#### Instanton effects on charmonium spectrum and electromagnetic transitions

Ki-Hoon Hong



In collaboration with Hyun-Chul Kim, Ulugbek Yakhshiev (Inha University)

Department of Physics, Inha University, Incheon, South Korea kihoon7065@naver.com

#### Outline

- Introduction
  - Heavy-Quark Potential&Instanton
  - Heavy-quark potential in the instanton vacuum
    - Instanton-induced heay-quark potential
    - **\Leftrightarrow** Spin-dependent parts of the  $Q\bar{Q}$  potential
- Results
  - Charmonium energy spectrum
  - Decay rate of the E1 & M1 Radiative Transition
- Summary

## Heavy-quark potential & & Instanton

#### **Heavy-quark Potential**



Light mesons

 $E_B \gg m_q$ ,  $E_B$ : Bound state energy

- Light quarks inside of a meson are relativistic (quite complicated)
- Quarkonia

 $E_B < m_Q$ 

- Relativistic effects are sufficiently small.
- $1/m_O$  is taken to be a small parameter.
- A non-relativistic potential approach is theoretically valid.

• Usual heavy-quark potential :  $V(r) = -\frac{\alpha}{r} + kr$ one-gluon exchange Phenomenologic

perturbative potential

Phenomenological confining potential

 $r \to 0, \ \alpha(p^2 \to \infty) \to \epsilon$  : Asymptotic freedom

: confinement

#### Instanton

• In the Chern-Simon coordinate, the instanton is a large fluctuation of the gluon field corresponding to quantum tunneling from one vacuum(minimum of the potential energy) to the neighboring one:



Potential energy of the gluon field



Classical trajectory in Euclidean space

• To find the best tunneling trajectory having the largest amplitude one has thus to minimize the YM action, which becomes

$$S = \frac{1}{4g^2} \int d^4x \ F^a_{\mu\nu} F^a_{\mu\nu} = \frac{8\pi^2}{g^2}. \qquad \qquad F^a_{\mu\nu} = \tilde{F}^a_{\mu\nu} \text{ : self-duality condition}$$

• The singular gauge field satisfying the self-duality equation can be written as:

$$A_{I,\mu}(x,z_I) = \frac{\eta_{\mu\nu}^{-a}(x-z_I)_{\mu}\lambda^a \rho^2}{(x-z_I)^2((x-z_I)^2+\rho^2)},$$

 $\rho$ : Average instanton size =1/3 fm  $z_I$ : A position of instanton

#### Instanton in the light-quark system

- The Instanton is known to contribute to the interaction between light quarks more than that between heavy quarks.
- The dynamical light quark mass is generated from the instanton vacuum (spontaneous breakdown of chiral symmetry:



- Quarks hopping from instantons (*I*) to antiinstantons (*Ī*) and vice versa flip helicity.
- An infinite number of such jumps generates the dynamical mass  $M(k) = MF^2(k)$ .  $F(k) = -k \frac{d}{dk} \left[ I_0 \left( \frac{k\rho}{2} \right) K_0 \left( \frac{k\rho}{2} \right) - I_1 \left( \frac{k\rho}{2} \right) K_1 \left( \frac{k\rho}{2} \right) \right]$  $M \approx 350 \text{ MeV} (M \gg m_q)$

#### Instanton in the heavy-quark system

• The gauge field of the instanton medium can be represented by linear superposition of separate instantons and anti-instantons  $A_I$ :

$$A(x) = \sum_{I} A_{I}(x) \qquad \qquad A_{I}(x) = U_{I}A(x - z_{I}, \rho_{I})U_{I}^{\dagger}$$

- Each instanton field is characterized by its centre  $z_I$ , size  $\rho_I$ , and the color-orientation matrix  $U_I$ .
- Averaging over the quark propagator in the instanton vacuum[1]:  $W = P \exp\left(i \int_C dx_\mu A_\mu\right) = \langle T | \left\langle \left\langle \left(\frac{d}{dt} - \sum_I a_I(t)\right)^{-1} \right\rangle \right\rangle | 0 \rangle \qquad a_I(t) = i A_{I\mu}[x(t)] \dot{x}_\mu(t) \quad : \text{ is a Yang-Mills field tangent} \right\rangle$
- The instanton ensemble  $\langle \langle \rangle \rangle$  is composed of the instanton positions and the color-orientation  $\left( \left( \theta^{-1} \sum_{r} a_{I}(t) \right)^{-1} \right) \rangle$
- From the instanton ensemble one obtains  $w^{-1} - \theta^{-1} = \frac{N}{2VN_c} \operatorname{Tr}_c \left\{ \int d^4 z_I (w - a_I^{-1})^{-1} + I \to \overline{I} \right\}.$   $\theta^{-1} = d/dt$   $\left\langle t | \theta | t' \right\rangle = \theta(t - t') \text{ gives the Heaviside function}$

[1] Diakonov et al, Phys. Lett. B 226, 372 (1989)

#### Instanton in the heavy-quark system

• To use the perturbation theory, we can choose a small parameter  $\frac{\bar{\rho}^4 N}{V N_c} \simeq 0.004$  with the instanton density  $\frac{N}{V} = (1 \text{ fm})^{-4}$  and the averaged instanton size  $\bar{\rho} = 1/3 \text{ fm}$ .  $w^{-1} = \theta^{-1} - \frac{N}{2VN_c} \operatorname{Tr}_c \left\{ \int d^4 z_I \theta^{-1} (w_I - \theta) \theta^{-1} + I \to \bar{I} \right\} + \mathcal{O}((N/VN_c)^2).$ 

$$w_I = (\theta^{-1} - a_I)^{-1}.$$

- Here the operator  $w_I$  is a one-instanton operator:
- After the Fourier transformation, we can use the definition [1]

$$P \exp\left(i\int_{0}^{T} dx_{4}A_{4}\right) = \exp\left(-MT\right) = \exp\left(-\frac{N}{2VN_{c}}g(0)T\right), \quad g(0) = \int d^{3}z_{I}\operatorname{Tr}_{c}\left[1 - P\exp\left(i\int_{-\infty}^{\infty} dx_{4}A_{I4}\right)\Big|_{z_{I4}=0}\right] + I \to \bar{I}.$$
$$m_{Q} \gg M = 16\pi \int_{0}^{\infty} dz \left(z\cos\frac{\pi z}{2\sqrt{z^{2}+1}}\right)^{2} \approx 70 \text{ MeV}: \text{ Instanton dynamical mass}[1]$$

• The instanton effects on quarkonia are small but still important because they allow one to use physical values of the parameters in the heavy-quark potential.

[1] Diakonov et al, Phys. Lett. B 226, 372 (1989)

# Heavy-quark potential in the instanton vacuum

#### Instanton-induced heavy-quark potential

- In the static state, we can use a rectangular Wilson loop along a contour  $T \times R$  with  $T \to \infty$ :
  - In this limit, we can neglect the short sides of the rectangle then we can write

$$W(L_1,L_2) = -\left\langle \left\langle \left\langle \langle T | \left( \theta^{-1} - \sum_I a_I^{(1)} \right)^{-1} | 0 \rangle \langle 0 | \left( \theta^{-1} - \sum_I a_I^{(2)} \right)^{-1} | T \rangle \right\rangle \right\rangle \right\rangle.$$

• The instanton-induced heavy-quark potential can be expressed in the leading order of  $N/VN_c$ :

$$V_{I} = \frac{4\pi\bar{\rho}^{3}N}{VN_{c}}\mathcal{I}_{\rm NP}\left(r/\bar{\rho}\right). \qquad \qquad \mathcal{I}_{\rm NP}(x) = \int_{0}^{\infty} y^{2}dy \int_{-1}^{1} dt \left[1 - \cos\left(\frac{\pi y}{\sqrt{y^{2} + 1}}\right)\cos\left(\pi\sqrt{\frac{y^{2} + x^{2} + 2xyt}{y^{2} + x^{2} + 2xyt + 1}}\right) - \frac{y + xt}{\sqrt{y^{2} + x^{2} + 2xyt}}\sin\left(\frac{\pi y}{\sqrt{y^{2} + 1}}\right)\sin\left(\pi\sqrt{\frac{y^{2} + x^{2} + 2xyt}{y^{2} + x^{2} + 2xyt + 1}}\right)$$

#### Instanton-induced heavy-quark potential

$$\mathcal{I}_{\rm NP}(x) = \mathcal{I}_0^{\rm d} \left\{ 1 + \sum_{i=1}^2 \left[ a_i^d x^{2(i-1)} + a_3^d (-b_3^d x)^i \right] e^{-b_i^d x^2} + \frac{a_3^d}{x} \left( 1 - e^{-b_3^d x^2} \right) \right\},$$

$$\mathcal{I}_0^d = 4.41625,$$

$$a^d = \begin{pmatrix} -1\\ 0.128702\\ -1.1047 \end{pmatrix},$$

$$b^d = \begin{pmatrix} 0.404875\\ 0.453923\\ 0.420733 \end{pmatrix},$$

$$V_I = \frac{4\pi\bar{\rho}^3 N}{VN_c} \mathcal{I}_{\rm NP} \left(\infty\right) \simeq 140 {\rm MeV}.$$

## Spin-dependent parts of the $Q\bar{Q}$ potential

• The spin-dependent parts of the heavy-quark potential are represented by the Breit-Fermi equation [3, 4]:

$$V_{SD} = V_{SS} \mathbf{S}_Q \cdot \mathbf{S}_{\bar{Q}} + V_{LS} \mathbf{L} \cdot \mathbf{S} + V_T \left[ 3(\mathbf{S}_Q \cdot \hat{\mathbf{n}}) (\mathbf{S}_{\bar{Q}} \cdot \hat{\mathbf{n}}) - \mathbf{S}_Q \cdot \mathbf{S}_{\bar{Q}} \right]$$

9

 $32\pi\alpha$ 

$$V_{SS}(r) = \frac{2}{3m_Q^2} \nabla^2 V_V = \frac{52\pi\alpha_s}{9m_Q^2} \delta(r)$$
$$= \frac{32\alpha_s \sigma^3}{9m_Q^2 \sqrt{\pi}} e^{-\sigma^2 r^2}$$
$$V_V = -\frac{4\alpha_s}{3r}$$
$$V_{LS}(r) = \frac{1}{2m_Q^2 r} \left(3\frac{dV_V}{dr} - \frac{dV_S}{dr}\right)$$
$$V_S = kr$$
$$V_T(r) = \frac{1}{3m_Q^2} \left(\frac{1}{r}\frac{dV_V}{dr} - \frac{d^2 V_V}{dr^2}\right)$$

• The spin-dependent parts of the instanton case are derived in Ref. [3]:

$$V_{SD}^{I} = V_{SS}^{I} \mathbf{S}_{Q} \cdot \mathbf{S}_{\bar{Q}} + V_{LS}^{I} \mathbf{L} \cdot \mathbf{S} + V_{T}^{I} \left[ 3(\mathbf{S}_{Q} \cdot \hat{\mathbf{n}})(\mathbf{S}_{\bar{Q}} \cdot \hat{\mathbf{n}}) - \mathbf{S}_{Q} \cdot \mathbf{S}_{\bar{Q}} \right]$$

$$\begin{split} V_{SS}^{I}(r) &= \frac{1}{3m_Q^2} \nabla^2 V_I^{(\rm NP)} \\ V_{LS}^{I}(r) &= \frac{1}{2m_Q^2 r} \frac{dV_I^{(\rm NP)}}{dr} \\ V_T^{I}(r) &= \frac{1}{3m_Q^2} \left( \frac{d^2 V_I^{(\rm NP)}}{dr^2} - \frac{1}{r} \frac{dV_I^{(\rm NP)}}{dr} \right) \end{split}$$

[3] E. Eichten and F. Feinberg, Phys. Rev. D173090 (1981)[4] M. B. Voloshin, Progress in Particle and Nucl Phys. 61 (2008) 455-511

#### **Eigenvalues of the Hamiltonian**

• To obtain the bound state energy of the quarkonia, we solved the non-relativistic Schrödinger equation

$$\left[ -\frac{\hbar^2}{m_Q} \frac{d^2}{dr^2} + \frac{\hbar^2 l(l+1)}{m_Q r^2} + V(r) \right] \chi(r) = E_B \chi(r)$$
$$m_{Q\bar{Q}} = 2m_Q + E_B$$

$$\chi(r) = r\psi(r)$$

 $m_{Q\bar{Q}}$ : mass of the quarkonia

 $E_B$ : Bound state energy (eigenvalue of the Hamiltonian)

$$V(r) = -\frac{4\alpha_s}{3r} + V_s + V_{SD} + V_I + V_{SD}^I. \qquad V_s = \frac{k(1 - e^{-br^2})}{b}$$

• We have 5 fitting parameters:  $\alpha_s$ ,  $\sigma$ , k, b,  $m_c$ 

#### Results: Charmonium spectrum

### **Results: Fitting parameters**

| Parameter          | Linear potential model | Screened potential model |
|--------------------|------------------------|--------------------------|
| $m_c$ (GeV)        | 1.4830                 | 1.4110                   |
| $\alpha_s$         | 0.5461                 | 0.5070                   |
| $b (\text{GeV}^2)$ | 0.1425                 | 0.2100                   |
| $\sigma$ (GeV)     | 1.1384                 | 1.1600                   |
| $r_c$ (fm)         | 0.202                  | 0.180                    |
| $\mu$ (GeV)        |                        | 0.0979                   |

• Linear (LP) and screened (SP) potential models [4]

 $V_{\rm s} = \begin{cases} kr & : \text{Linear Potential (LP)} \\ \frac{k}{\mu}(1 - e^{-\mu r}) & : \text{Screened potential (SP)} \end{cases}$ 

- SP model has the advantage that it gives the smaller running coupling constant and the heavy quark mass than LP.
- However, SP model is not easy to optimize in the instanton model because of the additional dynamical mass from the instanton vacuum.

• We made the modified screened potential to include the induced heavy-quark potential.

$$V_{\rm s} = \frac{k(1 - e^{-br^2})}{b}$$

| Model    | $\alpha_s(-)$ | $k({ m GeV}^3)$ | $\sigma({ m GeV})$ | $m_c({ m GeV})$ | $b({ m GeV}^2)$ |
|----------|---------------|-----------------|--------------------|-----------------|-----------------|
| Model I  | 0.5336        | 0.0299          | 1.1704             | 1.5704          | 0.0202          |
| Model II | 0.4930        | 0.0269          | 1.1969             | 1.5433          | 0.0187          |

- Model I is not including the instanton effects  $V(r) = -\frac{4\alpha_s}{3r} + V_{\rm s} + V_{\rm SD}.$
- Model II is including the instanton effects  $V(r) = -\frac{4\alpha_s}{3r} + V_s + V_{SD} + V_I + V_{SD}^I.$

#### **Results: Charmonium spectrum**

| State                                   | Exp                      | Model I | Model II | NR [28] | GI [28] | LP [29] | SP [29] |
|-----------------------------------------|--------------------------|---------|----------|---------|---------|---------|---------|
| $J/\psi(1^{3}S_{1})$                    | $3096.900 \pm 0.006^*$   | 3097    | 3097     | 3090    | 3098    | 3097    | 3097    |
| $\eta_c \ (1^1 S_0)$                    | $2983.9 \pm 0.4^*$       | 2984    | 2984     | 2982    | 2975    | 2984    | 2984    |
| $\psi (2^{3}S_{1})$                     | $3686.097 \pm 0.025^*$   | 3687    | 3687     | 3672    | 3676    | 3679    | 3679    |
| $\eta_c \ (2^1 S_0)$                    | $3637.6 \pm 1.1^{*}$     | 3637    | 3637     | 3630    | 3623    | 3635    | 3637    |
| $\psi$ (3 <sup>3</sup> S <sub>1</sub> ) | $4039 \pm 1$             | 4115    | 4113     | 4072    | 4100    | 4078    | 4030    |
| $\eta_c \; (3^1 S_0)$                   |                          | 4084    | 4080     | 4043    | 4064    | 4048    | 4004    |
| $\psi$ (4 <sup>3</sup> S <sub>1</sub> ) | $4421 \pm 4^{*}$         | 4421    | 4421     | 4406    | 4450    | 4412    | 4281    |
| $\eta_c \ (4^1S_0)$                     |                          | 4402    | 4401     | 4384    | 4425    | 4388    | 4264    |
| $\chi_{c2} \; (1^3 P_2)$                | $3556.17 \pm 0.07^*$     | 3557    | 3556     | 3556    | 3550    | 3552    | 3553    |
| $\chi_{c1} (1^3 P_1)$                   | $3510.67\pm0.05$         | 3509    | 3510     | 3505    | 3510    | 3516    | 3521    |
| $\chi_{c0} \ (1^3 P_0)$                 | $3414.71 \pm 0.30$       | 3415    | 3415     | 3424    | 3445    | 3415    | 3415    |
| $h_c (1^1 P_1)$                         | $3525.38 \pm 0.11^*$     | 3525    | 3526     | 3516    | 3517    | 3522    | 3526    |
| $\chi_{c2} \ (2^3 P_2)$                 | $3922.5\pm1.0$           | 4012    | 4008     | 3972    | 3979    | 3967    | 3937    |
| $\chi_{c1} (2^3 P_1)$                   | $3871.65 \pm 0.06$       | 3968    | 3966     | 3925    | 3953    | 3937    | 3914    |
| $\chi_{c0} \ (2^3 P_0)$                 | $3862^{+26+40}_{-32-13}$ | 3897    | 3894     | 3852    | 3916    | 3869    | 3848    |
| $h_c (2^1 P_1)$                         |                          | 3980    | 3975     | 3934    | 3956    | 3940    | 3916    |
| $\psi_3 \ (1^3 D_3)$                    | $3842.7\pm0.2$           | 3824    | 3824     | 3806    | 3849    | 3811    | 3808    |
| $\psi_2  \left( 1^3 D_2 \right)$        | $3823.7\pm0.5$           | 3818    | 3818     | 3800    | 3838    | 3807    | 3807    |
| $\psi (1^3 D_1)$                        | $3773.7\pm0.4$           | 3798    | 3774     | 3785    | 3819    | 3787    | 3792    |
| $\eta_{c2} \ (1^1 D_2)$                 |                          | 3818    | 3818     | 3799    | 3837    | 3806    | 3805    |
| $\psi_3 \ (2^3 D_3)$                    |                          | 4215    | 4212     | 4167    | 4217    | 4172    | 4112    |
| $\psi_2 \ (2^3 D_2)$                    |                          | 4208    | 4205     | 4158    | 4208    | 4165    | 4109    |
| $\psi (2^3 D_1)$                        | $4191\pm5$               | 4184    | 4035     | 4142    | 4194    | 4144    | 4095    |
| $\eta_{c2} (2^1 D_2)$                   |                          | 4208    | 4205     | 4158    | 4208    | 4164    | 4108    |

- NR and GI models are nonrelativistic model and Godfrey-Isgur (relativized quark) model.
- Nonrelativistic model: Model I(II), NR, LP, SP
- Number of input data

This work: 7

Ref. [28]: 11

Ref. [29]: 12

• Our model requires relatively less data than another models.

[28] T. Barnes and S. Godfrey, Phys. Rev. D 69, 054008 (2004)[29] Wei-Jun Deng et al, Phys. Rev. D 95. 034026 (2017)

#### **Results: Charmonium spectrum**

| State                                   | Exp                      | Model I | Model II | NR [28] | GI [28] | LP [29] | SP [29] |
|-----------------------------------------|--------------------------|---------|----------|---------|---------|---------|---------|
| $J/\psi(1^{3}S_{1})$                    | $3096.900 \pm 0.006^*$   | 3097    | 3097     | 3090    | 3098    | 3097    | 3097    |
| $\eta_c \ (1^1 S_0)$                    | $2983.9 \pm 0.4^*$       | 2984    | 2984     | 2982    | 2975    | 2984    | 2984    |
| $\psi (2^{3}S_{1})$                     | $3686.097 \pm 0.025^*$   | 3687    | 3687     | 3672    | 3676    | 3679    | 3679    |
| $\eta_c \ (2^1 S_0)$                    | $3637.6 \pm 1.1^{*}$     | 3637    | 3637     | 3630    | 3623    | 3635    | 3637    |
| $\psi$ (3 <sup>3</sup> S <sub>1</sub> ) | $4039\pm1$               | 4115    | 4113     | 4072    | 4100    | 4078    | 4030    |
| $\eta_c \ (3^1S_0)$                     |                          | 4084    | 4080     | 4043    | 4064    | 4048    | 4004    |
| $\psi$ (4 <sup>3</sup> S <sub>1</sub> ) | $4421\pm4^*$             | 4421    | 4421     | 4406    | 4450    | 4412    | 4281    |
| $\eta_c \ (4^1S_0)$                     |                          | 4402    | 4401     | 4384    | 4425    | 4388    | 4264    |
| $\chi_{c2} \ (1^3 P_2)$                 | $3556.17 \pm 0.07^*$     | 3557    | 3556     | 3556    | 3550    | 3552    | 3553    |
| $\chi_{c1} (1^3 P_1)$                   | $3510.67\pm0.05$         | 3509    | 3510     | 3505    | 3510    | 3516    | 3521    |
| $\chi_{c0} \ (1^3 P_0)$                 | $3414.71 \pm 0.30$       | 3415    | 3415     | 3424    | 3445    | 3415    | 3415    |
| $h_c (1^1 P_1)$                         | $3525.38 \pm 0.11^*$     | -3525   | 3526     | 3516    | 3517    | 3522    | 3526    |
| $\chi_{c2} \ (2^3 P_2)$                 | $3922.5\pm1.0$           | 4012    | 4008     | 3972    | 3979    | 3967    | 3937    |
| $\chi_{c1} (2^3 P_1)$                   | $3871.65 \pm 0.06$       | 3968    | 3966     | 3925    | 3953    | 3937    | 3914    |
| $\chi_{c0} \ (2^3 P_0)$                 | $3862^{+26+40}_{-32-13}$ | 3897    | 3894     | 3852    | 3916    | 3869    | 3848    |
| $h_c (2^1 P_1)$                         |                          | 3980    | 3975     | 3934    | 3956    | 3940    | 3916    |
| $\psi_3 \ (1^3 D_3)$                    | $3842.7\pm0.2$           | 3824    | 3824     | 3806    | 3849    | 3811    | 3808    |
| $\psi_2 \ (1^3 D_2)$                    | $3823.7\pm0.5$           | 3818    | 3818     | 3800    | 3838    | 3807    | 3807    |
| $\psi (1^3 D_1)$                        | $3773.7\pm0.4$           | 3798    | 3774     | 3785    | 3819    | 3787    | 3792    |
| $\eta_{c2} \ (1^1 D_2)$                 |                          | 3818    | 3818     | 3799    | 3837    | 3806    | 3805    |
| $\psi_3 \ (2^3 D_3)$                    |                          | 4215    | 4212     | 4167    | 4217    | 4172    | 4112    |
| $\psi_2 \ (2^3 D_2)$                    |                          | 4208    | 4205     | 4158    | 4208    | 4165    | 4109    |
| $\psi (2^3 D_1)$                        | $4191\pm5$               | 4184    | 4035     | 4142    | 4194    | 4144    | 4095    |
| $\eta_{c2} \ (2^1 D_2)$                 |                          | 4208    | 4205     | 4158    | 4208    | 4164    | 4108    |

[28] T. Barnes and S. Godfrey, Phys. Rev. D 69, 054008 (2004) [29] Wei-Jun Deng et al, Phys. Rev. D 95. 034026 (2017) • The modified screened potential model well describes each ground state.

The ground state of each wave

Most accurate prediction

- Model II (instanton model) is the best prediction model.
- However, it still cannot describe the excited states of P and D wave because the modified screened potential cannot explain the confinement completely.

## Results: Decay width of the E1 and M1 radiative transitions

#### **Decay width of the electromagnetic transitions**

- To see the electromagnetic transitions, we need to know the initial and final state because we have to calculate the matrix element of the EM hamiltonian.
- From the previous results, we get also each wavefunction of state.
  - The wavefunctions  $(\chi(r) = r\psi(r))$  are obtained by the eigenvalue problem.

#### Example:



#### Decay width of the electromagnetic transitions

- The interaction Hamiltonian of the quark-photon EM coupling at the tree level is given by
  - $H_{\rm EM} = -e_c |e| \bar{\psi} \gamma^{\mu} A_{\mu} \psi.$   $e_c = 2/3$  : charge of the charm quark
- It gives the electric and magnetic dipole interaction:

$$H_{\rm E1} = e_c |e| \vec{r} \cdot \vec{E}, \quad H_{\rm M1} = -\frac{e_c |e|}{2m_Q} \vec{\sigma} \cdot \vec{B}$$

• The initial and final Fock states are represented by

$$|nL\rangle \rightarrow |n;L,m_l;S,m_s;J,m_J;0\rangle = |n;L,m_l;S,m_s;J,m_J\rangle \otimes |0\rangle$$
$$|n'L'\rangle \rightarrow |n';L',m'_l;S',m_{s'};J,m_{J'};\gamma\rangle = |n';L',m_{l'};S',m_{s'};J',m_{J'}\rangle \otimes |\gamma\rangle$$

#### **Decay width of the electromagnetic transitions**

• Using these states, we get the E1 and M1 decay width[28]

$$\Gamma_{E1}(n^{2S+1}L_J \to n'^{2S'+1}L'_{J'} + \gamma) = \frac{4}{3}C_{fi}\delta_{SS'}e_c^2\alpha |\langle\psi_f|r|\psi_i\rangle|^2 E_{\gamma}^3 \frac{E_f^{(c\bar{c})}}{M_i^{(c\bar{c})}} \qquad C_{fi} = \max(L,L')(2J'+1)\left\{\begin{array}{cc} L' & J' & S\\ J & L & 1\end{array}\right\}^2$$

$$\Gamma_{\rm M1}(n^{2S+1}L_J \to n'^{2S'+1}L'_{J'} + \gamma) = \frac{4}{3} \frac{2J'+1}{2L+1} \delta_{LL'} \delta_{S,S'\pm 1} e_c^2 \frac{\alpha}{m_c^2} |\langle \psi_f | \psi_i \rangle|^2 E_\gamma^3 \frac{E_f^{(c\bar{c})}}{M_i^{(c\bar{c})}}$$

•  $E_{\gamma}$  is a final photon energy,  $E_{f}^{\bar{c}c}$  denotes a total energy of the final  $c\bar{c}$  state,  $M_{i}^{c\bar{c}}$  stands for a mass of the initial  $c\bar{c}$  state and  $\alpha = 4\pi |e|^{2}$  is known as the fine-structure constant.

[28] T. Barnes and S. Godfrey, Phys. Rev. D 69, 054008 (2004)

#### **Results: E1 & M1 Radiative Transitions**

| $2S \rightarrow 1P$ transitions (keV) |                     |    |      |      |    |    |    |            |  |
|---------------------------------------|---------------------|----|------|------|----|----|----|------------|--|
| E1 transition                         |                     |    |      |      |    |    |    |            |  |
| Initial                               | Final               | Mo | odel | [28] |    | [2 | 9] | PDG        |  |
|                                       |                     | Ι  | Π    | NR   | GI | LP | SP | Exp.       |  |
|                                       | $\chi_{c2}(1^3P_2)$ | 48 | 40   | 38   | 24 | 36 | 44 | $28 \pm 1$ |  |
| $\psi(2^3S_1)$                        | $\chi_{c1}(1^3P_1)$ | 45 | 44   | 54   | 29 | 45 | 48 | $29 \pm 1$ |  |
|                                       | $\chi_{c0}(1^3P_0)$ | 29 | 29   | 63   | 26 | 27 | 26 | $29 \pm 1$ |  |
| $\eta_c(2^1S_0)$                      | $h_c(1^1P_1)$       | 44 | 44   | 49   | 36 | 49 | 52 | -          |  |

- The instanton effects tend to correct the mass spectrum from Model I.
- $\psi \to \chi_{c1}$  and  $\psi \to \chi_{c2}$  are still big, which are a common problem of the nonrelativistic models.
- The confinement potentials of these models are not enough to reproduce the excited states.
- Nevertheless, the instanton effects offer the smaller values than the no instanton models.

| $1P \rightarrow 1S \text{ transitions (keV)}$ |              |     |     |     |      |     |     |               |  |
|-----------------------------------------------|--------------|-----|-----|-----|------|-----|-----|---------------|--|
| E1 transition                                 |              |     |     |     |      |     |     |               |  |
| Initial                                       | Final        | Mo  | del | [2  | [28] |     | 9]  | PDG           |  |
| imuai                                         | гша          | Ι   | II  | NR  | GI   | LP  | SP  | Exp.          |  |
| $\chi_{c2}(1P)$                               |              | 387 | 393 | 424 | 313  | 327 | 338 | $374 \pm 19$  |  |
| $\chi_{c1}(1P)$                               | $J/\psi(1S)$ | 305 | 311 | 314 | 239  | 269 | 278 | $288 \pm 16$  |  |
| $\chi_{c0}(1P)$                               |              | 150 | 152 | 152 | 114  | 141 | 146 | $151 \pm 12$  |  |
| $h_c(1P)$                                     | $\eta_c(1S)$ | 442 | 449 | 498 | 352  | 361 | 373 | $350 \pm 210$ |  |

- Overall, the modified screened potential model gives excellent results in this transition compared to other models.
- However,  $\chi_{c1} \to J/\psi$  (may be  $\chi_{c2}$  also) little big.
- We are guessing that is from the overestimated excited states(2P).

[28] T. Barnes and S. Godfrey, Phys. Rev. D 69, 054008 (2004) [29] Wei-Jun Deng et al, Phys. Rev. D 95. 034026 (2017)

#### **Results: E1 & M1 Radiative Transitions**

| $1D \rightarrow 11 \text{ transitions (KeV)}$ |                     |     |     |      |     |      |     |            |  |
|-----------------------------------------------|---------------------|-----|-----|------|-----|------|-----|------------|--|
| E1 transition                                 |                     |     |     |      |     |      |     |            |  |
| Initial                                       | Final               | Mo  | del | [28] |     | [29] |     | PDG        |  |
| miniai                                        | 1 111/01            | Ι   | II  | NR   | GI  | LP   | SP  | Exp.       |  |
| $\psi_3(1^3D_3)$                              | $\gamma = (1^3 D)$  | 330 | 336 | 272  | 296 | 377  | 393 | -          |  |
| $\psi_2(1^3D_2)$                              | $\chi_{c2}(1 F_2)$  | 78  | 79  | 64   | 66  | 79   | 82  | -          |  |
|                                               | $\chi_{c1}(1^3P_1)$ | 311 | 314 | 307  | 268 | 281  | 291 | -          |  |
|                                               | $\chi_{c2}(1^3P_2)$ | 6.9 | 4.6 | 4.9  | 3.3 | 5.4  | 5.7 | $\leq 17$  |  |
| $\psi(1^3D_1)$                                | $\chi_{c1}(1^3P_1)$ | 145 | 105 | 125  | 77  | 115  | 111 | $68\pm7$   |  |
|                                               | $\chi_{c0}(1^3P_0)$ | 311 | 250 | 403  | 213 | 243  | 232 | $188\pm18$ |  |

1D  $\downarrow$  1D transitions ( $l_z a V$ )

- One can see the problems of the nonrelativistic models.
- In the higher states, they cannot well describe the transitions.
- However, the instanton effects give better results than Model I.
- Especially,  $\psi \rightarrow \chi_{c1}$  is remarkable for the best result of the nonrelativistic models.

| M1 transition    |                        |     |       |      |      |      |                     |               |  |
|------------------|------------------------|-----|-------|------|------|------|---------------------|---------------|--|
| Initial          | Final                  | Mo  | Model |      | [28] |      | 9]                  | PDG           |  |
| IIIIIIai         | Fillal                 | Ι   | Π     | NR   | GI   | LP   | $\operatorname{SP}$ | Exp.          |  |
| $J/\psi(1^3S_0)$ | $\eta_c(1^1S_0)$       | 2.2 | 2.3   | 2.9  | 2.4  | 2.39 | 2.44                | $1.7 \pm 0.4$ |  |
| $\psi(2^3S_1)$   | $\eta_c(2^1S_0)$       | 0.2 | 0.2   | 0.21 | 0.17 | 0.19 | 0.19                | $0.2 \pm 0.2$ |  |
|                  | $\eta_{c}(1^{1}S_{0})$ | 4.8 | 5.0   | 4.6  | 9.6  | 8.08 | 7.80                | $1.0 \pm 0.1$ |  |
| $\eta_c(2^1S_0)$ | $J/\psi(1^{3}S_{1})$   | 8.5 | 9.0   | 7.9  | 5.6  | 2.64 | 2.29                | < 158         |  |

(keV)

- The modified screened potential models predict the first two transitions very well.
- On the other hands, we cannot explain the last two transitions. (Homework!)

#### Summary

- We make the modified screened potential to include the instanton effects on SP model.
- We obtained the charmonium spectrum from the heavy-quark potential with the instanton effects.
- The instanton model (Model II) gives revised results than the others.
- We also evaluated the radiative transition width of E1 and M1 transitions.
- Although the instanton effect in the heavy-quark system is known to have little contribution, it gives remarkable results from E1 and M1 transitions.
- So, we can say that the instanton is meaningful in the heavy-quark system also.

# Thank you for your attention

## Back Up

## Heavy-quark potential in the instanton vacuum (Including perturbative corrections)

- In Ref. [2], they considered the one-gluon exchange(OGE) perturbation part.
- They used the instanton packing parameter  $\lambda = \frac{\rho^4}{R^4} \sim 0.01$  as the running coupling constant  $\alpha_s \sim \lambda^{\frac{1}{2}}$ .
- Averaged Wilson loop( $Q\bar{Q}$  correlator) can be written as

$$W = \int D\xi \exp\left[\frac{1}{2} \sum_{i \neq j=1}^{2} \left(\frac{\delta}{\delta a_{a}^{(i)}} S_{ab}^{(ij)} \frac{\delta}{\delta a_{b}^{(j)}}\right)\right] \frac{1}{D^{(1)} - ga^{(1)}} \frac{1}{D^{(2)} - g\bar{a}^{(2)}},$$
  
order of  $\alpha_{s}(\propto g^{2})$   $W^{-1} = \int D\xi \left(D^{(1)}D^{(2)} - g^{2}\frac{\lambda_{a}}{2}\frac{\bar{\lambda}_{b}}{2}S_{ab}\right)$ 

• Using the Fourier transform of  $W^{-1}$ :  $\dot{W}^{-1}(\dot{\omega}) = \iota\omega + f(\dot{\omega}) + g(\omega)$ 

$$\langle t_1 | W | t_2 \rangle = \int \frac{d\omega}{2\pi} e^{i\omega(t_1 - t_2)} \frac{1}{W^{-1}(\omega)}$$

• Correlation function from the Fourier transformation :

$$\exp\left(-V_{I}^{1}T\right) = \exp\left[-(V_{I}^{1,(\mathrm{NP})} + V_{I}^{1,(\mathrm{P})})T\right] = \exp\left[-(f(0) + g(0))T\right]$$

[1] Diakonov et al, Phys. Lett. B 226, 372 (1989)[2] M.Musakhanov et al, PhysRevD.102.076022



 $D = \theta^{-1} - g \sum_{I} A_{I}$ 

## Heavy-quark potential in the instanton vacuum (Including perturbative corrections)

#### Outlooks

• For the case of the hadronic transition amplitude [5] of the two-pion transition between  $n^3S_1$  states:

$$A(\psi' \to \pi^+ \pi^- J/\psi) = \frac{1}{2} \langle \pi^+ \pi^- | E_i^a E_j^a | 0 \rangle \alpha_{ij}^{(12)}$$

• The  $\psi' \to J/\psi$  transition in the chromo-electric field is described by the effective Hamiltonian

$$H_{\rm eff} = -\frac{1}{2} \alpha_{ij}^{(12)} E_i^a E_j^a,$$

with the chromo-polarizability given by

$$\alpha^{(12)} = \frac{1}{48} \langle 1S | \xi^a r_i G r_i \xi^a | 2S \rangle = \frac{1}{9} \langle 1S | r_i \frac{1}{H_o - E_{2S}} r_i | 2S \rangle, \qquad \xi^a = \frac{\lambda^a}{2} - \frac{\bar{\lambda}^a}{2}$$

where G is the Green's function of the heavy quark pair in the color octet state.

#### **Results: Charmonium spectrum**

| SetA                  | $\rho_I \ (\text{fm})$       | R (fm)                     | $\alpha_s(-)$           | $k(\text{GeV}^2)$                | $\sigma(\text{GeV})$               | $m_Q(\text{GeV})$                | $V_0({ m GeV})$              |
|-----------------------|------------------------------|----------------------------|-------------------------|----------------------------------|------------------------------------|----------------------------------|------------------------------|
| SetIa                 | 1/3                          | 1                          | 0.5141                  | 0.1432                           | 1.136                              | 1.3634                           | 0                            |
| SetIIa                | 0.36                         | 0.89                       | 0.4783                  | 0.1375                           | 1.174                              | 1.3251                           | 0                            |
|                       |                              |                            |                         |                                  |                                    |                                  |                              |
| $\operatorname{SetB}$ | $\rho_I \ (fm)$              | $R \ (fm)$                 | $\alpha_s(-)$           | $k(\text{GeV}^2)$                | $\sigma(\text{GeV})$               | $m_Q(\text{GeV})$                | $V_0({ m GeV})$              |
| SetB<br>SetIb         | $\rho_I \text{ (fm)}$<br>1/3 | $\frac{R \text{ (fm)}}{1}$ | $\alpha_s(-)$<br>0.5098 | $\frac{k(\text{GeV}^2)}{0.1444}$ | $\frac{\sigma(\text{GeV})}{1.166}$ | $\frac{m_Q(\text{GeV})}{1.3932}$ | $V_0(\text{GeV})$<br>-0.0563 |

| State                              | Exp              | SetIa | SetIIa | SetIb | SetIIb |
|------------------------------------|------------------|-------|--------|-------|--------|
| $\chi_{c2} (3^3 P_2)$              |                  | 4318  | 4313   | 4318  | 4313   |
| $\chi_{c1} (3^3 P_1)$              |                  | 4286  | 4287   | 4287  | 4287   |
| $\chi_{c0} (3^3 P_0)$              |                  | 4236  | 4235   | 4235  | 4235   |
| $h_c (3^1 P_1)$                    |                  | 4290  | 4287   | 4290  | 4287   |
| $\psi_3 \ (1^3 D_3)$               |                  | 3810  | 3806   | 3810  | 3806   |
| $\psi_2 \ (1^3 D_2)$               | $3822.2\pm1.2$   | 3808  | 3806   | 3809  | 3806   |
| $\psi (1^3 D_1)$                   | $3778.1 \pm 1.2$ | 3787  | 3791   | 3789  | 3791   |
| $\eta_{c2} (1^1 D_2)$              |                  | 3806  | 3804   | 3807  | 3804   |
| $\psi_3 \ (2^3 D_3)$               |                  | 4172  | 4169   | 4172  | 4168   |
| $\psi_2 \ (2^3 D_2)$               |                  | 4168  | 4166   | 4168  | 4165   |
| $\psi (2^3 D_1)$                   | $4191\pm5$       | 4140  | 4148   | 4143  | 4148   |
| $\eta_{c2} \left( 2^1 D_2 \right)$ |                  | 4167  | 4164   | 4167  | 4164   |

| Parameter          | Linear potential model | Screened potential model |
|--------------------|------------------------|--------------------------|
| $m_c$ (GeV)        | 1.4830                 | 1.4110                   |
| $\alpha_s$         | 0.5461                 | 0.5070                   |
| $b (\text{GeV}^2)$ | 0.1425                 | 0.2100                   |
| $\sigma$ (GeV)     | 1.1384                 | 1.1600                   |
| $r_c$ (fm)         | 0.202                  | 0.180                    |
| $\mu$ (GeV)        |                        | 0.0979                   |

Fitting parameters

| $n^{2S+1}L_J$ | name            | $J^{PC}$ | Exp. [6] | LP   | SP   | [4]                     |
|---------------|-----------------|----------|----------|------|------|-------------------------|
| $3^{3}P_{2}$  | $\chi_{c2}(3P)$ | 2++      |          | 4310 | 4211 |                         |
| $3^{3}P_{1}$  | $\chi_{c1}(3P)$ | 1++      |          | 4284 | 4192 |                         |
| $3^{3}P_{0}$  | $\chi_{c0}(3P)$ | 0++      |          | 4230 | 4146 |                         |
| $3^{1}P_{1}$  | $h_c(3P)$       | 1+-      |          | 4286 | 4193 | ſ                       |
| $1^{3}D_{3}$  | $\psi_3(1D)$    | 3        |          | 3811 | 3808 | $V_s = \left\{ \right.$ |
| $1^{3}D_{2}$  | $\psi_2(1D)$    | 2        | 3823     | 3807 | 3807 | (                       |
| $1^{3}D_{1}$  | $\psi_1(1D)$    | 1        | 3778     | 3787 | 3792 |                         |
| $1^{1}D_{2}$  | $\eta_{c2}(1D)$ | 2-+      |          | 3806 | 3805 |                         |
| $2^{3}D_{3}$  | $\psi_3(2D)$    | 3        |          | 4172 | 4112 |                         |
| $2^{3}D_{2}$  | $\psi_2(2D)$    | 2        |          | 4165 | 4109 |                         |
| $2^{3}D_{1}$  | $\psi_1(2D)$    | 1        | 4191?    | 4144 | 4095 |                         |
| $2^{1}D_{2}$  | $\eta_{c2}(2D)$ | 2-+      |          | 4164 | 4108 |                         |

 $\begin{cases} kr : LP \\ \frac{k}{\mu}(1 - e^{-\mu r}) : SP \end{cases}$ 

[4] Wei-Jun Deng et al, Phys. Rev. D 95. 034026 (2017)

#### **Potential from Wilson Loop**

• The  $Q\bar{Q}$  state evaluates in time T and can be represented as

$$|\Phi(\vec{x},T;\vec{y},T)\rangle = \bar{Q}(\vec{x})U(x,y)Q(\vec{y})|0\rangle$$

- $U(x_{\mathbf{W}}) \equiv P_{\text{line}} \exp\left(ig \int_{x}^{y} \frac{\lambda_{a}}{2} A_{\mu}^{a}(z) dz_{\mu}\right)$
- We assume that the heavy quark and antiquark masses  $m_{Q,\bar{Q}} \to \infty$  and they are in static state during  $T \to \infty$ .



• Heavy quark potential from the correlation function:

$$W(C) = U\left(\vec{x}, -T; \vec{x}, T\right) U(\vec{y}, T; \vec{x}, -T)$$

$$\langle \Phi(\vec{y}, -T; \vec{x}, -T) | \Phi(\vec{x}, T; \vec{y}, T) \rangle = \langle e^{-HT} \rangle \sim e^{-VT} = \langle P \exp\left(\oint A_4(z) dz_4\right) \rangle \longrightarrow V = -\lim_{T \to \infty} \frac{1}{T} \ln \langle W(C) \rangle$$



FIG. 2. The left panel is the total color siglet and octet potential without considering the instanton effect of the one gluon exchange. Otherwise, in the right panel, we considered all of instanton effects. Orange dotted lines are color singlet potential and the blue dot-dashed lines are color-octet potential without the instanton effects. The red lines are  $V_{1,\text{Ins}}$  and  $V_{1,\text{Ins,ge}}$ , respectively. The black solid lines represent  $V_{T^a,\text{Ins}}$  and  $V_{T^a,\text{Ins,ge}}$ . Here we set the parameters  $\alpha_s = 0.2$ ,  $\sigma = 0.17 \text{ GeV}^2$ , C = 0.131183 GeV,  $\rho = 0.33 \text{ fm}$  and R = 1 fm.

## **Color-octet heavy-quark potential** (NP correction)

- Color-octet Wilson loop  $W_{T^a}$  can be represented by inserting the color exchange operator  $T_a$ 

$$\begin{split} W_{T_{a}} &= \int D\xi \exp \left[ \frac{1}{2} \right] \\ W_{T_{a}} &= \int D\xi \exp \left[ \frac{1}{2} \right] \\ W_{I}^{T_{a}} &= -\lim_{T \to \infty} \frac{1}{T} \ln \langle T | W_{T_{a}} | T \rangle = -\lim_{T \to \infty} \frac{\frac{d}{dt} \langle T | W_{T_{a}} | T \rangle}{\langle T | W_{T_{a}} | T \rangle} \\ &= \lim_{T \to \infty} \frac{2N_{c}^{2} \Delta M e^{-(2\Delta M - V_{I}^{1})T} - V_{I}^{1}}{N_{c}^{2} e^{-(2\Delta M - V_{I}^{1})T} - 1} = V_{I}^{1} \\ &\leq \langle W(\vec{x}, \Delta t) \rangle \rangle \\ &= \frac{N_{c}^{2}}{2(N_{c}^{2} - 1)} w^{(1)} w^{(2)} - \frac{1}{2(N_{c}^{2} - 1)} W_{I}, \\ &\langle W \rangle \langle W^{\dagger} \rangle \rangle = \langle \langle W \rangle \rangle \langle \langle W^{\dagger} \rangle \rangle \text{:cluster decomposition for one-instanton calculation} \\ &\langle T | W_{T_{a}} | T \rangle = \frac{N_{c}^{2}}{2(N_{c}^{2} - 1)} \langle T | w^{(1)} | - T \rangle \langle -T | w^{(2)} | T \rangle - \frac{1}{2(N_{c}^{2} - 1)} \langle T | W_{I} | T \rangle \\ &= \frac{N_{c}^{2}}{2(N_{c}^{2} - 1)} e^{-2\Delta M T} - \frac{1}{2(N_{c}^{2} - 1)} e^{-V_{I}^{1.(NP)} T}. \end{split}$$

a

#### **Eigenvalues of the Color-octet Hamiltonian**

| State        | Exp | SetIa | SetIIa | SetIb | SetIIb |  |
|--------------|-----|-------|--------|-------|--------|--|
| $1^{3}S_{1}$ |     | 3328  | 3330   | 3380  | 3328   |  |
| $1^{1}S_{0}$ |     | 3332  | 3334   | 3384  | 3332   |  |
| $2^{3}S_{1}$ |     | 3796  | 3797   | 3826  | 3796   |  |
| $2^{1}S_{0}$ |     | 3800  | 3800   | 3829  | 3800   |  |
| $3^{3}S_{1}$ |     | 4165  | 4165   | 4186  | 4165   |  |
| $3^{1}S_{0}$ |     | 4168  | 4168   | 4189  | 4168   |  |
| $4^{3}S_{1}$ |     | 4485  | 4485   | 4503  | 4485   |  |
| $4^{1}S_{0}$ |     | 4488  | 4488   | 4506  | 4488   |  |
| $1^{3}P_{2}$ |     | 3589  | 3590   | 3623  | 3589   |  |
| $1^{3}P_{1}$ |     | 3617  | 3618   | 3651  | 3617   |  |
| $1^{3}P_{0}$ |     | 3636  | 3637   | 3668  | 3636   |  |
| $1^{1}P_{1}$ |     | 3604  | 3605   | 3638  | 3604   |  |
| $2^{3}P_{2}$ |     | 3988  | 3989   | 4011  | 3988   |  |
| $2^{3}P_{1}$ |     | 4012  | 4012   | 4034  | 4012   |  |
| $2^{3}P_{0}$ |     | 4027  | 4028   | 4049  | 4027   |  |
| $2^{1}P_{1}$ |     | 4001  | 4002   | 4024  | 4001   |  |
| $3^{3}P_{2}$ |     | 4326  | 4327   | 4345  | 4326   |  |
| $3^{3}P_{1}$ |     | 4347  | 4348   | 4365  | 4347   |  |
| $3^{3}P_{0}$ |     | 4361  | 4362   | 4379  | 4361   |  |
| $3^{1}P_{1}$ |     | 4339  | 4339   | 4357  | 4339   |  |

Bound state energy ( $E_B$ )

Unobservable quantities. Physical implications are yet unknown.

#### Why we use the instanton?

• In the pQCD, the running coupling constant  $\alpha_s$  at the one loop level is given by the expression [3-6]:

$$\alpha_s(\mu) = \frac{4\pi}{\beta_0} \frac{1}{\ln(\mu^2/\Lambda_{QCD}^2)} \qquad \qquad \frac{\Delta m_I \text{ (GeV)} \mid \mu \text{ (GeV)} \quad \alpha_s \text{ (GeV)}}{0} \\ \frac{\Delta m_I \text{ (GeV)} \mid \mu \text{ (GeV)} \quad \alpha_s \text{ (GeV)}}{0} \\ \frac{0.067}{0.1357} \quad 1.343 \quad 0.4137 \\ 0.1357 \quad 1.411 \quad 0.4029 \end{cases}$$

$$\beta_0 = (11N_c - 2N_f)/3, \qquad \Lambda_{QCD} = 0.217 \text{ GeV}$$

$$\mu = m_c + \Delta m_I$$

| The model | $\rho ~({\rm fm})$ | $R ~({\rm fm})$ | $\Delta m_I \ (\text{GeV})$ | $\alpha_s \; (\text{GeV})$ |                                                    |
|-----------|--------------------|-----------------|-----------------------------|----------------------------|----------------------------------------------------|
| MWOI      | Not applicable     | Not applicable  | Not applicable              | 0.2068                     | $\Delta m_t$ : Dynamical mass (Instanton mass) [1] |
| M-I       | 0.33               | 1.00            | 0.0676                      | 0.3447                     | $m_{\rm c}$ : charm-quark mass=1275 MeV            |
| M-IIb     | 0.36               | 0.89            | 0.1357                      | 0.4588                     |                                                    |

Table 1 [8]. The result using Cornell potential gives a 51% difference from one of pQCD. On the other hand, the instanton effects as in M-I and M-Iib give the difference 17% and 14%, respectively.

- [5] Y. Schroder, Phys. Lett. B 447, 321 (1999).
- [6] A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, Phys. Rev. Lett. 104, 112002 (2010).
- [7] C. Anzai, Y. Kiyo, and Y. Sumino, Phys. Rev. Lett. 104, 112003 (2010).
- [8] Yakhshiev et al, PhysRevD.98.114036

<sup>[3]</sup> M. Peter, Phys. Rev. Lett. 78, 602 (1997).

<sup>[4]</sup>M. Peter, Nucl. Phys. B501, 471 (1997).

### Color-singlet & octet $Q\bar{Q}$ potential

A.  $\rho = 0.33$  fm, R = 1 fm



FIG. 1. Left panel(Non-perturbative potential) : The Non-perturbative instanton potential is not affected by color-state, which is black solid line. Right panel(Perturbative potential) :  $V_C^{1,(P)} = -4\alpha_s/3r$  and  $V_C^{T^a,(P)} = \alpha_s/6r$  are the perturbative color singlet and octet potential without instanton effect, respectively.  $V_I^{1,(P)}$  and  $V_I^{T^a,(P)}$  are including the instanton effects. We set  $\alpha_s = 0.2$ ,  $\rho = 0.33$  fm and R = 1 fm.

#### **Results: Charmonium spectrum**

|                                         | Method 1                 |                   |      |          |  |
|-----------------------------------------|--------------------------|-------------------|------|----------|--|
| State                                   | Fyp                      | Instanton effects |      | Mothod 2 |  |
| Diate                                   | пур                      | Off               | On   | Method 2 |  |
| $J/\psi(1^{3}S_{1})$                    | $3096.900 \pm 0.006$     | 3099              | 3098 | 3121     |  |
| $\eta_c \ (1^1 S_0)$                    | $2983.9\pm0.5$           | 2984              | 2984 | 2996     |  |
| $\psi (2^3 S_1)$                        | $3686.097 \pm 0.025$     | 3682              | 3684 | 3682     |  |
| $\eta_c (2^1 S_0)$                      | $3637.6 \pm 1.2$         | 3637              | 3639 | 3619     |  |
| $\psi (3^3 S_1)$                        | $4039 \pm 1$             | 4085              | 4085 | 4084     |  |
| $\eta_c (3^1 S_0)$                      |                          | 4054              | 4053 | 4034     |  |
| $\psi$ (4 <sup>3</sup> S <sub>1</sub> ) | $4421 \pm 4$             | 4422              | 4421 | 4424     |  |
| $\eta_c (4^1 S_0)$                      |                          | 4397              | 4396 | 4382     |  |
| $\chi_{c2} (1^3 P_2)$                   | $3556.17 \pm 0.07$       | 3557              | 3552 | 3526     |  |
| $\chi_{c1} (1^3 P_1)$                   | $3510.67 \pm 0.05$       | 3510              | 3510 | 3500     |  |
| $\chi_{c0} (1^3 P_0)$                   | $3414.71 \pm 0.30$       | 3415              | 3415 | 3415     |  |
| $h_c (1^1 P_1)$                         | $3525.38 \pm 0.17$       | 3520              | 3520 | 3508     |  |
| $\chi_{c2} (2^3 P_2)$                   | $3927.2 \pm 2.6$         | 3976              | 3971 | 3950     |  |
| $\chi_{c1} (2^3 P_1)$                   |                          | 3933              | 3934 | 3925     |  |
| $\chi_{c0} (2^3 P_0)$                   | $3862^{+26+40}_{-32-13}$ | 3874              | 3874 | 3859     |  |
| $h_c (2^1 P_1)$                         | 02 10                    | 3942              | 3942 | 3931     |  |
| $\chi_{c2} (3^3 P_2)$                   |                          | 4323              | 4318 | 4303     |  |
| $\chi_{c1} (3^3 P_1)$                   |                          | 4281              | 4283 | 4278     |  |
| $\chi_{c0} (3^3 P_0)$                   |                          | 4236              | 4236 | 4222     |  |
| $h_c (3^1 P_1)$                         |                          | 4290              | 4290 | 4284     |  |
|                                         | 1                        |                   |      |          |  |

• For the case of the instanton effects off:  $V_I = 0$ ,  $V_{SD}^I = 0$ 

• We used the instanton parameters  $\rho = 1/3$  fm and R = 1 fm

#### Old version : Method 1 Instanton $m_Q$ k $\alpha_s$ $\sigma$ Off 0.5426 0.1444 1.15101.4796On 1.365300.517700.142801.12900fitting parameters New version : Method 2 Instanton k $m_Q$ $\alpha_s$ $\sigma$ 1.33530.414950.146791.79984On

#### The running coupling constant at the one-loop level:

$$\alpha_s(\mu) = \frac{4\pi}{\beta_0} \frac{1}{\log(\mu^2/\Lambda_{\rm QCD}^2)}$$

$$\beta_0 = \frac{11N_c - 2N_f}{3}, \quad \Lambda_{\text{QCD}} = 0.217 \text{ GeV}$$

 $\mu = m_Q = m_Q^0 + \Delta m_I^{\text{pert}} = 1.275 + 0.1454\alpha_s \text{ [GeV]}$ 

#### **Summary & Outlook**

• We showed the non-perturbative color-octet heavy quark potential in the instanton vacuum:

 $V_I^{T^a,(\mathrm{NP})}(r)=\!\!V_I^{1,(\mathrm{NP})}(r)$ 

- The perturbative one gluon exchange instanton effects make the color-singlet(octet) heavy quark potential a little weaker **Instanton makes the screening effects**.
- We obtained the charmonium spectrum and the bound energies in the color-octet states.
- Using the color-octet potential derived in the present work, we are going to calculate chromopolarizabilities of quarkonia.
- From this chromo-polarizability, we will show hadronic transition between charmonium resonances.