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1. Motivation

• 	is	the	simplest	exclusive	process	in	testing	QCD	and	
			understanding	the	structure	of	the	pion.

π0 → γγ*

•Pion	is	the	lightest	pseudo-Goldstone	boson	arising	from	the	SSB	of	the	
chiral	symmetry	in	QCD.
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π0 → γγ*

•Pion	is	the	lightest	pseudo-Goldstone	boson	arising	from	the	SSB	of	the	
chiral	symmetry	in	QCD.

Its	complete	understanding	requires	
a	formulation	capable	of	explaining

 limit																								and																						 	limitQ2 → 0 Q2 → ∞

:	Adler-Bell-Jackiw(ABJ)	anomaly	
		(or	chiral	anomaly),	which	determines	
																Γπ0→γγ ∝ |Fπγ(0) |2

Q2Fπγ = fπ 2

FABJ
πγ (0) =

1

2 2π2fπ



•The	purpose	of	this	work	is	to	explore

(1)the	nonzero	axial	vector	coupling	for	the	consistency	with		the			
chiral	anomaly

in	the	LFQM	using	 	for	the	pion	spin-orbit	structure.Γπ = (Aπ+Bπ /P)γ5

(2)	the	difference	between	the	constituent	quark	picture	( )	and												
the	current	quark	picture	( )

Mπ < 2m
Mπ > 2m

(3)	the	quark	mass	variation	effects	on	Fπγ(Q2), Fπ(Q2)

“the	correlation	between	the	nontrivial	QCD	vacuum	effect		
and	the	constituent	quark	mass”,	through	the	analysis	of



2.  Model Description

	|π⟩ = ψqq̄ |qq̄⟩ + ψqq̄g |qq̄g⟩ + ⋯ ≡ Ψπ
QQ̄ |QQ̄⟩
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P = (P+, P−, P⊥)  
2

∑
i=1
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2

∑
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ki⊥ = 0xi =
k+

i

P+

Q

Q̄

:	mock-hadron	approx.



2.  Model Description

(x1, k1⊥, λ1)

(x2, k2⊥, λ2)

P = (P+, P−, P⊥)  
2

∑
i=1

xi = 1,
2

∑
i=1

ki⊥ = 0xi =
k+

i

P+

Ψπ
QQ̄ ≡ Ψπ(xi, ki⊥, λi) = ϕR(xi, ki⊥)χ (xi, ki⊥, λi)

Normalization: ⟨Ψπ
QQ̄ |Ψπ

QQ̄⟩ = PQQ̄

ϕR(x, k⊥) = PQQ̄
4π3/4

β3/2

∂kz

∂x
e− ⃗k 2

2β2 , ∫
1

0
d x∫

d2k⊥

16π3
|ϕR(x, k⊥) |2 = PQQ̄ .

Q

Q̄
P± = P0 ± P3

	|π⟩ = ψqq̄ |qq̄⟩ + ψqq̄g |qq̄g⟩ + ⋯ ≡ Ψπ
QQ̄ |QQ̄⟩

{k⊥, kz} → {k⊥, x}



2.  Model Description

(x1, k1⊥, λ1)

(x2, k2⊥, λ2)

P = (P+, P−, P⊥)  
2

∑
i=1

xi = 1,
2

∑
i=1

ki⊥ = 0xi =
k+

i

P+

Ψπ
QQ̄ ≡ Ψπ(xi, ki⊥, λi) = ϕR(xi, ki⊥)χ (xi, ki⊥, λi)

Q

Q̄

	satisfying	χλ1λ2
(x, k⊥) = 𝒩ūλ1
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−1 0) sgn(−Bπ)

sgn(−Bπ) = − sgn(Bπ)

sgn(Bπ) =
1 for Bπ > 0
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0 for Bπ = 0

 Chiral	limit	
( )Mπ, m → 0
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3. Application

(1)	Pion	decay	constant

⟨0 | q̄γμ(1 − γ5)q |π(P)⟩ = ifπPμ

Using	μ = +

fπ = 2 2Nc ∫
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0
dx∫

d2k⊥

16π3
ψπ(x, k⊥), ψπ(x, k⊥) =

1

2
(χ↑↓ − χ↓↑)ϕR(x, k⊥)

γμγ5 Wπ±

Γπ = (Aπ+Bπ /P)γ5
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3. Application

(2)	 	transition	form	factor	(TFF)π0 → γγ*

⟨γ(P − q) |Jμ
em |π0(P)⟩ = ie2Fπγ(Q2)ϵμνρσPνϵρqσ,

α =
q+

P+

 (α < x < 1)  (0 < x < α)

q2 = q+q− − q2
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Choi,Ryu,Ji, PRD 96, 056008(17)
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contribute	in	the	chiral	limit	!
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•Possible	solution	sets	for	 		satisfying		(m, β ) f Th
π = f Exp

π = 130.2(2) MeV

4. Numerical Results
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•Possible	solution	sets	for	 		satisfying		(m, β ) f Th
π = f Exp

π = 130.2(2) MeV

4. Numerical Results

Bπ = − 1Bπ = 1

•  		Check	sign	problem	of	 	in	Bπ Γπ = (Mπ+Bπ /P)γ5

χchiral
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=
1

2 ( 0 1
−1 0) sgn(−Bπ)

consistent	with	chiral	limit	result!
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•Possible	solution	sets	for	 	and	 	satisfying	both		(−Bπ vs PQQ̄) (β vs PQQ̄) f Exp
π and FExp

πγ (0) .

Constituent	quark	picture:	Mπ < 2m

Current	quark	picture:	Mπ > 2m

c.f.)	 	satisfies	the	GMOR	relation	(Mπ, m) = (135,5) MeV M2
π f 2

π = − 2(mq + mq̄)⟨qq̄⟩
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Spatial	size	of	the	lowest	Fock	
State	gets	smaller	as	the	higher		
FS	contributes	more!

•Our	main	findings	for	the	model	parameters:
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(3)	For	the	current	 	picture	 ,		
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rest of parameter sets shown in Fig. 3. We mark the refer-
ence parameter set by asterisk (⇤) in Fig. 3, i.e. (Mp ,m,b ) =
(0.135,0.255,0.1980) GeV and (Bp ,PQQ̄) = (�0.25,1), with
which we get Fpg(0) = PQQ̄/(2

p
2p2 fp) = 0.271 GeV�1 and

fp = 130.4 MeV close enough to FExp
pg (0) = 0.272(3) GeV�1

and f Exp
p = 130.2(1.7) MeV for our purpose in this work. In

comparison with the value b = 0.3659 GeV in the absence of
the axial vector coupling Bp = 0 [12], the value b = 0.1980
GeV in the reference parameter set is somewhat reduced with
the contribution of axial vector coupling Bp = �0.25, while
the quark mass m = 255 MeV still represents the ordinary
constituent quark picture in our reference point “⇤”. In re-
ducing the quark mass m from this reference point to fit both
f Exp
p and FExp

pg (0) simultaneously, we ultimately reached the
parameter set (Mp ,m) = (135,5) MeV reproducing the Gell-
Mann-Oakes-Renner (GMOR) relation [45], i.e. M2

p f 2
p =

�2(mq+mq̄)hqq̄i, where hqq̄i=�(250 MeV)3 with the “cur-
rent” quark mass m =mq = mq̄. For the fixed value of the pion
mass, i.e. Mp = 0.135 GeV, we distinguish the two different
cases of the quark-antiquark bound state, i.e. Mp < 2m vs.
Mp > 2m, and call them as the “constituent quark picture” vs.
the “current quark picture”, respectively. In Fig. 3, the param-
eter sets corresponding to Mp < 2m and Mp > 2m cases are
denoted by black and blue data, respectively.

From the results shown in Fig. 3, we summarize our main
findings for the model parameters as follows: (1) The min-
imum probability Pmin

QQ̄ exists for a given quark mass satis-

fying both f Exp
p and FExp

pg (0) simultaneously, e.g. Pmin
QQ̄ =

(0.45,0.25) for m = (200,5) MeV etc. This result is in line
with the trend that the probability PQQ̄ increases as the quark
mass increases indicating the saturation of the LF Fock-state
expansion with the lower Fock-state contribution as the cur-
rent quarks get amalgamated with themselves to form the con-
stituent quark degrees of freedom. (2) For the quark masses
satisfying Mp < 2m (i.e. constituent quark picture), the Guas-
sian parameter b gets larger as PQQ̄ decreases. This indicates
that the spatial size of the lowest Fock state gets smaller as
the higher Fock states contribute more. For a given quark
mass m, the axial vector coupling �Bp gets also reduced as
the higher Fock states contribute more, i.e. PQQ̄ decreases.
For a fixed PQQ̄, however, we notice that �Bp increases quite
significantly as m decreases while b values do not change
much indicating only marginal size reduction in the lowest
Fock state with the reduction of mass m. (3) For the quark
masses satisfying Mp > 2m (i.e. current quark picture), b val-
ues are in general greater for the current quark mass than the
constituent one for given PQQ̄ indicating that the spatial size of
the lowest Fock state consisted of the current quark is smaller
than the one consisted of the constituent quark. As PQQ̄ de-
creases, however, b values get reduced down to those in the
constituent quark picture indicating that the spatial size of the
lowest Fock state consisted of the current quark gets larger as
the higher Fock states contribute more. The similar merge of
the axial vector coupling Bp between the current quark picture
and the constituent picture appears as PQQ̄ decreases in the
upper panel Fig. 3(a). It is indeed fascinating to observe the

TABLE I: Model parameters (Bp ,b ) depending on the variation of
(Mp ,m) and PQQ̄. We denote (Mp ,m,b , fp ) in unit of MeV.

(Mp ,m) PQQ̄ Bp b f Th
p FTh

pg (0) [GeV�1]
(135,255) 1 �0.25 198.0 130.4 0.271
(135,150) 0.3 �0.60 346.9 130.6 0.272
(135,50) 0.15 �0.7 493.0 130.7 0.271
(0,0) 0.078 < 0 668.5 130.9 0.276
Exp. [44] � � � 130.2(1.7) 0.272(3)

FIG. 4: The normalized pion DA Fp (x) obtained from the sets
of (Mp ,m) = {(135,255),(135,150),(135,50),(0,0)} MeV with
PQQ̄ = {1,0.3,0.15,0.078} compared with the asymptotic DA.

merge of the parameter sets between the current quark picture
and the constituent picture as PQQ̄ decreases both in Fig. 3(a)
and Fig. 3(b). It seems to indicate a nontrivial dynamic sat-
uration process of the LF Fock-state expansion occurring as
the current quarks get amalgamated with themselves to form
the constituent quark degrees of freedom according to these
results.

For the case of exact chiral limit (Mp = m = 0), our re-
sults for any physical observables are independent of Bp as
far as it is negative nonzero value (Bp < 0) and depend only
on (b ,PQQ̄), which were obtained as b = 0.6685 GeV and
PQQ̄ = 0.078 by fitting both f Exp

p (see Eq. (15)) and FExp
pg (0)

(see Eq. (22)) simultaneously.
Table I shows our typical model parameters (Bp ,b ) de-

pending on the variation of (Mp ,m) and PQQ̄ used in the
analysis of the twist-2 DA fp(x), the transition form factor
Fpg(Q2), and the electromagnetic form factor Fp(Q2). Among
many possible solutions satisfying both f Exp

p and FExp
pg (0) as

shown in Fig. 3, we select a few parameter sets (Mp ,m) =
{(135,255),(135,150),(135,50),(0,0)} MeV corresponding
to the variation of the probability PQQ̄ = {1,0.3,0.15,0.078}
in order to estimate the mass variation effect on both Fpg(Q2)
and Fp(Q2) form factors.
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and Fig. 3(b). It seems to indicate a nontrivial dynamic sat-
uration process of the LF Fock-state expansion occurring as
the current quarks get amalgamated with themselves to form
the constituent quark degrees of freedom according to these
results.

For the case of exact chiral limit (Mp = m = 0), our re-
sults for any physical observables are independent of Bp as
far as it is negative nonzero value (Bp < 0) and depend only
on (b ,PQQ̄), which were obtained as b = 0.6685 GeV and
PQQ̄ = 0.078 by fitting both f Exp

p (see Eq. (15)) and FExp
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(see Eq. (22)) simultaneously.
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analysis of the twist-2 DA fp(x), the transition form factor
Fpg(Q2), and the electromagnetic form factor Fp(Q2). Among
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to the variation of the probability PQQ̄ = {1,0.3,0.15,0.078}
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•Estimation	of	the	quark	mass	variation	effect	on	 	evolution	of	Q2 Fπγ(Q2) and Fπ(Q2)

⟨Ψπ
m′ |Ψπ

m⟩ = δm′ m Pm′ Pm = δm′ mPm mref = m = 255 MeV and PQQ̄ = Pmref
= 1

F(mref,m=150)
πγ (Q2) =

1 − P̃mF(mref )πγ (Q2) + P̃m F(m=150)
πγ (Q2)

1 − P̃m + P̃m

, with F(mref,m)
πγ (0) = FExp

πγ (0) .

F(mref,m=150)
π (Q2) = (1 − P̃m)F(mref )

π (Q2) + P̃mF(m=150)
π (Q2), with F(mref,m)

π (0) = 1.

P̃m =
Pm

(Pmref
+ Pm)

=
0.3
1.3

≈ 0.23

e.g.)	Prescription	of	the	mixing	between	mref and m = 150 MeV

As	a	first	attempt	to	estimate	the	quark	mass	variation	effect,	we	use	the	mixing	
between	 	viamref and m( < mref)

:	renormalized	probability
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•Quark	mass	variation	effect	on	Fπγ(Q2)
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The	standard	LFQM	prediction	with	the	invariant	mass	scheme.
χλ1λ2

(x, k⊥) ∝ ūλ1
(k1)γ5υλ2

(k2)
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5.  Conclusion

•We	explored	the	link	between	the	chiral	sym.	of	QCD	and	the	numerical	results	of		
			the	LFQM	analyzing		 .fπ, Fπγ(Q2), Fπ(Q2)

- Axial-vector	coupling	with	 	is	essential	to	describe	the	
correct	chiral	limit	expression	in	the	LFQM.

Bπ < 0

Γπ = (Mπ+Bπ /P)γ5 - Our		chiral	limit	results	for	 	and	 	are	exactly	the	same	
			as	AdS/CFT	predictions.

fπ ϕπ(x)

- In	constraining	the	model	parameters,	we	found	that	the	chiral	anomaly	plays	a	
critical	role	and	the	analysis	of	 	in	timelike	region	is	important.Fπγ(q2)

- Our	results	indicate	that	the	constituent	quark	picture	is	very	effective	in	describing	
both	 	in	the	low	energy	regime,	but	the	quark	mass	evolution	seems	
		inevitable	as	 	grows.

Fπγ(Q2), Fπ(Q2)

Q2


