Inha HTG workshop: Modern issues in Hadronic Physics

Light quark distribution functions in a heavy baryon in the large N_c limit

In collaboration with Hyun-Chul Kim

Hyeon-Dong Son

CENuM, Korea University

Hadron Theory Group, Inha University

Introduction

Parton distribution functions (PDFs)

How partons (quarks and gluons) are distributed inside a hadron Probability density (properly defined on the light-cone)

Proton, global analyses, plots from PDG 2021

R. D. Ball et al. (NNPDF), JHEP 04, 040 (2015)

E. R. Nocera et al. (NNPDF), Nucl. Phys. B887, 276 (2014)

Parton distribution functions (PDFs)

Universality

PDFs do not distinguish different types of reactions

eg. Deep inelastic scattering (ep), Drell-Yan process (pp)

Fitting model PDFs using various reactions (Global analysis)

Justification of factorization is essential but mostly assumed

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution (1970')

Perturbative evolution of PDFs

$$\frac{dq_i(x,\mu^2)}{\partial\mu^2} = P_{qq} \otimes q_i + P_{qg} \otimes g$$

Splitting functions P_{ii}: probability of perturbative emission of i from j

Theoretical understanding of PDFs

PDFs are non-perturbative!

- Direct computation (x-dependence) from QCD is not possible

Effective models (at low renormalization scale)

- provide initial conditions of the QCD evolution
- To understand the detailed mechanism in terms of the effective degrees of freedom
- Positivity, sum-rules, predictions...

Chiral quark-soliton model [D. Diakonov, V. Y. Petrov, P. V. Pobylitsa, M. Polyakov, and C. Weiss, Nuclear Physics B 480, 341 (1996)]

- quark and antiquark distribution at low renormalization scale, µ~600 MeV
- Positivity, sum-rules
- Predictions: polarized antiquark flavor asymmetry

Theoretical understanding of PDFs

PDFs are non-perturbative!

- Direct computation (x-dependence) from QCD is not possible

Effective models (at low renormalization scale)

- provide initial conditions of the QCD evolution
- To understand the detailed mechanism in terms of the effective degrees of freedom
- Positivity, sum-rules, predictions...

Lattice QCD

- Large Momentum Effective Theory (LaMET): quasi-PDFs

$$q(x,\mu,P^{z}) = \int \frac{dz}{4\pi} e^{-ixP^{z}z} \langle P|\bar{\psi}(0)\gamma^{z} \exp\left[-ig\int_{0}^{z} dz' A^{z}(z')\right]\psi(z)|P\rangle + \mathcal{O}(\frac{\Lambda_{\text{QCD}}^{2}}{(P^{z})^{2}},\frac{M_{N}^{2}}{(P^{z})^{2}})$$

$$x\in(-\infty,+\infty)$$

μ: renormalization scale P_z: nucleon momentum

[Ji, Phys. Rev. Lett. 110, 262002 (2013)]

Theoretical understanding of PDFs

PDFs are non-perturbative!

- Direct computation (x-dependence) from QCD is not possible

Effective models (at low renormalization scale)

- provide initial conditions of the QCD evolution
- To understand the detailed mechanism in terms of the effective degrees of freedom
- Positivity, sum-rules, predictions...

Lattice QCD

- Large Momentum Effective Theory (LaMET): quasi-PDFs [Ji, Phys. Rev. Lett. 110, 262002 (2013)]

Heavy baryon in the chiral quark-soliton model

Heavy quark symmetry →

Nc-1 chiral quark-soliton in the large Nc + Heavy quark in the heavy quark limit

Recent studies on

- → baryon mass spectrum [J.Y-. Kim H.-Ch. Kim, G.-S. Yang, PRD 2018]
- → EMT form factors [J.Y-. Kim, H.-Ch. Kim, M. Polyakov, HDS, PRD 2021]

Light quark distribution functions in a heavy baryon

Momentum distribution of the light quarks in a heavy baryon vs. nucleon? PDF studies for heavy flavor in heavy baryon/meson (heavyquark-diquark) DIS not possible / Related to the fragmentation functions by crossing of the DIS and e+e- (Drell-Levi-Yan) [Drell, Levy, Yan, PR 1969, PRD 1970]

→ EM ffs: good agreements with lattice calculations, Axial & Tensor [J.Y-. Kim H.-Ch. Kim, PRD 2018/EPJC 2019,2020]

Axial transitions, Jung-Min's talk

[Guo, Thomas, Williams, PRD64 (2001)] [J. Lan et al. PRD102 (2020)]

A model for heavy baryon

 $M_O/\Lambda_{OCD} \to \infty$

Heavy quark symmetry → Light quark degrees of freedom does not distinguish heavy flavor/spin

Structure of a heavy baryon is governed by the light quarks

Heavy quark → free, static color source

Light quarks → chiral quark-soliton model

 $N_c \to \infty$

Derive model PDFs and study their properties

Final numerical step: finite M_Q, N_c

Interaction is suppressed by ~ $\frac{1}{M_Q}$, $\frac{1}{N_c}$

Outline

Light quarks: chiral quark-soliton model

Light quark and antiquark isoscalar unpolarized and

- Derivation of quark distribution functions in the xQSM \bullet
- Numerical results \bullet
- Sum rules
- Inequalities ●

Polarized antiquark asymmetry in Proton and heavy baryon

- isovector longitudinally polarized quark distributions

Nucleon and heavy baryon in the Chiral quark-soliton model

Effective partition function from the instanton vacuum

[D. Diakonov, V. Petrov, and P. Pobylitsa, Nucl. Phys. B 306, 809 (1988)]

$$Z = \int \mathcal{D}\pi^a d\psi^{\dagger} d\psi \, \exp \int d^4 x \psi^{\dagger}(x) (i \partial \!\!\!/ + i M U^{\gamma_5}) \psi(x)$$
$$U^{\gamma_5}(x) = U(x) \frac{1+\gamma_5}{2} + U^{\dagger}(x) \frac{1-\gamma_5}{2} \qquad U(x) = \exp\left[\frac{i}{F_{\pi}} \pi^a(x) \tau^a\right]$$

From QCD to the low energy effective theory via the **instantons** Intrinsic renormalisation scale $\Lambda \sim 1/\bar{\rho} \approx 600 \text{ MeV}$ Fully field theoretic: successfully describes a wide class of baryon properties Baryon: chiral soliton in the large Nc, quarks are bound by a self-consistent mean-field Interplays the quark-model and (topological) soliton picture of the baryons

- Instanton parameters: average size $\bar{\rho} \sim 1/3 \text{ fm}$ & distance $\bar{R} \sim 1 \text{ fm}$ (no more parameters, Λ_{QCD})
- Spontaneous chiral symmetry breaking & dynamically generated quark mass M = 350 MeV

[E. Witten, Nucl. Phys. B 160, 57 (1979)]

Nucleon as a chiral soliton in the large N_c limit

Quarks are bound by a common pion mean-field, self-consistently generated by their interactions

Hedgehog Ansatz

 $U = \exp[i\gamma_5 \hat{n}^a \tau^a P(r)]$

Dirac spectra (n): Grandspin K= J + T and Parity P $H\Phi_n(\vec{x}) = E_n\Phi_n(\vec{x})$

Classical soliton energy $\frac{\delta}{\delta U} (N_c E_{\text{level}} + E_{\text{cont.}})|_{U=U_c} = 0 \quad -$

Nucleon quantum numbers: quantization around the rotational zero-modes

$$M_{sol} = N_c E_{level}(U_c) + E_{cont.}(U_c)$$

Heavy baryon: Nc-1 quark-soliton & free heavy quark

Heavy quark mass $M_Q = (1.3, 4.2)$ GeV as parameters to demonstrate Σc and Σb

M=420 MeV: strong quark-pion coupling is needed because of Nc-1 (vs. 350 MeV in instanton picture)

Recent studies for the heavy baryons

- →ground-state mass spectrum
- →EM ffs: good agreements with lattice calculations, Axial & Tensor
- \rightarrow Energy-momentum tensor form factors
 - :Nc-1 level quarks produce a self-consistent mean-field
 - ~ key ingredient for the stability

[J.Y-. Kim, H.-Ch. Kim, M. Polyakov, HDS, PRD 2021]

+ heavy quark as a color source

Light quark distributions in a heavy baryon

Unpolarized quark distributions

Probability to find a quark with momentum fraction $x \sim dx$

Baryon number and momentum sum rules

- → Momentum sum-rule: Mass form factor (EMT)
- → Hadron mass decomposition

Large Nc scaling of the unpolarized and longitudinally polarized quark distributions

$$u(x) + d(x) \sim N_c^2 \rho(N_c x)$$

$$\Delta u(x) - \Delta d(x)$$

VS

 $u(x) - d(x) \sim N_c \rho(N_c x)$ $\Delta u(x) + \Delta d(x)$

Longitudinally polarized quark distribution

Probability to find a quark with longitudinal spin parallel to hadron spin Spin sum-rule and axial charge

→ Hadron spin decomposition

[Jaffee, Manohar, NPB 337 (1990)]

$$1/2 = \frac{1}{2} \int_0^1 dx \ \Delta \Sigma(x, Q^2) + \int_0^1 dx \ \Delta g(x, Q^2) + \sum_q L_q + L_g$$

$$\int \frac{dz^{-}}{4\pi} \exp[iz^{-}P^{+}x] \left\langle P \left| \bar{\psi}(0)\gamma^{+}\gamma^{5}\tau^{3}\psi(z) \right| P \right\rangle = \Delta u(x) - \Delta d(x)$$
$$\int \frac{dz^{-}}{4\pi} \exp[iz^{-}P^{+}x] \left\langle P \left| \bar{\psi}(0)\gamma^{+}\gamma^{5}\psi(z) \right| P \right\rangle = \Delta u(x) + \Delta d(x)$$

Large Nc scaling of the unpolarized and longitudinally polarized quark distributions

$$u(x) + d(x) \sim N_c^2 \rho(N_c x)$$

$$\Delta u(x) - \Delta d(x)$$

VS

 $u(x) - d(x) \sim N_c \rho(N_c x)$ $\Delta u(x) + \Delta d(x)$

Quark and antiquark quasi number densities $x \in (-\infty, \infty)$

$$D_f(x,v) = \frac{1}{2E_h} \int \frac{d^3k}{(2\pi)^3} \delta\left(x - \frac{k^3}{P_h}\right) \int d^3x e^{-i\mathbf{k}\cdot\mathbf{x}} \langle h_v | \bar{\psi}_f\left(-\mathbf{x}/2,t\right) \Gamma \psi_f\left(\mathbf{x}/2,t\right) | h_v \rangle$$

$$\bar{D}_f(x,v) = \frac{1}{2E_h} \int \frac{d^3k}{(2\pi)^3} \delta\left(x - \frac{k^3}{P_h}\right) \int d^3x e^{-i\mathbf{k}\cdot\mathbf{x}} \langle h_v | \text{Tr}\left[\Gamma\bar{\psi}_f\left(-\mathbf{x}/2,t\right)\psi_f\left(\mathbf{x}/2,t\right)\right] |h_v\rangle$$

Quark bi-local fields in (equal-time) Euclidean separation **become exact number densities** in the limit $v \rightarrow 1$, approaching the light-cone, $x \in [0,1]$

Isoscalar unpolarized distributions

$$u(x) + d(x) = (N_c - 1) \int \frac{d^3k}{(2\pi)^3} \Phi_{\text{level}}^{\dagger}(\vec{k})(1 + \gamma^0 \gamma^3) \Phi_{\text{level}}(\vec{k})\delta(k_3 - xM_h + E_{\text{level}}) + N_c \sum_{E_n < 0} \int \frac{d^3k}{(2\pi)^3} \Phi_n^{\dagger}(\vec{k})(1 + \gamma^0 \gamma^3) \Phi_n(\vec{k}) - (U \to 1), \bar{u}(x) + \bar{d}(x) = -(u(-x) + d(-x))$$

Isovector polarized distributions

$$\begin{aligned} \Delta u(x) - \Delta d(x) &= -\frac{1}{3} (2T_3) (N_c - 1) \int \frac{d^3 k}{(2\pi)^3} \Phi_{\text{level}}^{\dagger}(\vec{k}) (1 + \gamma^0 \gamma^3) \tau^3 \gamma_5 \Phi_{\text{level}}(\vec{k}) \\ &- \frac{1}{3} (2T_3) N_c \sum_{E_n < 0} \int \frac{d^3 k}{(2\pi)^3} \Phi_n^{\dagger}(\vec{k}) (1 + \gamma^0 \gamma^3) \tau^3 \gamma_5 \Phi_n(\vec{k}) - (U \to 1), \\ \Delta \bar{u}(x) - \Delta \bar{d}(x) &= \Delta u(-x) - \Delta d(-x). \end{aligned}$$

 $H\Phi_n(\vec{x}) = E_n\Phi_n(\vec{x})$

Sum-rules: heavy baryon PDFs

$$= (N_c - 1)B$$

Heavy quark

1*B*

 M_Q/M_h

Numerical results and discussions

u(x) + d(x)

Light quarks inside a heavy baron are more concentrated at small x region More probable to find a quark with small momentum fraction Momentum sum-rule: light quarks are less energetic in a heavy baryon (M_{sol}/M_h) δ-like heavy quark distribution function $c(x) = \delta(x - M_Q/M_h)$

u(x) + d(x): naive quark limit

Mean-field size $\rightarrow 0$, the model exhibit the properties of the naive quark limit

No interaction: **naive parton model**

Proton:

 $u(x) + d(x) = N_c \delta(x - M/M_N)$, M: constituent quark mass $(M_N = N_c M)$

Momentum sum-rule:

$$\int_{0}^{1} dx \ x \ u(x) + d(x) = N_{c}M/M_{N} = 1$$

Heavy baryon:

$$u(x) + d(x) = (N_c - 1)\delta(x - M/M_h), \ M_h = (N_c - 1)M + M_h$$

 \rightarrow The distribution is squeezed to small x as M_O grows

Momentum sum-rule:

 $\int_0^1 dx \ x \ u(x) + d(x) = (N_c - 1)M/M_h \text{ goes to 0 in the limit } M_Q \to \infty$

 M_O

Similar behavior as the isoscalar unpolarized distribution, squeezed into small x

Spin sum-rule
$$\int_{0}^{1} dx [\Delta u(x) - \Delta d(x) + \Delta \bar{u}(x)]$$

Numerically,
$$\int_{0}^{1} dx [\Delta u(x) - \Delta d(x) + \Delta \bar{u}(x) + \Delta \bar{u}(x)]$$

 $(x) - \Delta \overline{d}(x)]$ is identical for Σ_c and Σ_b

 $-\Delta \bar{d}(x)$] = **1.4** (T₃=+1). (Δc =-1/3, NR)

Positivity and inequality

Twist-2 Quark distribution functions (singlet)

Unpolarized $f_1^a = (q^{\uparrow a} +$ Longitudinally polarized $g_1^a = (q^{\uparrow a} -$

$$f_1^a + g_1^a = q^{\uparrow a}$$
$$f_1^a - g_1^a = q^{\downarrow a}$$

Probability to find a quark with spin parallel / antiparallel to the target \rightarrow Positive

$$q^{\downarrow a})/2$$

 $q^{\downarrow a})/2$

Positivity and inequality

 $f_1^a \ge |g_1^a|$ In the large Nc, u-d and $\Delta u + \Delta d$ are small \rightarrow

[HDS, H.-Ch. Kim, manuscript under preparation]

Antiquark flavor asymmetry

Antiquark asymmetries in the proton

Unpolarized antiquarks: $\bar{d} > \bar{u}$ [Glück, Reya, Vogt, ZPC (1995)]

PDFs from polarized DIS: assumed $\Delta \bar{u} - \Delta \bar{d} = 0$

XQSM prediction: $\Delta \bar{u} - \Delta d$ is large and positive [Diakonov et al., NPB (1996) / PRD (1997)]

DIS is insensitive to the antiquark flavor asymmetry, but Drell-Yan is!

Analyses using DIS + SIDIS, Drell-Yan

[Glück et al., PRD 63 (2001)] [De Florian et al, PRD 80 (2009)] [Nocera et al. (NNPDF), NPB 887 (2014)]

Single spin asymmetry (W-boson) in polarized PP collision is used to study the asymmetry

(STAR collaboration)

[L. Adamczyk et al. PRL 113 (2014)] [A. Adare et al. PRD 98 (2018)] [J. Adam et al. PRD 99 (2019)]

Global analyses updates:

[De Florian et al. PRD 100 (2019)] [Cocuzza et al. (JAM) arXiv:2202.03371 (2022)]

[Glück, Reya, Volgesang, PLB 359 (1995)] [Glück et al., PRD 53 (1996)]

[Dressler et al, EPJC 14 (2000), EPJC 18 (2001)] [Kumano and Miyama, PLB 479 (2000)]

Antiquark asymmetries in the proton: new results

[SeaQuest, Nature 590 (2021) 7847, 561-565]

FIG. 6. The difference of the light sea-quark polarizations as a function of x at a scale of $Q^2 = 10 \,(\text{GeV}/c)^2$. The green band shows the NNPDFpol1.1 results [1] and the blue hatched band shows the corresponding distribution after the STAR 2013 W^{\pm} data are included by reweighting.

[STAR collaboration, Phys.Rev.D 99 (2019) 5, 051102]

Polarized antiquark flavor asymmetry: model case

[STAR collaboration, Phys.Rev.D 99 (2019) 5, 051102]

FIG. 6. The difference of the light sea-quark polarizations as a function of x at a scale of $Q^2 = 10 \, (\text{GeV}/c)^2$. The green band shows the NNPDFpol1.1 results [1] and the blue hatched band shows the corresponding distribution after the STAR $2013 W^{\pm}$ data are included by reweighting.

Band: Model systematic uncertainty

fixed $\rho \sim 1/(600 \text{MeV})$, in the chiral limit

M [MeV]	330	420
M _N [MeV]	1161	1077
ρ/R	0.32	0.37
F _π [MeV]	77	90

Continuum contribution (Polarized vacuum) is crucial Softness: quark virtuality (momentum dep. mass) 1/Nc correction can enhance the PDF ~30% Scale evolution

Antiquark flavor asymmetry: heavy baryon

Closing remarks

Summary and outlook

- Light-quark distribution functions in a heavy baryon
- Light quarks in a heavy baryon are much less energetic than those in a proton
- Can this be measured? Or at least studied indirectly? eg. Fragmentation functions
 - : suitable reaction? (exclusive) Decay of heavy baryon(b), heavy production in e+e-, ...
- 1/M_Q corrections

Smearing of the heavy quark distribution Heavy-quark \leftrightarrow mean field, small? Stability?

- Can be computed in the LaMET framework on the lattice (but P is not enough!) Moments can be studied (eg. Momentum ratio of Heavy / light quarks)
- SU(3)_f extension: (sea) strange quark distribution in nucleon/heavy baryon

Backup sides

Quasi parton distribution function

Xiangdong Ji, Phys. Rev. Lett. 110, 262002 (2013)

$$q(x,\mu,P^{z}) = \int \frac{dz}{4\pi} e^{-ixP^{z}z} \langle P|\bar{\psi}(0)\gamma^{z} \exp\left[-ig\int_{0}^{z} dz' A^{z}(z')\right]\psi(z)|P\rangle + \mathcal{O}(\frac{\Lambda_{\text{QCD}}^{2}}{(P^{z})^{2}},\frac{M_{N}^{2}}{(P^{z})^{2}})$$

 $x \in (-\infty, +\infty)$

μ: renormalization scale P_z: nucleon momentum

Large Momentum Effective Theory

Spacelike matrix element \rightarrow can be calculated on the Lattice

No unique definition $\rightarrow \Gamma = \gamma^3$ or $\Gamma = \gamma^0$

Approaches the PDFs in the limit Pz

$$\rightarrow \infty$$
, or v $\rightarrow 1$.

Quasi parton distribution function

Xiangdong Ji, Phys. Rev. Lett. 110, 262002 (2013)

$$q(x,\mu_R,P^z) = \int_{-1}^1 \frac{dy}{|y|} C(\frac{x}{y},\frac{\mu_R}{\mu},\frac{\mu}{p^z})q(y,\mu) + \mathcal{O}(\frac{\Lambda_{\text{QCD}}^2}{(P^z)^2},\frac{M_N^2}{(P^z)^2})$$

Extensively studied for the Lattice calculation Market results P₇ ~ 2-3 GeV N, π, K / PDFs, DAs, GPDs

Perturbative matching coefficients

Quasi parton distribution function

Xiangdong Ji, Phys. Rev. Lett. 110, 262002 (2013)

$$q(x, \mu_R, P^z) = \int_{-1}^1 \frac{dy}{|y|} C(\frac{x}{y},$$

Perturbative matching coefficients

Extensively studied for the Lattice calculation Market results P₇ ~ 2-3 GeV N, π, K / PDFs, DAs, GPDs Enough accuracy and uncertainty for actual application? **Reliable model computations on quasi-PDFs is needed**

> Review: K. Cichy and M. Constantinou, Adv. High Energy Phys. 2019 (2019) 3036904 Community report: M. Constantinou et al, Prog.Part.Nucl.Phys. 121 (2021) 103908

 $,\frac{\mu_R}{\mu},\frac{\mu}{p^z})q(y,\mu) + \mathcal{O}(\frac{\Lambda_{\rm QCD}^2}{(P^z)^2},\frac{M_N^2}{(P^z)^2})$

and many more..

Hedgehog Ansatz: U_S

$$\sigma_{\mathrm{SU}(2)} = \exp\left[i\gamma_5\mathbf{n}\cdot\boldsymbol{\tau}P(\boldsymbol{r})
ight]$$

Quantum Numbers:

 $\mathbf{G} = \mathbf{J} + \mathbf{\tau}$ **P** = (-1)^{G,G+1}

Quarks are bound by the pion mean-field

Quasi-PDFs in the xQSM

Nucleon at rest \rightarrow Lorentz boost to a inertial frame with velocity v in the z direction

Quark and antiquark quasi number densities $x \in (-\infty, \infty)$

$$D_f(x,v) = \frac{1}{2E_N} \int \frac{d^3k}{(2\pi)^3} \delta\left(x - \frac{k^3}{P_N}\right) \int d^3x \ e^{-i\mathbf{k}\cdot\mathbf{x}} \langle N_v | \bar{\psi}_f\left(-\frac{\mathbf{x}}{2},t\right) \Gamma \psi_f\left(\frac{\mathbf{x}}{2},t\right) | N_v \rangle$$

$$\bar{D}_f(x,v) = \frac{1}{2E_N} \int \frac{d^3k}{(2\pi)^3} \delta\left(x - \frac{k^3}{P_N}\right) \int d^3x \ e^{-i\mathbf{k}\cdot\mathbf{x}} \langle N_v | \text{Tr}\left[\Gamma\psi_f\left(-\frac{\mathbf{x}}{2},t\right)\bar{\psi}_f\left(\frac{\mathbf{x}}{2},t\right)\right] |N_v\rangle$$

become exact number density in the limit $v \rightarrow 1$

Both the $\Gamma = \gamma^0$ and $\Gamma = \gamma^3$ define quasi-PDFs

A representation for the Green's function in the xQSM

$$\langle N_{v} | \mathbf{T} \left\{ \psi(\vec{x}_{1}, t_{1}) \bar{\psi}(\vec{x}_{2}, t_{2}) \right\} | N_{v} \rangle = -S[\vec{v}] \left[\Theta(t_{2} - t_{1}) \sum_{occ} \Phi_{n}(\vec{x}_{1}) \Phi_{n}^{\dagger}(\vec{x}_{2}) \gamma_{0} \exp(-iE_{n}(t_{1} - t_{2})) - \Theta(t_{1} - t_{2}) \sum_{nocc} \Phi_{n}(\vec{x}_{1}) \Phi_{n}^{\dagger}(\vec{x}_{2}) \gamma_{0} \exp(-iE_{n}(t_{1} - t_{2})) \right] S^{-1}[\vec{v}]$$

lattice calculations

FIG. 5. Light-quark quasi distributions u(x, P) + d(x, P) in Σ_c and Σ_b .

[HDS, H.-Ch. Kim, manuscript under preparation]

FIG. 6. Light-quark quasi distributions $\Delta u(x, P) - \Delta d(x, P)$ in Σ_c and Σ_b .

[HDS, H.-Ch. Kim, manuscript under preparation]

Sum-rules: heavy baryon PDFs

Baryon number

$$\int_{-\infty}^{\infty} dx \ q(x, v)$$

Momentum

Spin

 $\int_{-\infty}^{\infty} dx \left(\Delta u(x,v) - \Delta d(x,v)\right) = \begin{cases} v(2T_3)g_A^{(3)}, & \Gamma = \gamma^0\\ (2T_3)g_A^{(3)}, & \Gamma = \gamma^3 \end{cases}$

$$\int_{-\infty}^{\infty} dx \ q(x,v) = \begin{cases} (N_c - 1)B, & \Gamma = \gamma^0 \\ v(N_c - 1)B, & \Gamma = \gamma^3 \end{cases}$$
$$\int_{-\infty}^{\infty} dx \ xq(x,v) = \begin{cases} M_{sol}/M_h, & \Gamma = \gamma^0 \\ vM_{sol}/M_h, & \Gamma = \gamma^3 \end{cases}$$

Heavy quark

1*B*

 M_Q/M_h

$$= \begin{cases} v(2T_3)g_A^{(3)}, & \Gamma = \\ (2T_3)g_A^{(3)}, & \Gamma = \end{cases}$$

M. Constantinou et al. (2020) 2007.08636

M. Constantinou's slide @ Spin 2021, Japan

No continuum

extrapolation yet

The leptonic $W^+ \to e^+\nu$ and $W^- \to e^-\bar{\nu}$ decay channels provide sensitivity to the helicity distributions of the quarks, Δu and Δd , and antiquarks, $\Delta \bar{u}$ and $\Delta \bar{d}$, that is free of uncertainties associated with non-perturbative fragmentation. The cross-sections are well described [18]. The primary observable is the longitudinal single-spin asymmetry $A_L \equiv (\sigma_+ - \sigma_-)/(\sigma_+ + \sigma_-)$ where $\sigma_{+(-)}$ is the cross-section when the helicity of the polarized proton beam is positive (negative). At leading order,

$$A_L^{W^+}(y_W) \propto \frac{\Delta \bar{d}(x_1)u(x_2) - \Delta u(x_1)\bar{d}(x_2)}{\bar{d}(x_1)u(x_2) + u(x_1)\bar{d}(x_2)}, \qquad (1)$$

$$A_L^{W^-}(y_W) \propto \frac{\Delta \bar{u}(x_1)d(x_2) - \Delta d(x_1)\bar{u}(x_2)}{\bar{u}(x_1)d(x_2) + d(x_1)\bar{u}(x_2)}, \qquad (2)$$

where x_1 (x_2) is the momentum fraction carried by the colliding quark or antiquark in the polarized (unpolarized) beam. $A_L^{W^+}$ $(A_L^{W^-})$ approaches $-\Delta u/u$ $(-\Delta d/d)$ in the very forward region of W rapidity, $y_W \gg 0$, and $\Delta d/\bar{d}$ $(\Delta \bar{u}/\bar{u})$ in the very backward region of W rapidity, $y_W \ll 0$. The observed positron and electron pseudorapidities, η_e , are related to y_W and to the decay angle of the positron and electron in the W rest frame [19]. Higher-order corrections to $A_L(\eta_e)$ are known [20–22] and have been incorporated into the aforementioned global analyses.

FIG. 5. Longitudinal single-spin asymmetries, A_L , for W^{\pm} production as a function of the positron or electron pseudorapidity, η_e , for the combined STAR 2011+2012 and 2013 data samples for $25 < E_T^e < 50 \,\text{GeV}$ (points) in comparison to theory expectations (curves and bands) described in the text.

