Chiral anomaly and the pion properties in the light-front quark model

Ho-Meoyng Choi (Kyungpook National Univ.)
in collaboration with C.-R. Ji

〔Ref. Phys. Rev. D 102, 036005 (2020)〕

Outline

1. Motivation
2. Model Description: Light-Front Quark Model(LFQM)

- Role of axial-vector coupling in the chiral limit $\left(M_{\pi}, m_{Q} \rightarrow 0\right)$

3. Application
1) f_{π}

Note) Most previous LFQM used $\Gamma_{\pi}=\gamma_{5}$
4. Numerical Results
5. Conclusion

1. Motivation

- Pion is the lightest pseudo-Goldstone boson arising from the SSB of the chiral symmetry in QCD.
- $\pi^{0} \rightarrow \gamma \gamma^{*}$ is the simplest exclusive process in testing QCD and understanding the structure of the pion.

1. Motivation

- Pion is the lightest pseudo-Goldstone boson arising from the SSB of the chiral symmetry in QCD.
- $\pi^{0} \rightarrow \gamma \gamma^{*}$ is the simplest exclusive process in testing QCD and understanding the structure of the pion.

$$
Q^{2} \rightarrow 0 \text { limit }
$$

and
$Q^{2} \rightarrow \infty$ limit
: Adler-Bell-Jackiw (ABJ) anomaly (or chiral anomaly), which determines

$$
\Gamma_{\pi^{0} \rightarrow \gamma \gamma} \propto\left|F_{\pi \gamma}(0)\right|^{2}
$$

$$
F_{\pi \gamma}^{\mathrm{ABJ}}(0)=\frac{1}{2 \sqrt{2} \pi^{2} f_{\pi}}
$$

- The purpose of this work is to explore
"the correlation between the nontrivial QCD vacuum effect and the constituent quark mass", through the analysis of
(1)the nonzero axial vector coupling for the consistency with the chiral anomaly
(2) the difference between the constituent quark picture $\left(M_{\pi}<2 m\right)$ and the current quark picture $\left(M_{\pi}>2 m\right)$
(3) the quark mass variation effects on $F_{\pi \gamma}\left(Q^{2}\right), F_{\pi}\left(Q^{2}\right)$
in the LFQM using $\Gamma_{\pi}=\left(A_{\pi}+B_{\pi} \not P\right) \gamma_{5}$ for the pion spin-orbit structure.

2. Model Description

$$
|\pi\rangle=\psi_{q \bar{q}}|q \bar{q}\rangle+\psi_{q \bar{q} g}|q \bar{q} g\rangle+\cdots \equiv \Psi_{Q \bar{Q}}^{\pi}|Q \bar{Q}\rangle: \text { mock-hadron approx. }
$$

$$
\left.P=\left(P^{+}, P^{-}, \mathbf{P}_{\perp}\right) \xrightarrow{\square}\left(x_{1}, \mathbf{k}_{1 \perp}, \lambda_{1}\right) \quad x_{i}=\frac{k_{i}^{+}}{P^{+}} \quad \sum_{i=1}^{2} x_{i}, \mathbf{k}_{2 \perp}, \lambda_{2}\right)
$$

2. Model Description

$$
|\pi\rangle=\psi_{q \bar{q}}|q \bar{q}\rangle+\psi_{q \bar{q} g}|q \bar{q} g\rangle+\cdots \equiv \Psi_{Q \bar{Q}}^{\pi}|Q \bar{Q}\rangle
$$

$$
\Psi_{\varrho \bar{Q}}^{\pi} \equiv \Psi_{\pi}\left(x_{i}, \mathbf{k}_{i \perp}, \lambda_{i}\right)=\phi_{R}\left(x_{i}, \mathbf{k}_{i \perp}\right) \chi\left(x_{i}, \mathbf{k}_{i \perp}, \lambda_{i}\right)
$$

Normalization: $\left\langle\Psi_{Q \bar{Q}}^{\pi} \mid \Psi_{Q \bar{Q}}^{\pi}\right\rangle=P_{Q \bar{Q}}$

$$
\begin{array}{cc}
\phi_{R}\left(x, \mathbf{k}_{\perp}\right)=\sqrt{P_{Q \bar{Q}}} & \frac{4 \pi^{3 / 4}}{\beta^{3 / 2}} \sqrt{\frac{\partial k_{z}}{\partial x}} e^{-\frac{\vec{k}^{2}}{2 \beta^{2}}}, \\
\left\{\mathbf{k}_{\perp}, k_{z}\right\} \rightarrow\left\{\mathbf{k}_{\perp}, x\right\} & \quad \int_{0}^{1} d x \int \frac{d^{2} \mathbf{k}_{\perp}}{16 \pi^{3}}\left|\phi_{R}\left(x, \mathbf{k}_{\perp}\right)\right|^{2}=P_{Q \bar{Q}}
\end{array}
$$

2. Model Description

$$
|\pi\rangle=\psi_{q \bar{q}}|q \bar{q}\rangle+\psi_{q \bar{q} g}|q \bar{q} g\rangle+\cdots \equiv \Psi_{Q \bar{Q}}|Q \bar{Q}\rangle
$$

$$
P=\left(P^{+}, P^{-}, \mathbf{P}_{\perp}\right) \xrightarrow{\substack{Q}\left(x_{1}, \mathbf{k}_{1 \perp}, \lambda_{1}\right)} \quad x_{i}=\frac{k_{i}^{+}}{P^{+}} \quad \sum_{i=1}^{2} x_{i}=1, \sum_{i=1}^{2} \mathbf{k}_{i \perp}=0
$$

$$
\Psi_{Q \bar{Q}}^{\pi} \equiv \Psi_{\pi}\left(x_{i}, \mathbf{k}_{i \perp}, \lambda_{i}\right)=\phi_{R}\left(x_{i}, \mathbf{k}_{i \perp}\right) \chi\left(x_{i}, \mathbf{k}_{i \perp}, \lambda_{i}\right)
$$

$\chi_{\lambda_{1} \lambda_{2}}\left(x, \mathbf{k}_{\perp}\right)=\mathscr{N} \bar{u}_{\lambda_{1}}\left(k_{1}\right) \Gamma_{\pi} v_{\lambda_{2}}\left(k_{2}\right)$ satisfying $\left\langle\chi_{\lambda_{1} \lambda_{2}} \mid \chi_{\lambda_{1} \lambda_{2}}\right\rangle=1$

$$
\Gamma_{\pi}=\left(A_{\pi}+B_{\pi} \not P\right) \gamma_{5}
$$

where we set $A_{\pi}=M_{\pi}, B_{\pi}$ being a free parameter.

2. Model Description

$$
|\pi\rangle=\psi_{q \bar{q}}|q \bar{q}\rangle+\psi_{q \bar{q} g}|q \bar{q} g\rangle+\cdots \equiv \Psi_{Q \bar{Q}}^{\pi}|Q \bar{Q}\rangle
$$

$$
P=\left(P^{+}, P^{-}, \mathbf{P}_{\perp}\right) \xrightarrow{\substack{Q}\left(x_{1}, \mathbf{k}_{1 \perp}, \lambda_{1}\right)} \begin{gathered}
\text { (x, } \left., \mathbf{k}_{2 \perp}, \lambda_{2}\right)
\end{gathered} \quad M_{0}^{2}=\frac{m_{Q}^{2}+\mathbf{k}_{1 \perp}^{2}}{x_{1}}+\frac{m_{Q}^{2}+\mathbf{k}_{2 \perp}^{2}}{x_{2}}
$$

$$
\begin{gathered}
\Psi_{Q \bar{Q}}^{\pi} \equiv \Psi_{\pi}\left(x_{i}, \mathbf{k}_{i \perp}, \lambda_{i}\right)=\phi_{R}\left(x_{i}, \mathbf{k}_{i \perp}\right) \chi\left(x_{i}, \mathbf{k}_{i \perp}, \lambda_{i}\right) \\
\chi_{\lambda_{1} \lambda_{2}}\left(x, \mathbf{k}_{\perp}\right)=\left(\begin{array}{ll}
\chi_{\uparrow \uparrow} & \chi_{\uparrow \downarrow} \\
\chi_{\downarrow \uparrow} & \chi_{\downarrow \downarrow}
\end{array}\right) \propto\left(\begin{array}{cc}
-k^{L} \mathscr{M} & m \mathscr{M}+x(1-x) B_{\pi} \epsilon_{B} \\
-m \mathscr{M}-x(1-x) B_{\pi} \epsilon_{B} & -k^{R} \mathscr{M}
\end{array}\right) \\
\mathscr{M}=M_{\pi}+2 B_{\pi} m, \epsilon_{B}=M_{\pi}^{2}-M_{0}^{2}, \quad k^{R(L)}=k_{x} \pm i k_{y}
\end{gathered}
$$

$$
\chi_{\lambda_{1} \lambda_{2}}\left(x, \mathbf{k}_{\perp}\right)=\mathcal{N} \bar{u}_{\lambda_{1}}\left(k_{1}\right)\left(M_{\pi}+B_{\pi} \not{ }^{P}\right) \gamma_{5} v_{\lambda_{2}}\left(k_{2}\right)
$$

Chiral limit

$$
\left(M_{\pi}, m \rightarrow 0\right)
$$

$$
\chi_{\lambda_{1} \lambda_{2}}^{\text {chiral }}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \operatorname{sgn}\left(-\mathrm{B}_{\pi}\right)
$$

$$
\operatorname{sgn}\left(-B_{\pi}\right)=-\operatorname{sgn}\left(B_{\pi}\right)
$$

$$
\operatorname{sgn}\left(B_{\pi}\right)= \begin{cases}1 & \text { for } B_{\pi}>0 \\ -1 & \text { for } B_{\pi}<0 \\ 0 & \text { for } B_{\pi}=0\end{cases}
$$

$$
\chi_{\lambda_{1} \lambda_{2}}\left(x, \mathbf{k}_{\perp}\right)=\mathcal{N} \bar{u}_{\lambda_{1}}\left(k_{1}\right)\left(M_{\pi}+B_{\pi} \not{ }^{P}\right) \gamma_{5} v_{\lambda_{2}}\left(k_{2}\right)
$$

Chiral limit

$$
\left(M_{\pi}, m \rightarrow 0\right)
$$

$$
\chi_{\lambda_{1} \lambda_{2}}^{\text {chiral }}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \operatorname{sgn}\left(-\mathrm{B}_{\pi}\right)
$$

$$
\operatorname{sgn}\left(-B_{\pi}\right)=-\operatorname{sgn}\left(B_{\pi}\right)
$$

$$
\begin{aligned}
& \operatorname{sgn}\left(B_{\pi}\right)= \begin{cases}1 & \text { for } B_{\pi}>0 \\
-1 & \text { for } B_{\pi}<0 \\
0 & \text { for } B_{\pi}=0\end{cases} \\
& =\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
\end{aligned}
$$

$$
\chi_{\lambda_{1} \lambda_{2}}\left(x, \mathbf{k}_{\perp}\right)=\mathcal{N} \bar{u}_{\lambda_{1}}\left(k_{1}\right)\left(M_{\pi}+B_{\pi} \not{ }^{P}\right) \gamma_{5} v_{\lambda_{2}}\left(k_{2}\right)
$$

Chiral limit

$$
\left(M_{\pi}, m \rightarrow 0\right)
$$

$$
\chi_{\lambda_{1} \lambda_{2}}^{\text {chiral }}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \operatorname{sgn}\left(-\mathrm{B}_{\pi}\right)
$$

$$
\operatorname{sgn}\left(-B_{\pi}\right)=-\operatorname{sgn}\left(B_{\pi}\right)
$$

$$
\operatorname{sgn}\left(B_{\pi}\right)= \begin{cases}1 & \text { for } B_{\pi}>0 \\ -1 & \text { for } B_{\pi}<0 \\ 0 & \text { for } B_{\pi}=0\end{cases}
$$

$$
\chi_{\lambda_{1} \lambda_{2}}^{\text {chiral }}=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

Zero-binding limit $\left(M_{\pi} \rightarrow M_{0}\right.$ or $\left.\epsilon_{B}=0\right) \square \Gamma_{\pi} \propto \gamma_{5}$ $\chi_{\lambda_{1} \lambda_{2}}^{\left(M_{0}\right)}=\frac{1}{\sqrt{2\left(\mathbf{k}_{\perp}^{2}+m^{2}\right)}}\left(\begin{array}{cc}-k^{L} & m \\ -m & -k^{R}\end{array}\right)$

$$
\chi_{\lambda_{1} \lambda_{2}}\left(x, \mathbf{k}_{\perp}\right)=\mathcal{N} \bar{u}_{\lambda_{1}}\left(k_{1}\right)\left(M_{\pi}+B_{n} \not{ }^{P}\right) \gamma_{5} v_{\lambda_{2}}\left(k_{2}\right)
$$

Chiral limit

$$
\left(M_{\pi}, m \rightarrow 0\right)
$$

$$
\chi_{\lambda_{1} \lambda_{2}}^{\text {chiral }}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \operatorname{sgn}\left(-\mathrm{B}_{\pi}\right)
$$

$$
\operatorname{sgn}\left(-B_{\pi}\right)=-\operatorname{sgn}\left(B_{\pi}\right)
$$

$$
\operatorname{sgn}\left(B_{\pi}\right)= \begin{cases}1 & \text { for } B_{\pi}>0 \\ -1 & \text { for } B_{\pi}<0 \\ 0 & \text { for } B_{\pi}=0\end{cases}
$$

$$
\chi_{\lambda_{1} \lambda_{2}}^{\text {chiral }}=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

Zero-binding limit

$$
\left(M_{\pi} \rightarrow M_{0} \text { or } \epsilon_{B}=0\right)
$$

$$
\chi_{\lambda_{1} \lambda_{2}}^{\left(M_{0}\right)}=\frac{1}{\sqrt{2\left(\mathbf{k}_{\perp}^{2}+m^{2}\right)}}\left(\begin{array}{cc}
-k^{L} & m \\
-m & -k^{R}
\end{array}\right)
$$

Chiral limit

$$
\begin{gathered}
(m \rightarrow 0) \\
\chi_{\uparrow \downarrow}^{\left(M_{0}\right)}=\chi_{\downarrow \uparrow}^{\left(M_{0}\right)}=0
\end{gathered}
$$

$$
\chi_{\lambda_{1} \lambda_{2}}\left(x, \mathbf{k}_{\perp}\right)=\mathcal{N} \bar{u}_{\lambda_{1}}\left(k_{1}\right)\left(M_{\pi}+B_{n} \not{ }^{P}\right) \gamma_{5} v_{\lambda_{2}}\left(k_{2}\right)
$$

Chiral limit

$$
\left(M_{\pi}, m \rightarrow 0\right)
$$

$$
\chi_{\lambda_{1} \lambda_{2}}^{\text {chiral }}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \operatorname{sgn}\left(-\mathrm{B}_{\pi}\right)
$$

$$
\operatorname{sgn}\left(-B_{\pi}\right)=-\operatorname{sgn}\left(B_{\pi}\right)
$$

$$
\operatorname{sgn}\left(B_{\pi}\right)= \begin{cases}1 & \text { for } B_{\pi}>0 \\ -1 & \text { for } B_{\pi}<0 \\ 0 & \text { for } B_{\pi}=0\end{cases}
$$

Zero-binding limit

$$
\left(M_{\pi} \rightarrow M_{0} \text { or } \epsilon_{B}=0\right)
$$

$$
\chi_{\lambda_{1} \lambda_{2}}^{\left(M_{0}\right)}=\frac{1}{\sqrt{2\left(\mathbf{k}_{\perp}^{2}+m^{2}\right)}}\left(\begin{array}{cc}
-k^{L} & m \\
-m & -k^{R}
\end{array}\right)
$$

Chiral limit

$$
\begin{gathered}
(m \rightarrow 0) \\
\quad \chi_{\uparrow \downarrow}^{\left(M_{0}\right)}=\chi_{\downarrow \uparrow}^{\left(M_{0}\right)}=0
\end{gathered}
$$

Axial vector coupling (i.e. $B_{\pi}<0$) is absolutely required to have non-zero chiral limit!

3. Application

(1) Pion decay constant

$$
\begin{aligned}
& \quad\langle 0| \bar{q} \gamma^{\mu}\left(1-\gamma_{5}\right) q|\pi(P)\rangle=i f_{\pi} P^{\mu} \\
& \downarrow \text { Using } \mu=+ \\
& f_{\pi}=2 \sqrt{2 N_{c}} \int_{0}^{1} d x \int \frac{d^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \psi_{\pi}\left(x, \mathbf{k}_{\perp}\right), \quad \psi_{\pi}\left(x, \mathbf{k}_{\perp}\right)=\frac{1}{\sqrt{2}}\left(\chi_{\uparrow \downarrow}-\chi_{\downarrow \uparrow}\right) \phi_{\mathrm{R}}\left(x, \mathbf{k}_{\perp}\right)
\end{aligned}
$$

3. Application

(1) Pion decay constant

$$
\begin{gathered}
\langle 0| \bar{q} \gamma^{\mu}\left(1-\gamma_{5}\right) q|\pi(P)\rangle=i f_{\pi} P^{\mu} \\
\downarrow \text { Using } \mu=+ \\
f_{\pi}=2 \sqrt{2 N_{c}} \int_{0}^{1} d x \int \frac{d^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \psi_{\pi}\left(x, \mathbf{k}_{\perp}\right), \quad \psi_{\pi}\left(x, \mathbf{k}_{\perp}\right)=\frac{1}{\sqrt{2}}\left(\chi_{\uparrow \downarrow}-\chi_{\downarrow \uparrow}\right) \phi_{\mathrm{R}}\left(x, \mathbf{k}_{\perp}\right)
\end{gathered}
$$

Twist-2 pion Distribution amplitude(DA) :

$$
\phi_{\pi}(x)=\int^{Q^{2}} \frac{d^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \psi_{\pi}\left(x, \mathbf{k}_{\perp}\right), \quad \int_{0}^{1} d x \phi_{\pi}(x)=\frac{f_{\pi}}{2 \sqrt{2 N_{c}}}
$$

In the chiral limit, we obtain

$$
f_{\pi}^{\text {chiral }}=\sqrt{P_{Q \bar{Q}}} \frac{\sqrt{3} \beta}{2^{3 / 4} \pi^{1 / 4}} \Gamma\left(\frac{5}{4}\right), \quad \phi_{\pi}^{\text {chiral }}(x)=\frac{2 \sqrt{2} f_{\pi}^{\text {chiral }}}{\sqrt{3} \pi} \sqrt{x(1-x)}
$$

3. Application

(1) Pion decay constant

$$
\begin{gathered}
\langle 0| \bar{q} \gamma^{\mu}\left(1-\gamma_{5}\right) q|\pi(P)\rangle=i f_{\pi} P^{\mu} \\
\quad \text { Using } \mu=+ \\
f_{\pi}=2 \sqrt{2 N_{c}} \int_{0}^{1} d x \int \frac{d^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \psi_{\pi}\left(x, \mathbf{k}_{\perp}\right), \quad \psi_{\pi}\left(x, \mathbf{k}_{\perp}\right)=\frac{1}{\sqrt{2}}\left(\chi_{\uparrow \downarrow}-\chi_{\downarrow \uparrow}\right) \phi_{\mathrm{R}}\left(x, \mathbf{k}_{\perp}\right)
\end{gathered}
$$

Twist- 2 pion Distribution amplitude(DA) :

$$
\phi_{\pi}(x)=\int^{Q^{2}} \frac{d^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \psi_{\pi}\left(x, \mathbf{k}_{\perp}\right), \quad \int_{0}^{1} d x \phi_{\pi}(x)=\frac{f_{\pi}}{2 \sqrt{2 N_{c}}}
$$

In the chiral limit, we obtain

$$
f_{\pi}^{\mathrm{chiral}}=\sqrt{P_{Q \bar{Q}}} \frac{\sqrt{3} \beta}{2^{3 / 4} \pi^{1 / 4}} \Gamma\left(\frac{5}{4}\right), \quad \phi_{\pi}^{\mathrm{chiral}}(x)=\frac{2 \sqrt{2} f_{\pi}^{\mathrm{chiral}}}{\sqrt{3} \pi} \sqrt{x(1-x)}=\phi_{\pi}^{\mathrm{AdS} / \operatorname{CFT}}(x)
$$

3. Application

(2) $\pi^{0} \rightarrow \gamma \gamma^{*}$ transition form factor (TFF)

$$
\langle\gamma(P-q)| J_{\mathrm{em}}^{\mu}\left|\pi^{0}(P)\right\rangle=i e^{2} F_{\pi \gamma}\left(Q^{2}\right) \epsilon^{\mu \nu \rho \sigma} P_{\nu} \epsilon_{\rho} q_{\sigma}
$$

3. Application

(2) $\pi^{0} \rightarrow \gamma \gamma^{*}$ transition form factor (TFF)

$$
\begin{gathered}
\langle\gamma(P-q)| J_{\mathrm{em}}^{\mu}\left|\pi^{0}(P)\right\rangle=i e^{2} F_{\pi \gamma}\left(Q^{2}\right) \epsilon^{\mu \nu \rho \sigma} P_{\nu} \epsilon_{\rho} q_{\sigma} \\
q^{2}=q^{+} q^{-}-\mathbf{q}_{\perp}^{2}
\end{gathered}
$$

(a)

(b)

$$
(\alpha<x<1)
$$

$\alpha=\frac{q^{+}}{P^{+}}$

(c)
$(0<x<\alpha)$
(1) For $q^{+}=0$ frame $(\alpha=0)$: spacelike region, i.e. $q^{2}=-\mathbf{q}_{\perp}^{2}=-Q^{2}<0$

$$
F_{\pi \gamma}\left(q^{2}\right)=\frac{e_{u}^{2}-e_{d}^{2}}{\sqrt{2}} \frac{\sqrt{2 N_{c}}}{4 \pi^{3}} \int_{0}^{1}(1-x) d x \int d^{2} \mathbf{k}_{\perp} \frac{\psi_{\pi}\left(x, \mathbf{k}_{\perp}\right)}{\mathbf{k}_{\perp}^{\prime 2}+m^{2}}, \mathbf{k}_{\perp}^{\prime}=\mathbf{k}_{\perp}+(1-x) \mathbf{q}_{\perp}
$$

3. Application

(2) $\pi^{0} \rightarrow \gamma \gamma^{*}$ transition form factor (TFF)

$$
\begin{gathered}
\langle\gamma(P-q)| J_{\mathrm{em}}^{\mu}\left|\pi^{0}(P)\right\rangle=i e^{2} F_{\pi \gamma}\left(Q^{2}\right) \epsilon^{\mu \nu \rho \sigma} P_{\nu} \epsilon_{\rho} q_{\sigma} \\
q^{2}=q^{+} q^{-}-\mathbf{q}_{\perp}^{2}
\end{gathered}
$$

(a)

(b)
$(\alpha<x<1)$

(c)
$(0<x<\alpha)$
(2) For $q^{+}=P^{+}$with $\mathbf{q}_{\perp}=0$ frame $(\alpha=1)$: timelike region, i.e. $q^{2}=q^{+} q^{-}>0$

$$
F_{\pi \gamma}\left(q^{2}\right)=\frac{e_{u}^{2}-e_{d}^{2}}{\sqrt{2}} \frac{\sqrt{2 N_{c}}}{4 \pi^{3}} \int_{0}^{1} \frac{d x}{(1-x)} \int d^{2} \mathbf{k}_{\perp} \frac{\psi_{\pi}\left(x, \mathbf{k}_{\perp}\right)}{M_{0}^{2}-q^{2}}
$$

Choi,Ryu,Ji, PRD 96, 056008(17)

3. Application

(2) $\pi^{0} \rightarrow \gamma \gamma^{*}$ transition form factor (TFF)

$$
\begin{gathered}
\langle\gamma(P-q)| J_{\mathrm{em}}^{\mu}\left|\pi^{0}(P)\right\rangle=i e^{2} F_{\pi \gamma}\left(Q^{2}\right) \epsilon^{\mu \nu \rho \sigma} P_{\nu} \epsilon_{\rho} q_{\sigma} \\
q^{2}=q^{+} q^{-}-\mathbf{q}_{\perp}^{2}
\end{gathered}
$$

(a)

(b)
($\alpha<x<1$)

$$
\alpha=\frac{q^{+}}{P^{+}}
$$

(c)
$(0<x<\alpha)$
(2) For $q^{+}=P^{+}$with $\mathbf{q}_{\perp}=0$ frame $(\alpha=1)$: timelike region, i.e. $q^{2}=q^{+} q^{-}>0$

$$
\begin{gathered}
F_{\pi \gamma}\left(q^{2}\right)=\frac{e_{u}^{2}-e_{d}^{2}}{\sqrt{2}} \frac{\sqrt{2 N_{c}}}{4 \pi^{3}} \int_{0}^{1} \frac{d x}{(1-x)} \int d^{2} \mathbf{k}_{\perp} \frac{\psi_{\pi}\left(x, \mathbf{k}_{\perp}\right)}{M_{0}^{2}-q^{2}} \quad \text { Choi,Ryu,Ji, PRD 96, } 0: \\
Q^{2} F_{\pi \gamma}\left(Q^{2}\right) \rightarrow \text { constant as } Q^{2} \rightarrow \infty
\end{gathered}
$$

3. Application

(2) $\pi^{0} \rightarrow \gamma \gamma^{*}$ transition form factor (TFF)

$$
F_{\pi \gamma}\left(q^{2}\right)=\frac{e_{u}^{2}-e_{d}^{2}}{\sqrt{2}} \frac{\sqrt{2 N_{c}}}{4 \pi^{3}} \int_{0}^{1} \frac{d x}{(1-x)} \int d^{2} \mathbf{k}_{\perp} \frac{\psi_{\pi}\left(x, \mathbf{k}_{\perp}\right)}{M_{0}^{2}-q^{2}}
$$

- TFF at $Q^{2}=0$

$$
\begin{array}{ll}
\Gamma_{\pi^{0} \rightarrow \gamma \gamma}=\frac{\pi}{4} \alpha_{\mathrm{em}}^{2} M_{\pi}^{3}\left|F_{\pi \gamma}(0)\right|^{2} & F_{\pi \gamma}^{\mathrm{ABJ}}(0)=\frac{1}{2 \sqrt{2} \pi^{2} f_{\pi}^{\mathrm{Exp}}} \simeq 0.276 \mathrm{GeV}^{-1} \\
F_{\pi \gamma}^{\mathrm{exp}}(0)=0.272(3) \mathrm{GeV}^{-1} &
\end{array}
$$

3. Application

(2) $\pi^{0} \rightarrow \gamma \gamma^{*}$ transition form factor (TFF)

$$
F_{\pi \gamma}\left(q^{2}\right)=\frac{e_{u}^{2}-e_{d}^{2}}{\sqrt{2}} \frac{\sqrt{2 N_{c}}}{4 \pi^{3}} \int_{0}^{1} \frac{d x}{(1-x)} \int d^{2} \mathbf{k}_{\perp} \frac{\psi_{\pi}\left(x, \mathbf{k}_{\perp}\right)}{M_{0}^{2}-q^{2}}
$$

-TFF at $Q^{2}=0$

$$
\begin{aligned}
\Gamma_{\pi^{0} \rightarrow \gamma \gamma} & =\frac{\pi}{4} \alpha_{\mathrm{em}}^{2} M_{\pi}^{3}\left|F_{\pi \gamma}(0)\right|^{2} \\
F_{\pi \gamma}^{\mathrm{exp}}(0) & =0.272(3) \mathrm{GeV}^{-1}
\end{aligned} \quad F_{\pi \gamma}^{\mathrm{ABJ}}(0)=\frac{1}{2 \sqrt{2} \pi^{2} f_{\pi}^{\mathrm{Exp}}} \simeq 0.276 \mathrm{GeV}^{-1}
$$

$$
F_{\pi \gamma}^{\mathrm{chiral}}(0)=\frac{\sqrt{\frac{\pi^{3}}{32}}\left[\Gamma\left(\frac{1}{4}\right)\right]^{2} P_{Q \bar{Q}}}{2 \sqrt{2} \pi^{2} f_{\pi}^{\text {chiral }}}
$$

3. Application

(2) $\pi^{0} \rightarrow \gamma \gamma^{*}$ transition form factor (TFF)

$$
F_{\pi \gamma}\left(q^{2}\right)=\frac{e_{u}^{2}-e_{d}^{2}}{\sqrt{2}} \frac{\sqrt{2 N_{c}}}{4 \pi^{3}} \int_{0}^{1} \frac{d x}{(1-x)} \int d^{2} \mathbf{k}_{\perp} \frac{\psi_{\pi}\left(x, \mathbf{k}_{\perp}\right)}{M_{0}^{2}-q^{2}}
$$

- TFF at $Q^{2}=0$

$$
\Gamma_{\pi^{0} \rightarrow \gamma \gamma}=\frac{\pi}{4} \alpha_{\mathrm{em}}^{2} M_{\pi}^{3}\left|F_{\pi \gamma}(0)\right|^{2} \quad \quad F_{\pi \gamma}^{\mathrm{ABJ}}(0)=\frac{1}{2 \sqrt{2} \pi^{2} f_{\pi}^{\mathrm{Exp}}} \simeq 0.276 \mathrm{GeV}^{-1}
$$

$$
F_{\pi \gamma}^{\exp }(0)=0.272(3) \mathrm{GeV}^{-1}
$$

$$
\begin{aligned}
& \text { To fit both } \\
& \left(F_{\pi \gamma}^{\operatorname{Exp}}(0), f_{\pi}^{\mathrm{Exp}}\right)
\end{aligned} P_{Q \bar{Q}}<0.1 \text { is required! }, ~ \sqrt{\frac{\pi^{3}}{32}\left[\Gamma\left(\frac{1}{4}\right)\right]^{2} P_{Q \bar{Q}}} \underset{2 \sqrt{2} \pi^{2} f_{\pi}^{\text {chiral }}}{F_{\pi \gamma}^{\text {chiral }}(0)=\frac{}{2}}
$$

3. Application

(2) $\pi^{0} \rightarrow \gamma \gamma^{*}$ transition form factor (TFF)

$$
F_{\pi \gamma}\left(q^{2}\right)=\frac{e_{u}^{2}-e_{d}^{2}}{\sqrt{2}} \frac{\sqrt{2 N_{c}}}{4 \pi^{3}} \int_{0}^{1} \frac{d x}{(1-x)} \int d^{2} \mathbf{k}_{\perp} \frac{\psi_{\pi}\left(x, \mathbf{k}_{\perp}\right)}{M_{0}^{2}-q^{2}}
$$

-TFF at $Q^{2}=0$

$$
\Gamma_{\pi^{0} \rightarrow \gamma \gamma}=\frac{\pi}{4} \alpha_{\mathrm{em}}^{2} M_{\pi}^{3}\left|F_{\pi \gamma}(0)\right|^{2} \quad \quad F_{\pi \gamma}^{\mathrm{ABJ}}(0)=\frac{1}{2 \sqrt{2} \pi^{2} f_{\pi}^{\mathrm{Exp}}} \simeq 0.276 \mathrm{GeV}^{-1}
$$

$$
F_{\pi \gamma}^{\exp }(0)=0.272(3) \mathrm{GeV}^{-1}
$$

$$
\begin{aligned}
& \text { To fit both } \\
& \left(F_{\pi \gamma}^{\operatorname{Exp}}(0), f_{\pi}^{\operatorname{Exp}}\right)
\end{aligned} P_{Q \bar{Q}}<0.1 \text { is required! }
$$

Significant higher Fock-states contribute in the chiral limit !
$P_{Q \bar{Q}}$ increases as m increases!

$$
F_{\pi \gamma}^{\text {chiral }}(0)=\frac{\sqrt{\frac{\pi^{3}}{32}}\left[\Gamma\left(\frac{1}{4}\right)\right]^{2} P_{Q \bar{Q}}}{2 \sqrt{2} \pi^{2} f_{\pi}^{\text {chiral }}}
$$

4. Numerical Results

- Check sign problem of B_{π} in $\Gamma_{\pi}=\left(M_{\pi}+B_{\pi} \mathbb{P}\right) \gamma_{5}$

$$
B_{\pi}=1
$$

$$
B_{\pi}=-1
$$

- Possible solution sets for (m, β) satisfying $f_{\pi}^{\mathrm{Th}}=f_{\pi}^{\mathrm{Exp}}=130.2(2) \mathrm{MeV}$

4. Numerical Results

- Check sign problem of B_{π} in $\Gamma_{\pi}=\left(M_{\pi}+B_{\pi} P\right) \gamma_{5}$

$$
B_{\pi}=1
$$

$$
B_{\pi}=-1
$$

- Possible solution sets for (m, β) satisfying $f_{\pi}^{\mathrm{Th}}=f_{\pi}^{\mathrm{Exp}}=130.2(2) \mathrm{MeV}$

4. Numerical Results

- Possible solution sets for $\left(-B_{\pi}\right.$ vs $\left.P_{Q \bar{Q}}\right)$ and (β vs $P_{Q \bar{Q}}$) satisfying both $f_{\pi}^{\operatorname{Exp}}$ and $F_{\pi \gamma}^{\operatorname{Exp}}(0)$.

c.f.) $\left(M_{\pi}, m\right)=(135,5) \mathrm{MeV}$ satisfies the GMOR relation $M_{\pi}^{2} f_{\pi}^{2}=-2\left(m_{q}+m_{\bar{q}}\right)\langle q \bar{q}\rangle$

4. Numerical Results

- Our main findings for the model parameters:

4. Numerical Results

- Our main findings for the model parameters:

4. Numerical Results

- Our main findings for the model parameters:

higher Fock
higher Fock

4. Numerical Results

- Our main findings for the model parameters:

4. Numerical Results

- Our main findings for the model parameters:

4. Numerical Results

TABLE I: Model parameters $\left(B_{\pi}, \beta\right)$ depending on the variation of (M_{π}, m) and $P_{Q \bar{Q}}$. We denote ($M_{\pi}, m, \beta, f_{\pi}$) in unit of MeV .

$\left(M_{\pi}, m\right)$	$P_{Q \bar{Q}}$	B_{π}	β	f_{π}^{Th}	$F_{\pi \gamma}^{\mathrm{Th}}(0)\left[\mathrm{GeV}^{-1}\right]$
$(135,255)$	1	-0.25	198.0	130.4	0.271
$(135,150)$	0.3	-0.60	346.9	130.6	0.272
$(135,50)$	0.15	-0.7	493.0	130.7	0.271
$(0,0)$	0.078	<0	668.5	130.9	0.276
Exp. 444$]$	-	-	-	$130.2(1.7)$	$0.272(3)$

4. Numerical Results

TABLE I: Model parameters $\left(B_{\pi}, \beta\right)$ depending on the variation of (M_{π}, m) and $P_{Q \bar{Q}}$. We denote ($M_{\pi}, m, \beta, f_{\pi}$) in unit of MeV .

$\left(M_{\pi}, m\right)$	$P_{Q \bar{Q}}$	B_{π}	β	f_{π}^{Th}	$F_{\pi \gamma}^{\mathrm{Th}}(0)\left[\mathrm{GeV}^{-1}\right]$
$(135,255)$	1	-0.25	198.0	130.4	0.271
$(135,150)$	0.3	-0.60	346.9	130.6	0.272
$(135,50)$	0.15	-0.7	493.0	130.7	0.271
$(0,0)$	0.078	<0	668.5	130.9	0.276
Exp. 444$]$	-	-	-	$130.2(1.7)$	$0.272(3)$

- Estimation of the quark mass variation effect on Q^{2} evolution of $F_{\pi \gamma}\left(Q^{2}\right)$ and $F_{\pi}\left(Q^{2}\right)$

As a first attempt to estimate the quark mass variation effect, we use the mixing
between $m_{\text {ref }}$ and $m\left(<m_{\text {ref }}\right)$ via

$$
\left\langle\Psi_{m^{\prime}}^{\pi} \mid \Psi_{m}^{\pi}\right\rangle=\delta_{m^{\prime} m} \sqrt{P_{m^{\prime}} P_{m}}=\delta_{m^{\prime} m} P_{m} \quad m_{\mathrm{ref}}=m=255 \mathrm{MeV} \text { and } P_{Q \bar{Q}}=P_{m_{\mathrm{ref}}}=1
$$

e.g.) Prescription of the mixing between $m_{\text {ref }}$ and $m=150 \mathrm{MeV}$

$$
\begin{gathered}
F_{\pi \gamma}^{\left(m_{\mathrm{ref}}, m=150\right)}\left(Q^{2}\right)=\frac{\sqrt{1-\tilde{P}_{m}} F_{\pi \gamma}^{\left(m_{\mathrm{ref}}\right)}\left(Q^{2}\right)+\sqrt{\tilde{P}_{m}} F_{\pi \gamma}^{(m=150)}\left(Q^{2}\right)}{\sqrt{1-\tilde{P}_{m}}+\sqrt{\tilde{P}_{m}}}, \text { with } F_{\pi \gamma}^{\left(m_{\mathrm{ref}}, m\right)}(0)=F_{\pi \gamma}^{\mathrm{Exp}}(0) . \\
F_{\pi}^{\left(m_{\mathrm{ref}}, m=150\right)}\left(Q^{2}\right)=\left(1-\tilde{P}_{m}\right) F_{\pi}^{\left(m_{\mathrm{ref}}\right)}\left(Q^{2}\right)+\tilde{P}_{m} F_{\pi}^{(m=150)}\left(Q^{2}\right), \text { with } F_{\pi}^{\left(m_{\mathrm{ref}}, m\right)}(0)=1 . \\
\tilde{P}_{m}=\frac{P_{m}}{\left(P_{m_{\mathrm{ref}}}+P_{m}\right)}=\frac{0.3}{1.3} \approx 0.23 \text { : renormalized probability }
\end{gathered}
$$

- Quark mass variation effect on $F_{\pi \gamma}\left(Q^{2}\right)$

The standard LFQM prediction with the invariant mass scheme.

$$
\chi_{\lambda_{1} \lambda_{2}}\left(x, \mathbf{k}_{\perp}\right) \propto \bar{u}_{\lambda_{1}}\left(k_{1}\right) \gamma_{5} v_{\lambda_{2}}\left(k_{2}\right)
$$

- Quark mass variation effect on $F_{\pi}\left(Q^{2}\right)$

Shows the necessity of the quark mass evolution effect

5. Conclusion

- We explored the link between the chiral sym. of QCD and the numerical results of the LFQM analyzing $f_{\pi}, F_{\pi \gamma}\left(Q^{2}\right), F_{\pi}\left(Q^{2}\right)$.

- In constraining the model parameters, we found that the chiral anomaly plays a critical role and the analysis of $F_{\pi \gamma}\left(q^{2}\right)$ in timelike region is important.
- Our results indicate that the constituent quark picture is very effective in describing both $F_{\pi \gamma}\left(Q^{2}\right), F_{\pi}\left(Q^{2}\right)$ in the low energy regime, but the quark mass evolution seems inevitable as Q^{2} grows.

