

with Prof. Chueng-Ryong Ji, Prof. Ho-Meoyng Choi,

and Prof. Yongseok Oh

- I. Virtual Meson Production (VMP)
- II. Low and high energy approaches
- III. Comparision in JLab kinematics
- IV. Conclusion

Virtual Meson Production (VMP)

Hadron (meson and baryon) is a composite system made of quarks, anti-quarks, and gluons (parton), held together by non-perturbative QCD interaction.

complicated structure

Elastic scattering density

 $\langle P' | \bar{\psi}(0) \ \hat{\mathcal{O}} \ \psi(0) | P \rangle$

Electromagnetic Form Factors (EM FFs)

Inclusive / Inelastic **momentum**

 $\left< P \left| \bar{\psi}(z) \ \hat{\mathcal{O}} \ \psi(0) \right| P \right>$

Parton Distribution Functions (PDFs)

 $\langle P' | \bar{\psi}(z) \ \hat{\mathcal{O}} \ \psi(0) | P \rangle$

Generalized Parton Distributions (GPDs)

Low energy approach for VMP (GVMP)

Low energy approach ~ generalized structure functions (Compton Form Factors (CFFs))

Through **symmetries**, construct hadronic currents. **DNA method** provides most general hadronic currents,

for the pseudoscalar target $(J^{PC} = 0^{-+})$: $\epsilon^{\mu\nu\alpha\beta}$ for the scalar target (0^{++}) : $d^{\mu\nu\alpha\beta} = g^{\mu\nu}g^{\alpha\beta} - g^{\mu\alpha}g^{\nu\beta}$

$$J^{\mu}_{S} = (\mathcal{F}_{1}(Q^{2}, x, t) \ q_{\alpha} + \mathcal{F}_{2}(Q^{2}, x, t) \ \mathcal{P}_{\alpha}) \ d^{\mu\nu\alpha\beta}q_{\beta}\Delta_{\nu}$$

$$= \left\{ q^2 \ \Delta^{\mu} - (\Delta \cdot q) \ q^{\mu} \right\} \mathcal{F}_1(Q^2, x, t) + \left\{ (\mathcal{P} \cdot q) \ \Delta^{\mu} - (\Delta \cdot q) \ \mathcal{P}^{\mu} \right\} \mathcal{F}_2(Q^2, x, t)$$

where
$$\Delta = p - p' = q' - q$$
, $\mathcal{P} = p + p'$

Ji, Chueng-Ryong and Choi, Ho-Meoyng and Lundeen, Andrew and Bakker, Bernard L. G. Phys. Rev. D **99**, 11 116008 (2019)

High energy approach \rightarrow twist expansion ~ GPD

Skewed (off-forward) parton distribution :

hard part (OPE) \otimes soft part (GPD)

In the forward limit ($\zeta \rightarrow 0$), parton distribution :

hard part (OPE) \otimes soft part (PDF)

dx, Electromagnetic form factor :

$$F(t) = \int dx \ \text{GPD}$$

 p^+ : Light-front (LF) longitudinal momentum of incoming target,

- Q^2 : Virtuality \rightarrow factorizable in $Q^2 > |t|, M_t^2, M_s^2, m_{Q_1}^2, m_{Q_2}^2, \cdots$,
- x : Longitudinal momentum fraction,
- ζ : Skewness, $(p^+ p'^+)/p^+$, asymmetry of LF longitudinal momentum of target,
- *t* : Square momentum transfer, $\Delta^2 = (q' q)^2 = (p p')^2$, "kick" transverse momentum depending on scattering angle.

$$t = -\frac{\zeta^2 M_t^2 + \Delta_\perp^2}{1 - \zeta}$$

Low vs High energy approaches

Spin-0 target	GVMP	GPDs (Twist-2)				
Factorizable	Х	0				
Diagrams	S-, U- box, and Cat's ears	Parts of S-, U- box				
Ward Identity	Satisfied	Not satisfied				
Kinematics	All	Limited				
# of CFFs	2	1				
Exp.	Compton Form Factors, Beam Spin Asymmetry,					

Box, Cat's ears, and Effective tree diagrams

Partons inside hadron can be fermions (quarks and anti-quarks) or spin-1 boson (gluons). In this work, we introduce scalar currents $J(0) = \phi^{\dagger}(0)\phi(0)$.

Operator Product Expansion (OPE)

LF time-ordered amplitudes

Beam Spin Asymmetry

Beam Spin Asymmetry (BSA) of the scalar meson electroproduction off the scalar target :

$$\frac{d\sigma_{\lambda=+1}^{S} - d\sigma_{\lambda=-1}^{S}}{d\sigma_{\lambda=+1}^{S} + d\sigma_{\lambda=-1}^{S}} = \frac{d\sigma_{BSA}^{S}}{d\sigma_{T}^{S} (1 + \epsilon \cos(2\phi)) + d\sigma_{L}^{S} \epsilon_{L} + d\sigma_{LT}^{S} \cos\phi \sqrt{\epsilon_{L}(1 + \epsilon)/2}}$$
$$\sim \mathcal{F}_{1} \mathcal{F}_{2}^{*} - \mathcal{F}_{2} \mathcal{F}_{1}^{*}$$

Leading twist GPD does not provide BSA, because it has only one GPD for the spin-0 target.

Compton Form Factors

CFFs from DNA method is satisfied with Ward identity : $q \cdot \mathcal{M} = 0$

Two Lorentz covariant vectors are not independent in (1+1)-dimensions.

$$\begin{split} \mathscr{M}_{tot}^{\mu} &= \left\{ \left(\Delta \cdot q \right) \, q^{\mu} - q^2 \, \Delta^{\mu} \right\} \, \mathscr{F}_1 + \left\{ \begin{array}{l} \left(\Delta \cdot q \right) \, \mathscr{P}^{\mu} - \left(\mathscr{P} \cdot q \right) \, \Delta^{\mu} \right\} \, \mathscr{F}_2 \\ &= A^{\mu} \, \, \mathscr{F}_1 + B^{\mu} \, \, \mathscr{F}_2 \quad \text{ in (3+1)-dimensions} \\ &= A^{\mu} \, \left(\mathscr{F}_1 + c \mathscr{F}_2 \right) = A^{\mu} \, \, \mathscr{F}_A \quad \text{ in (1+1)-dimensions} \end{split}$$

where $\mathcal{P} = p + p'$, $\Delta = p - p' = q' - q$, $c = B^+/A^+ = B^-/A^-$.

Kinematics & GPDs limit

CR Ji, BLG Bakker, Int. J. Mod. Phys. E 22, 1330002 (2013)

• GPDs limit ($Q^2 > t , M_s, \cdots$)				
$k = [xp^+, k^-],$				
$p = \left[p^+, \frac{M_t}{p^+} \right],$				
$q = \left[-\zeta p^+, \frac{Q^2}{\zeta' p^+}\right] \simeq \left[-\zeta p^+, \frac{Q^2}{\zeta p^+}\right],$				
$\Delta = \left[\zeta p^+, \frac{t}{\zeta p^+} \right],$				
$p' = \left[(1 - \zeta) p^+, \left(M_t^2 - \frac{t}{\zeta} \right) \frac{1}{p^+} \right],$				
$q' = \left[0, \frac{Q^2}{\zeta' p^+} \right] \simeq \left[0, \frac{Q^2}{\zeta p^+} \right],$				
where there is no M_s dependence, and $\zeta \simeq \zeta'$.				
GPD does not distinguish between DVMP & DVCS.				

GPD Formulation

In GPD limit ($Q^2 > > |t|, M_s^2, \cdots$), q^- and q'^- are dominant, it leads to the reduced scattering amplitudes with GPD functions. s-ch : $\frac{1}{(k+q)^2 - m^2} \sim \frac{1}{q^-(k^+ + q^+)} \sim \frac{1}{q^-(x-\zeta)}p^+$, u-ch : $\frac{1}{(k-q)^2 - m^2} \sim -\frac{1}{q'^-(k^+ - q'^+)} \sim -\frac{1}{q^-x}p^+$

Generalized Parton Distributions (GPDs) : angular

$$\mathcal{M} \sim \int_{\zeta}^{1} dx \left(\frac{1}{x - \zeta} - \frac{1}{x} \right) H_{DGLAP}(x, t)$$
$$+ \int_{0}^{\zeta} dx \left(\frac{1}{x - \zeta} - \frac{1}{x} \right) H_{ERBL}(x, t)$$

momentum

 $\mathsf{ERBL}\left(0 \le x \le \zeta\right)$

Parton Distribution Functions (PDFs) : momentum

$$f(x) \sim \lim_{\zeta \to 0} H(x, \zeta, t) = H_{DGLAP}(x, t = 0)$$

Electromagnetic Form Factors (EM FFs) : density $F(t) \sim \frac{1}{2-\zeta} \left[\int_{0}^{\zeta} dx \ H_{ERBL}(x, t) + \int_{\zeta}^{1} dx \ H_{DGLAP}(x, t) \right]$

Result - Ward Identity

Result - Compton Form Factors

Kinematic settings

In Jefferson laboratory experiments, for $e + {}^{4}He \rightarrow e' + \gamma + {}^{4}He$ (DVCS) : $1.9 < Q^{2} < 9.0 \ GeV^{2}$, $-4.5 < t < -1.0 \ GeV^{2}$, $-t/Q^{2} \sim 0.5$

$Q^2(\text{GeV}^2)$	X	k (GeV)	k' (GeV)	θ_e (°)	θ_q (°)	q'(0°) (GeV)	W^2 (GeV ²)	M (GeV)	t (GeV ²)	t_min (GeV ²)	$-t/Q^2$
1.9	0.36	5.75	2.94	19.3	18.1	2.73	4.2	3.72738	-1.06554	-0.955137	0.560813
3.	0.36	6.6	2.15	26.5	11.7	4.35	6.2	3.72738	-1.32826	-1.22078	0.442755
4.	0.36	8.8	2.88	22.9	10.3	5.83	8.	3.72738	-1.54314	-1.40201	0.385786
4.55	0.36	11.	4.26	17.9	10.8	6.65	9.	3.72738	-1.68065	-1.48463	0.369374
3.1	0.5	6.6	3.2	22.5	18.5	3.11	4.1	3.72738	-1.9983	-1.83768	0.644611
4.8	0.5	8.8	3.68	22.2	14.5	4.91	5.7	3.72738	-2.64071	-2.41298	0.550148
6.3	0.5	11	4.29	21.1	12.4	6.5	7.2	3.72738	-3.09918	-2.81838	0.491934
7.2	0.5	11.	3.32	25.6	10.2	7.46	8.1	3.72738	-3.27475	-3.02728	0.454826
5.1	0.6	8.8	4.27	21.1	17.8	4.18	4.3	3.72738	-3.41689	-3.15331	0.669978
6	0.6	8.8	3.47	25.6	14.1	4.97	4.9	3.72738	-3.74772	-3.51599	0.624621
7.7	0.6	11	4.16	23.6	13.1	6.47	6	3.72738	-4.45326	-4.12602	0.578346
9.	0.6	11	3	30.2	10.2	7.62	6.9	3.72738	-4.81139	-4.53706	0.534599

Experimentally, |t| increases as Q^2 increases,

it is difficult to measure experiment for enough small $-t/Q^2$.

Conclusion

We investigate the virtual meson production by using the ϕ^3 -scalar field model in (1+1) light-front dynamics.

The virtual meson production is theoretically accessed by the generalized hadronic current and generalized parton distribution.

The Compton form factors from the GVMP and twist-2 GPD formulation are quite different in JLab kinematics setting.

We expect that $-t/Q^2$ should be at least less than 0.2 for twist-2 GPD. But, this tendency should be checked in the more realistic model.