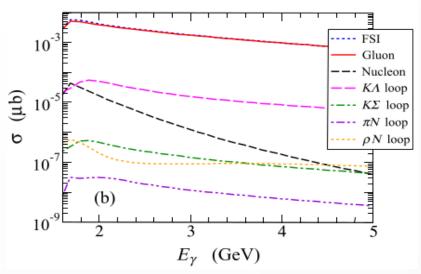




□ Our Pomeron model describes the high energy regions quite well.

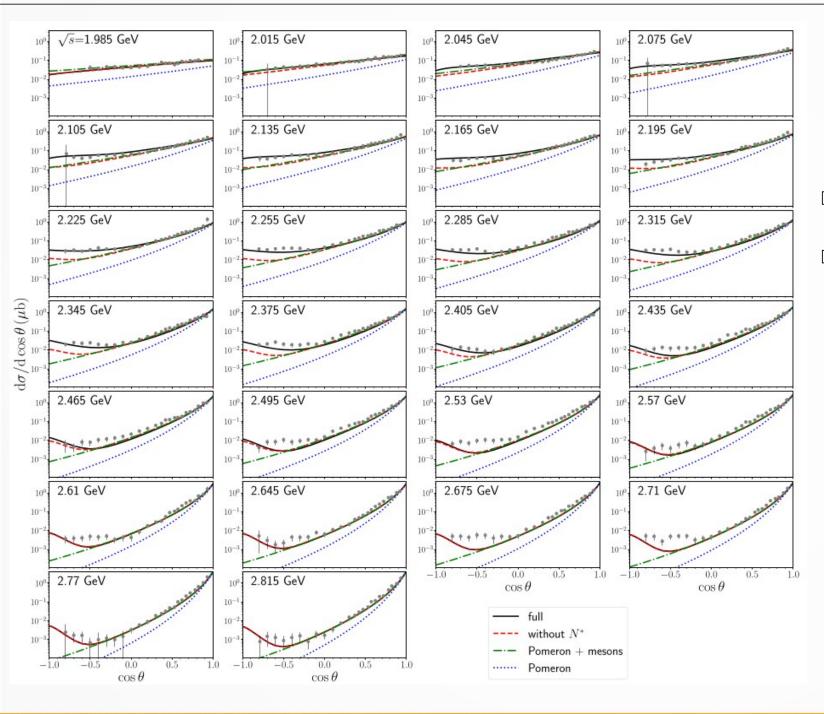
W (GeV)





☐ The contributions of the FSI terms are almost very small.

Exclusive photoproduction of vector mesons [results]



differential cross sections $[\gamma p \rightarrow \phi p]$

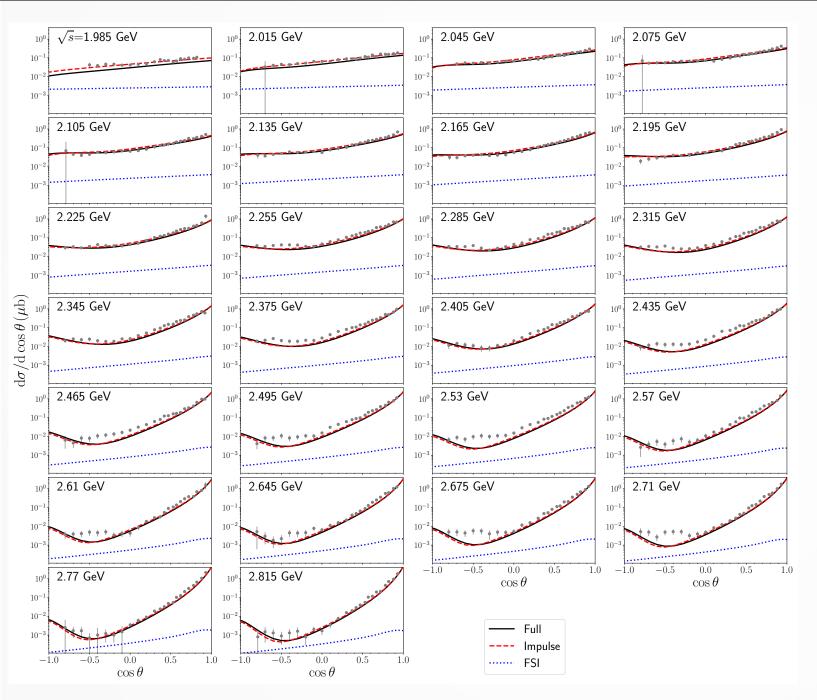
Born term

- □ Forward: Pomeron exchange
- \square Backward: mesons, nucleon, N^* exchanges

play crucial roles.

[Exp: Dey (CLAS), PRC.89. 055208 (2014)]

Exclusive photoproduction of vector mesons [results]



differential cross sections $[\gamma p \rightarrow \varphi p]$

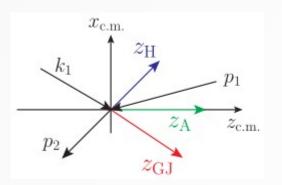
with FSI

☐ The contributions of the FSI terms are very small.

[Exp: Dey (CLAS), PRC.89. 055208 (2014)]

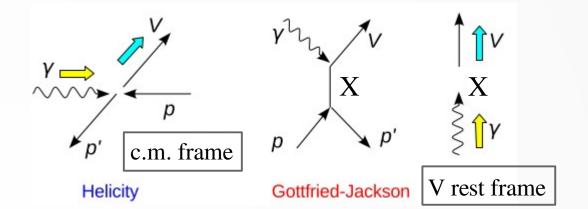
spin-density matrices

☐ Decay frame



V rest frame

Adair frame Helicty frame Gottfried-Jackson frame



Definition

$$\rho_{\underline{\lambda}\underline{\lambda'}}^{0} = \frac{1}{N} \sum_{\lambda_{\gamma}, \lambda_{i}, \lambda_{f}} \mathcal{M}_{\lambda_{f}\lambda; \lambda_{i}\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda'; \lambda_{i}\lambda_{\gamma}}^{*},$$

$$\rho_{\lambda\lambda'}^1 = \frac{1}{N} \sum_{\lambda_{\nu}, \lambda_{i}, \lambda_{f}} \mathcal{M}_{\lambda_{f}\lambda; \lambda_{i} - \lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda'; \lambda_{i}\lambda_{\gamma}}^*,$$

$$\rho_{\lambda\lambda'}^2 = \frac{i}{N} \sum_{\lambda_{\gamma}, \lambda_{i}, \lambda_{f}} \lambda_{\gamma} \mathcal{M}_{\lambda_{f}\lambda; \lambda_{i} - \lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda'; \lambda_{i}\lambda_{\gamma}}^*,$$

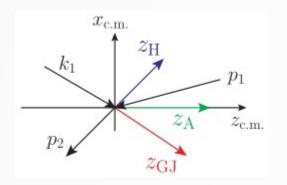
$$ho_{\lambda\lambda'}^3 = rac{1}{N} \sum_{\lambda_{\gamma}, \lambda_{i}, \lambda_{f}} \lambda_{\gamma} \mathcal{M}_{\lambda_{f}\lambda; \lambda_{i}\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda'; \lambda_{i}\lambda_{\gamma}}^*,$$

- \square λ , λ' : Helicity states of the vector-meson
- \Box For a *t*-channel exchange of X, the momentum of γ and V is collinear in the GJ frame.

Thus, the ρij^k elements measure the degree of helicity flip due to the *t*-channel exchange of X in the GJ frame.

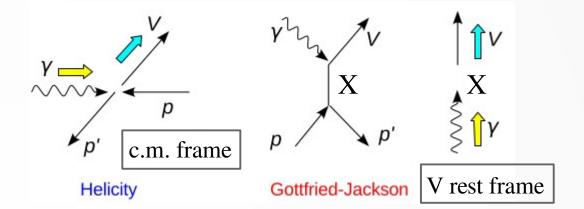
spin-density matrices

☐ Decay frame



V rest frame

Adair frame Helicty frame Gottfried-Jackson frame



Definition

$$\rho_{\lambda\lambda'}^{0} = \frac{1}{N} \sum_{\lambda_{\gamma}, \lambda_{i}, \lambda_{f}} \mathcal{M}_{\lambda_{f}\lambda; \lambda_{i}\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda'; \lambda_{i}\lambda_{\gamma}}^{*},$$

$$\rho_{\lambda\lambda'}^{1} = \frac{1}{N} \sum_{\lambda_{\gamma}, \lambda_{i}, \lambda_{f}} \mathcal{M}_{\lambda_{f}\lambda; \lambda_{i} - \lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda'; \lambda_{i}\lambda_{\gamma}}^{*},$$

$$\rho_{\lambda\lambda'}^{1} = \frac{1}{N} \sum_{\lambda_{\gamma}, \lambda_{i}, \lambda_{f}} \mathcal{M}_{\lambda_{f}\lambda; \lambda_{i} - \lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda'; \lambda_{i}\lambda_{\gamma}}^{*},$$

$$\rho_{\lambda\lambda'}^2 = \frac{i}{N} \sum_{\lambda_{\gamma}, \lambda_{i}, \lambda_{f}} \lambda_{\gamma} \mathcal{M}_{\lambda_{f}\lambda; \lambda_{i} - \lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda'; \lambda_{i}\lambda_{\gamma}}^*,$$

$$\rho_{\lambda\lambda'}^{3} = \frac{1}{N} \sum_{\lambda_{\gamma}, \lambda_{i}, \lambda_{f}} \lambda_{\gamma} \mathcal{M}_{\lambda_{f}\lambda; \lambda_{i}\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda'; \lambda_{i}\lambda_{\gamma}}^{*},$$

$$\rho_{00}^0 \propto \left| \mathcal{M}_{\lambda_{\gamma=1}, \lambda_{\phi=0}} \right|^2 + \left| \mathcal{M}_{\lambda_{\gamma=-1}, \lambda_{\phi=0}} \right|^2$$

Single helicity-flip transition between γ & V

$$-\mathrm{Im}\big[\rho_{1-1}^2\big] \approx \rho_{1-1}^1 = \frac{1}{2} \frac{\sigma^N - \sigma^U}{\sigma^N + \sigma^U}$$

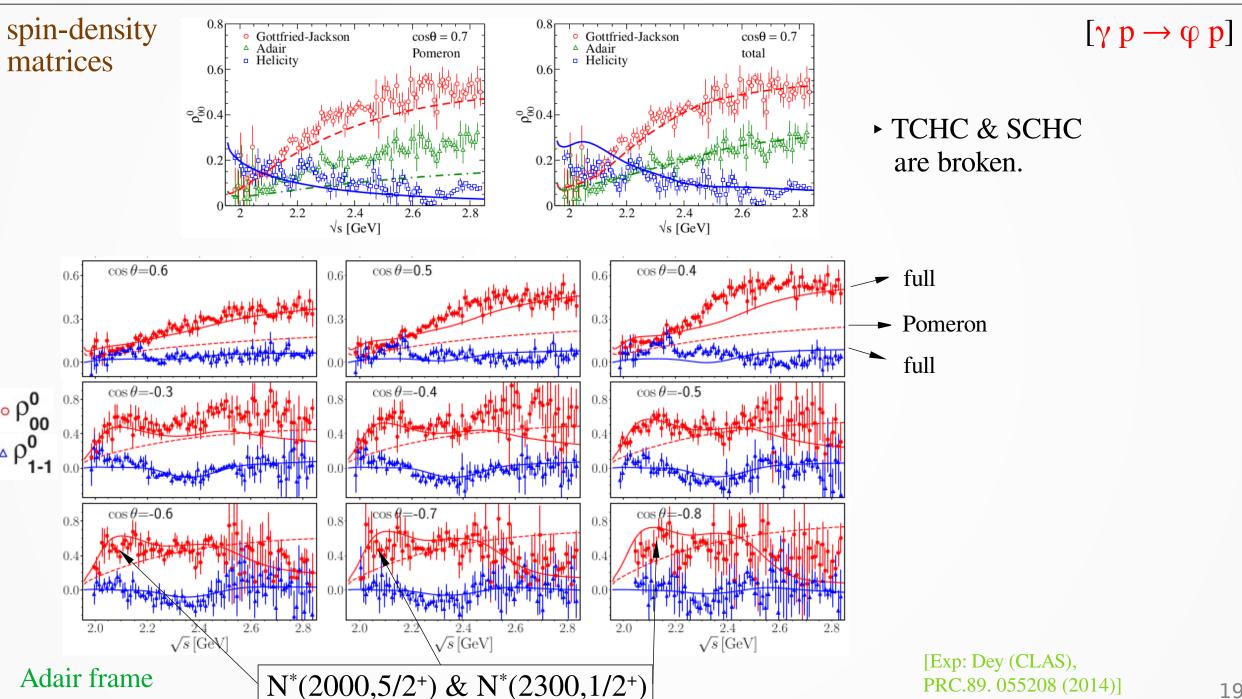
► Relative contribution between Natural & Unnatural parity exchanges

□ Convert into other frames by applying Wigner rotations:

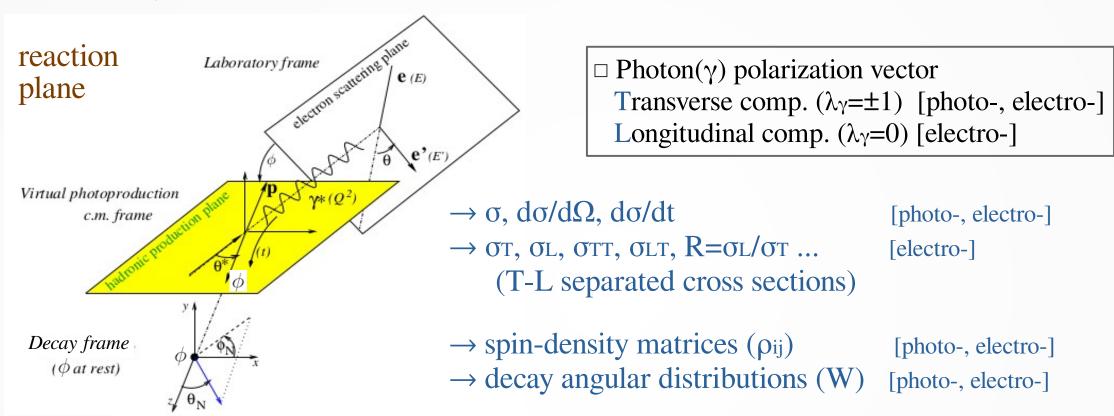
$$\begin{split} &\alpha_{\text{A}\to\text{H}} = \theta_{\text{c.m.}}, \\ &\alpha_{\text{H}\to\text{GJ}} = -\cos^{-1}\left(\frac{v - \cos\theta_{\text{c.m.}}}{v\cos\theta_{\text{c.m.}} - 1}\right) \\ &\alpha_{\text{A}\to\text{GJ}} = \alpha_{\text{A}\to\text{H}} + \alpha_{\text{H}\to\text{GJ}} \end{split}$$

v : The velocity of the K meson in the φ rest frame ($\varphi \to K\overline{K}$ decay)

Exclusive photoproduction of vector mesons [results]



$$\gamma^* p \rightarrow V p$$

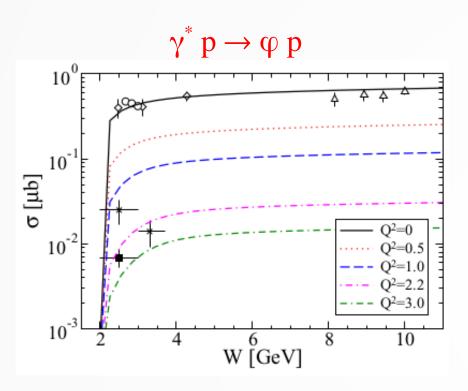


total cross section

$$\sigma = \sigma_{\rm T} + \varepsilon \sigma_{\rm L} \qquad \frac{d\sigma}{d\Phi} = \frac{1}{2\pi} \left(\sigma + \varepsilon \sigma_{\rm TT} \cos 2\Phi + \sqrt{2\varepsilon (1+\varepsilon)} \sigma_{\rm LT} \cos \Phi \right)$$

ε: Virtual-photon polarization parameter

unpolarized cross sections

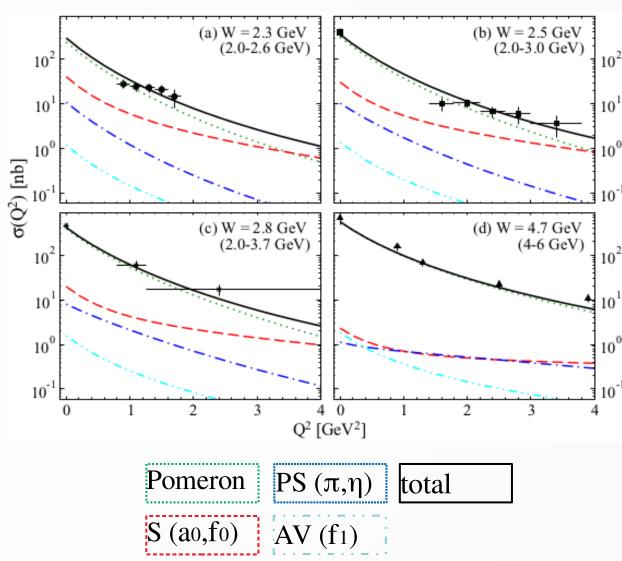


$$\sigma = \sigma_{\rm T} + \varepsilon \sigma_{\rm L}$$

$$\frac{d\sigma}{d\Phi} = \frac{1}{2\pi} \left(\sigma + \varepsilon \sigma_{\rm TT} \cos 2\Phi + \sqrt{2\varepsilon (1+\varepsilon)} \sigma_{\rm LT} \cos \Phi \right)$$

ε: Virtual-photon polarization parameter

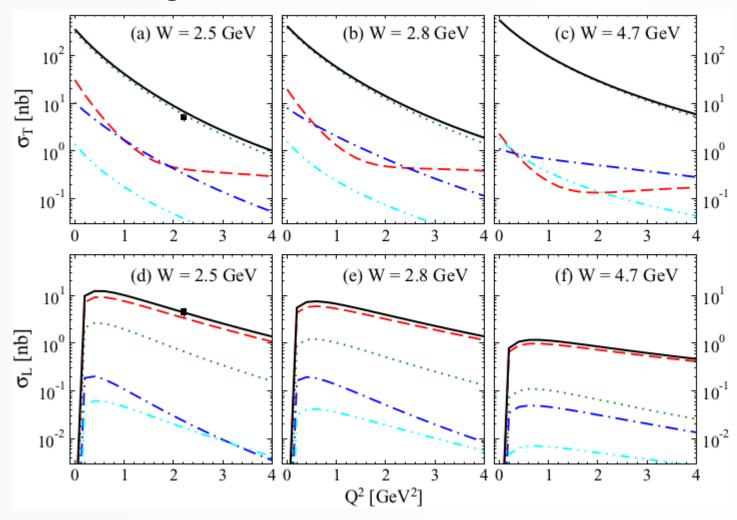
[Exp: Dixon (Cornell), PRL.39.516 (1977)] et al.



- \Box The Q² dependence of the cross sections is well described.
- \Box The agreement with the exp. data is good at the real photon limit Q²=0.

$\gamma^* p \rightarrow \varphi p$

T-L separated cross sections



$$\frac{1}{\mathcal{N}} \frac{d\sigma_{\mathrm{T}}}{dt} = \frac{1}{2} \sum_{\lambda_{\gamma} = \pm 1} \overline{|\mathcal{M}^{(\lambda_{\gamma})}|^{2}},$$

$$\frac{1}{\mathcal{N}} \frac{d\sigma_{\mathrm{L}}}{dt} = \overline{|\mathcal{M}^{(\lambda_{\gamma} = 0)}|^{2}},$$

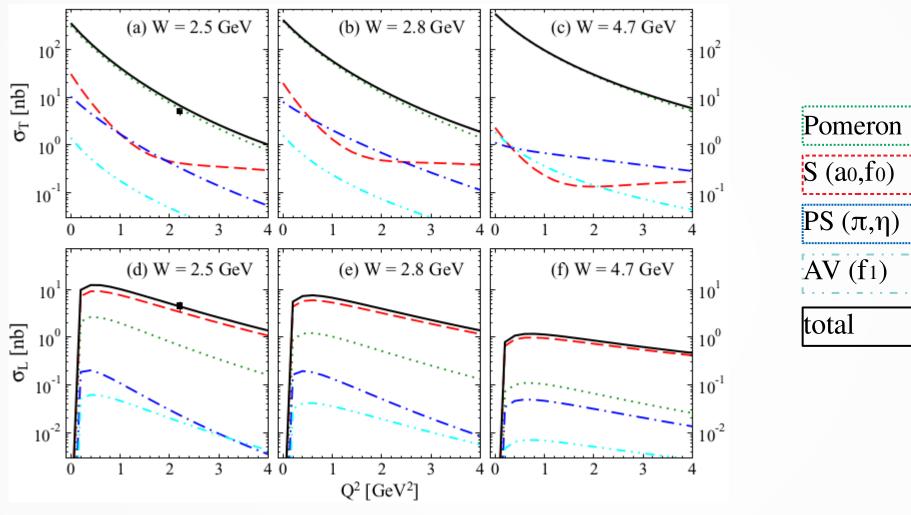
$$\frac{1}{\mathcal{N}} \frac{d\sigma_{\mathrm{TT}}}{dt} = -\frac{1}{2} \sum_{\lambda_{\gamma} = \pm 1} \overline{\mathcal{M}^{(\lambda_{\gamma})} \mathcal{M}^{(-\lambda_{\gamma})^{*}}},$$

$$\frac{1}{\mathcal{N}} \frac{d\sigma_{\mathrm{LT}}}{dt} = -\frac{1}{2\sqrt{2}} \sum_{\lambda_{\gamma} = \pm 1} \lambda_{\gamma} (\overline{\mathcal{M}^{(0)} \mathcal{M}^{(\lambda_{\gamma})^{*}}} + \overline{\mathcal{M}^{(\lambda_{\gamma})} \mathcal{M}^{(0)^{*}}})$$

$$+ \overline{\mathcal{M}^{(\lambda_{\gamma})} \mathcal{M}^{(0)^{*}}})$$

[Exp: Santoro (CLAS), PRC.78.025210 (2008)]

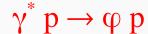
□ Pomeron and S-meson exchanges dominate transverse (T) and longitudinal (L) cross sections, respectively.

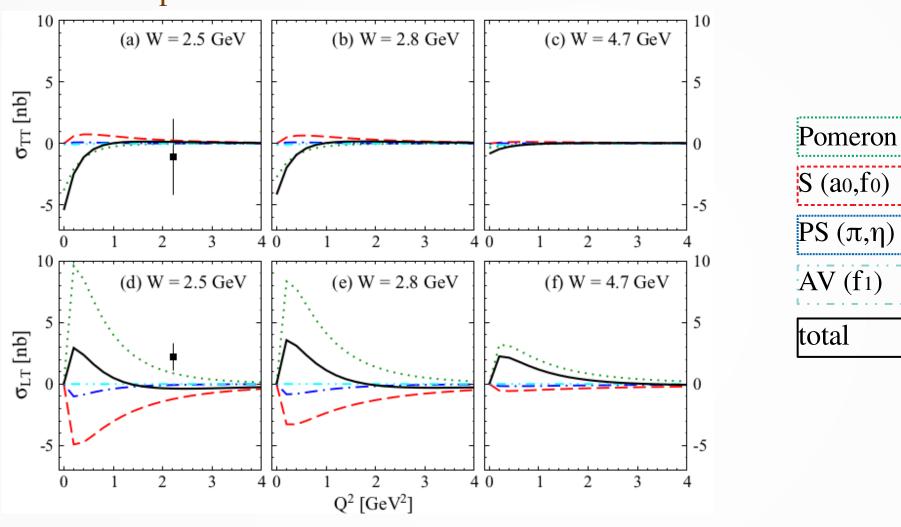


[Exp: Santoro (CLAS), PRC.78.025210 (2008)]

□ Pomeron and S-meson exchanges dominate transverse (T) and longitudinal (L) cross sections, respectively.

T-L separated cross sections

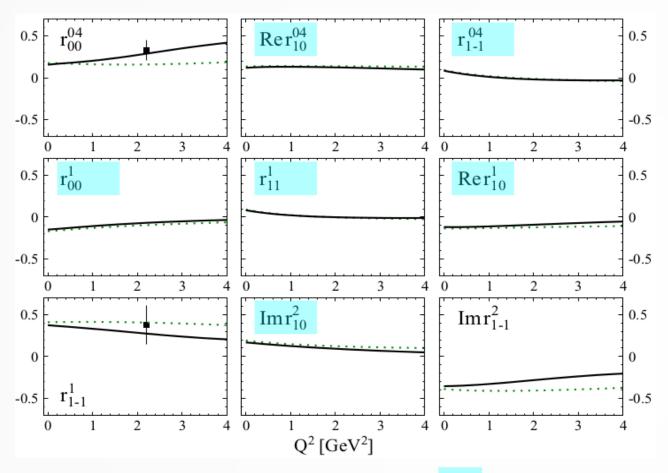




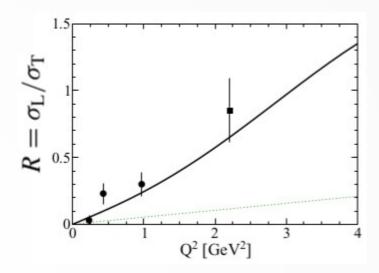
[Exp: Santoro (CLAS), PRC.78.025210 (2008)]

- ☐ The signs of Pomeron and **meson** contributions are opposite to each other.
- \Box ott and olt become zero as W and Q² increases, indicating SCHC.

spin-density matrix elements (r_k^{ij})



 \square By definition, if SCHC holds, $r_{ij}^{k} = 0$.



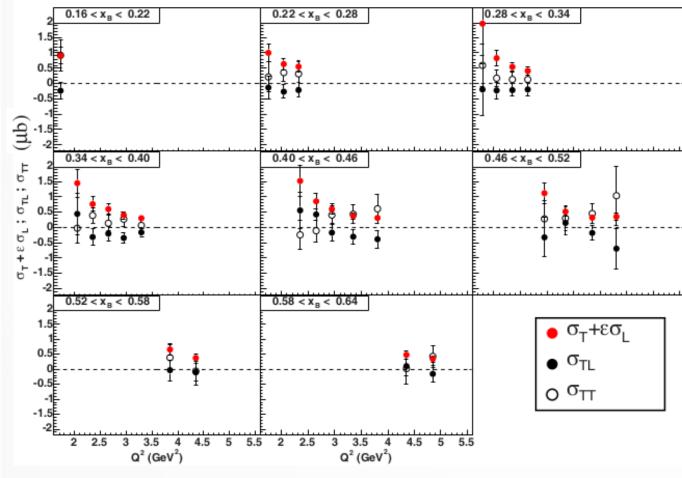
$$r_{ij}^{04} = \frac{\rho_{ij}^{0} + \varepsilon R \rho_{ij}^{4}}{1 + \varepsilon R},$$

$$r_{ij}^{\alpha} = \frac{\rho_{ij}^{\alpha}}{1 + \varepsilon R}, \quad \text{for } \alpha = (0 - 3),$$

$$r_{ij}^{\alpha} = \sqrt{R} \frac{\rho_{ij}^{\alpha}}{1 + \varepsilon R}, \quad \text{for } \alpha = (5 - 8)$$

- □ The relative contributions of different meson exchanges are verified.
- □ Our hadronic approach is very successful for describing the data at Q^2 =(0-4) GeV², W=(2-5) GeV, t=(0-2) GeV².

T-L separated cross sections



$$\frac{1}{\mathcal{N}} \frac{d\sigma_{\mathrm{T}}}{dt} = \frac{1}{2} \sum_{\lambda_{\gamma} = \pm 1} \overline{|\mathcal{M}^{(\lambda_{\gamma})}|^{2}},$$

$$\frac{1}{\mathcal{N}} \frac{d\sigma_{\mathrm{L}}}{dt} = \overline{|\mathcal{M}^{(\lambda_{\gamma} = 0)}|^{2}},$$

$$\frac{1}{\mathcal{N}} \frac{d\sigma_{\mathrm{TT}}}{dt} = -\frac{1}{2} \sum_{\lambda_{\gamma} = \pm 1} \overline{\mathcal{M}^{(\lambda_{\gamma})} \mathcal{M}^{(-\lambda_{\gamma})^{*}}},$$

$$\frac{1}{\mathcal{N}} \frac{d\sigma_{\mathrm{LT}}}{dt} = -\frac{1}{2\sqrt{2}} \sum_{\lambda_{\gamma} = \pm 1} \lambda_{\gamma} (\overline{\mathcal{M}^{(0)} \mathcal{M}^{(\lambda_{\gamma})^{*}}} + \overline{\mathcal{M}^{(\lambda_{\gamma})} \mathcal{M}^{(0)^{*}}})$$

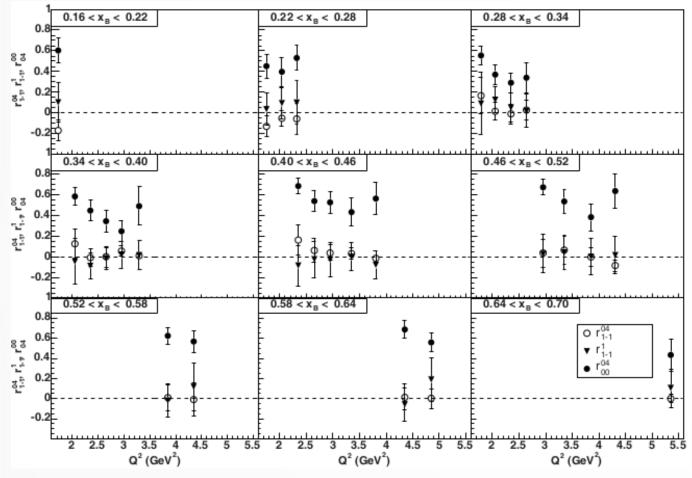
$$+ \overline{\mathcal{M}^{(\lambda_{\gamma})} \mathcal{M}^{(0)^{*}}}$$

[Exp: Morrow (CLAS), EPJA.39.5 (2009)]

- □ If SCHC holds, σττ and σιτ become zero.
- ► Pomeron > meson-exchange $(\gamma^* p \rightarrow \varphi p)$ Pomeron < meson-exchange $(\gamma^* p \rightarrow \rho p, \omega p)$

spin-density matrix elements (r_k^{ij})

 $\gamma^* p \rightarrow \rho(770) p$



$$\begin{array}{|c|c|} \hline \circ r_{1-1}^{04} \\ \hline \bullet r_{00}^{04} \\ \end{array} = 0 \text{ if SCHC holds}$$

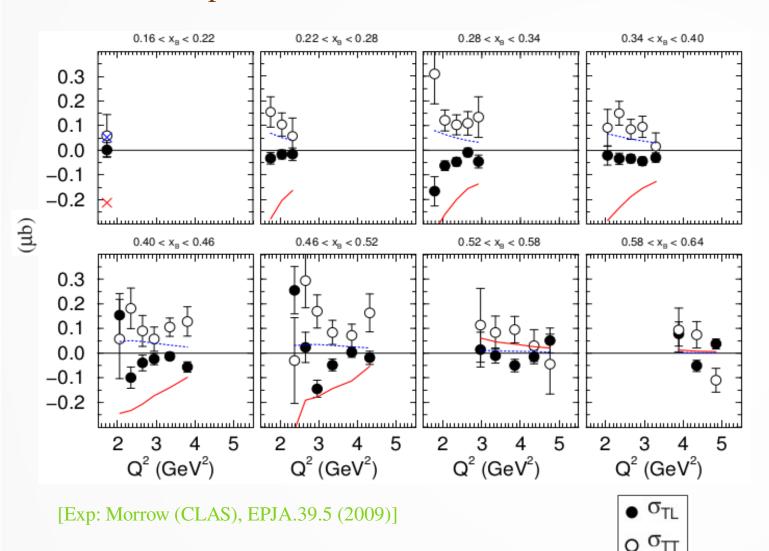
$$\begin{split} r_{ij}^{04} &= \frac{\rho_{ij}^0 + \varepsilon R \rho_{ij}^4}{1 + \varepsilon R}, \\ r_{ij}^\alpha &= \frac{\rho_{ij}^\alpha}{1 + \varepsilon R}, \quad \text{for } \alpha = (0 - 3), \\ r_{ij}^\alpha &= \sqrt{R} \frac{\rho_{ij}^\alpha}{1 + \varepsilon R}, \quad \text{for } \alpha = (5 - 8) \end{split}$$

[Exp: Morrow (CLAS), EPJA.39.5 (2009)]

$$\square$$
 Parity asymmetry $P \equiv \frac{\sigma_T^N - \sigma_T^U}{\sigma_T^N + \sigma_T^U} = (1 + \varepsilon R) (2r_{1-1}^1 - r_{00}^1)$

T-L separated cross sections

 $\gamma^* p \rightarrow \omega(782) p$



$$\frac{1}{\mathcal{N}} \frac{d\sigma_{\mathrm{T}}}{dt} = \frac{1}{2} \sum_{\lambda_{\gamma} = \pm 1} \overline{|\mathcal{M}^{(\lambda_{\gamma})}|^{2}},$$

$$\frac{1}{\mathcal{N}} \frac{d\sigma_{\mathrm{L}}}{dt} = \overline{|\mathcal{M}^{(\lambda_{\gamma} = 0)}|^{2}},$$

$$\frac{1}{\mathcal{N}} \frac{d\sigma_{\mathrm{TT}}}{dt} = -\frac{1}{2} \sum_{\lambda_{\gamma} = \pm 1} \overline{\mathcal{M}^{(\lambda_{\gamma})} \mathcal{M}^{(-\lambda_{\gamma})^{*}}},$$

$$\frac{1}{\mathcal{N}} \frac{d\sigma_{\mathrm{LT}}}{dt} = -\frac{1}{2\sqrt{2}} \sum_{\lambda_{\gamma} = \pm 1} \lambda_{\gamma} (\overline{\mathcal{M}^{(0)} \mathcal{M}^{(\lambda_{\gamma})^{*}}} + \overline{\mathcal{M}^{(\lambda_{\gamma})} \mathcal{M}^{(0)^{*}}})$$

$$+ \overline{\mathcal{M}^{(\lambda_{\gamma})} \mathcal{M}^{(0)^{*}}}$$

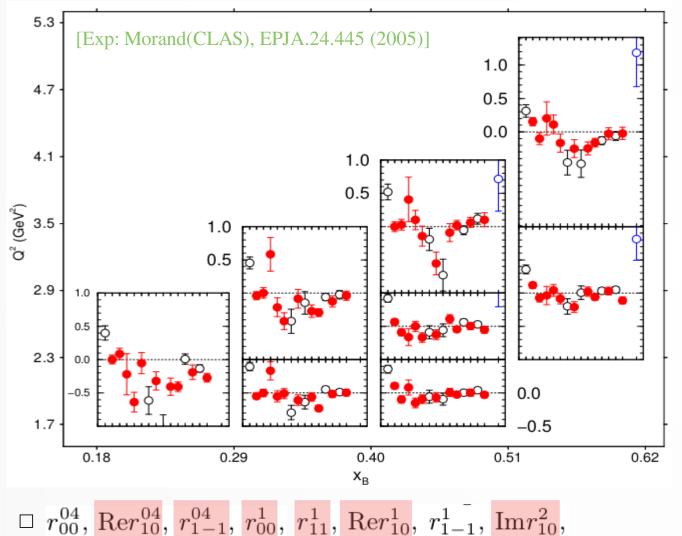
Regge-based model

[Laget, PRD70.054023 (2004)]

- □ If SCHC holds, σττ and σιτ become zero.
- ► Pomeron > meson-exchange $(\gamma^* p \rightarrow \varphi p)$ Pomeron < meson-exchange $(\gamma^* p \rightarrow \rho p, \omega p)$

spin-density matrix elements (rkij)

 $\gamma^* p \rightarrow \omega(782) p$



$$\begin{split} r_{ij}^{04} &= \frac{\rho_{ij}^0 + \varepsilon R \rho_{ij}^4}{1 + \varepsilon R}, \\ r_{ij}^\alpha &= \frac{\rho_{ij}^\alpha}{1 + \varepsilon R}, \quad \text{for } \alpha = (0 - 3), \\ r_{ij}^\alpha &= \sqrt{R} \frac{\rho_{ij}^\alpha}{1 + \varepsilon R}, \quad \text{for } \alpha = (5 - 8) \end{split}$$

 $\operatorname{Im} r_{1-1}^2, r_{00}^5, r_{11}^5, \operatorname{Re} r_{10}^5, r_{1-1}^5, \operatorname{Im} r_{10}^6, \operatorname{Im} r_{1-1}^6$

 \square SCHC holds, if $r_{ij}^k = 0$. It seems that SCHC is broken.

- \Diamond For $\gamma p \to \varphi p \& \gamma^* p \to \varphi p$, we studied the relative contributions between the Pomeson and various meson exchanges. The light-meson $(\pi, \eta, a_0, f_0,...)$ contribution is crucial to describe the data at low energies.
- \diamondsuit Extension to $\gamma^{(*)}$ A \rightarrow V[φ , J/ ψ , $\Upsilon(1S)$] A, [A = 2 H, 4 He, 12 C,...] γ^4 He $\rightarrow \varphi^4$ He [S.H.Kim, T.S.H.Lee, S.i.Nam, Y. Oh, PRC.104.045202 (2021)]
 - > A distorted-wave impulse approximation within the multiple scattering formulation

- \diamondsuit For $\gamma p \to \varphi p \& \gamma^* p \to \varphi p$, we studied the relative contributions between the Pomeson and various meson exchanges. The light-meson $(\pi, \eta, a_0, f_0,...)$ contribution is crucial to describe the data at low energies.
- \diamondsuit Extension to $\gamma^{(*)}$ A \rightarrow V[φ , J/ ψ , $\Upsilon(1S)$] A, [A = 2 H, 4 He, 12 C,...] γ^{4} He $\rightarrow \varphi^{4}$ He [S.H.Kim, T.S.H.Lee, S.i.Nam, Y. Oh, PRC.104.045202 (2021)]
 - > A distorted-wave impulse approximation within the multiple scattering formulation
- ♦ Approved 12 GeV era experiments to date at Jafferson Labarotory:
 [E12-09-003] Nucleon Resonances Studies with CLAS
 [E12-11-002] Proton Recoil Polarization in the ⁴He(e,e'p)³H, ²He(e,e'p)n, ¹He(e,e'p)
 [E12-11-005] Meson spectroscopy with low Q² electron scattering in CLAS12
 [E12-12-006] Near Threshold Electroproduction of J/ψ at 11 GeV
 [E12-12-007] Exclusive Phi Meson Electroproduction with CLAS12
- ♦ Electron-Ion Collider (EIC) will carry out the relevant experiments in the future.

 \Diamond Production of multistrangeness (S < -1) baryons

$$K^{-} p \rightarrow K^{-} p \quad \Rightarrow \quad K^{-} \, ^{12}C \rightarrow K^{-} \, ^{12}C$$
 $K^{-} p \rightarrow K^{+} \, \Xi \quad \Rightarrow \quad K^{-} \, ^{12}C \rightarrow K^{+} \, ^{12}_{\Xi}Be$

- > A distorted-wave impulse approximation within the multiple scattering formulation
- $> \Xi$ hypernuclei is important to study multistrangeness systems and strange neutron stars in astrophysics.
- ♦ Relevant experiments to date at J-PARC:
 - [P05] Spectroscopic Study of Ξ -Hypernucleus, $^{12}_{\Xi}$ Be, via the $^{12}C(K^-,K^+)$ Reaction
 - [P85] Spectroscopy of Omega Baryons
 - [LoI] Study of Σ -N interaction using light Σ -nuclear system
 - [LoI] E Baryon Spectroscopy High-momentum Secondary Beam

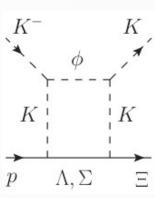
 \Diamond Production of multistrangeness (S < -1) baryons

$$K^{-}p \rightarrow K^{-}p$$
 \Leftrightarrow $K^{-12}C \rightarrow K^{-12}C$
 $K^{-}p \rightarrow K^{+}\Xi \Leftrightarrow K^{-12}C \rightarrow K^{+12}_{\Xi}Be$

- > A distorted-wave impulse approximation within the multiple scattering formulation
- > Ξ hypernuclei is important to study multistrangeness systems and strange neutron stars in astrophysics.
- ♦ Relevant experiments to date at J-PARC:
 - [P05] Spectroscopic Study of Ξ -Hypernucleus, $^{12}_{\Xi}$ Be, via the $^{12}C(K^-,K^+)$ Reaction
 - [P85] Spectroscopy of Omega Baryons
 - [LoI] Study of Σ -N interaction using light Σ -nuclear system
 - [LoI] Ξ Baryon Spectroscopy High-momentum Secondary Beam
- ♦ Rescattering effects could be important for the meson induced production:

$$\begin{split} &K^{\text{-}}\,p \to K^{\text{+}}\,\Xi, &\pi^{\text{-}}\,p \to \phi\;n, \\ &K^{\text{-}}\,p \to \phi\;(\Lambda,\!\Sigma), &\pi^{\text{-}}\,p \to D^{\text{-}}\,(\Lambda_c,\!\Sigma_c) \end{split}$$

> The systematic analyses should be carried out.



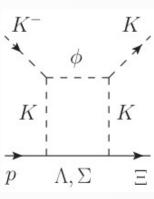
 \Diamond Production of multistrangeness (S < -1) baryons

$$K^{-}p \rightarrow K^{-}p$$
 \Rightarrow $K^{-}^{12}C \rightarrow K^{-}^{12}C$
 $K^{-}p \rightarrow K^{+}\Xi$ \Rightarrow $K^{-}^{12}C \rightarrow K^{+}^{12}Be$

- > A distorted-wave impulse approximation within the multiple scattering formulation
- > Ξ hypernuclei is important to study multistrangeness systems and strange neutron stars in astrophysics.
- ♦ Relevant experiments to date at J-PARC:
 - [P05] Spectroscopic Study of Ξ -Hypernucleus, $^{12}_{\Xi}$ Be, via the $^{12}C(K^-,K^+)$ Reaction
 - [P85] Spectroscopy of Omega Baryons
 - [LoI] Study of Σ -N interaction using light Σ -nuclear system
 - [LoI] Ξ Baryon Spectroscopy High-momentum Secondary Beam
- ♦ Rescattering effects could be important for the meson induced production:

$$\begin{split} &K^{\text{-}} \, p \to K^{\text{+}} \, \Xi, & \pi^{\text{-}} \, p \to \phi \, \, n, \\ &K^{\text{-}} \, p \to \phi \, \, (\Lambda, \Sigma), & \pi^{\text{-}} \, p \to D^{\text{-}} \, (\Lambda_c, \Sigma_c) \end{split}$$

> The systematic analyses should be carried out.



Thank you very much for your attention