The axial-vector meson in coupled-channel approach

S. Clymton and H-Ch. Kim

Hadron Theory Group Department of Physics Inha University

Motivation

- The axial-vector meson
 - It was proven experimentally 4 decades ago.
 - Until now the uncertainty of its mass and width are still large.
 - Its nature is still unclear. Composite? Elementary?
 - The quasi-bound state from pseudoscalar and vector meson interaction.

Motivation

- The axial-vector meson
 - It was proven experimentally 4 decades ago.
 - Until now the uncertainty of its mass and width are still large.
 - Its nature is still unclear. Composite? Elementary?
 - The quasi-bound state from pseudoscalar and vector meson interaction.
- The full off-shell T matrix of this interaction can then be applied to other processes as an elementary process.
 - $D\bar{D}$ and $D\bar{D}^*$ process
 - $N \to \Delta$ axial-vector form factor
 - Ω baryon radiative form factor
 - τ decay
 - etc

Formalism

2

メロト メポト メヨト メヨト

We start from the S matrix, S = 1 + iT, which can be written as

$$S_{fi} = \delta_{fi} - i(2\pi)^4 \delta^4 (P_f - P_i) \mathcal{T}_{fi}$$

The Bethe-Salpeter equation for two-body interaction expressed as

$$\mathcal{T}_{fi}(p',p) = \mathcal{V}_{fi}(p',p) + \frac{1}{(2\pi)^4} \int d^4q \mathcal{V}_{fg}(p',q) \mathcal{G}_g(q) \mathcal{T}_{gi}(q,p)$$

The unitarity requirement of S matrix bring us to Blanckenbecler-Sugar scheme. [R. Blankenbecler, PR142, 1051 (1966)]

$$\mathcal{G}_{g}(q) = \delta \left(q_{0} - \frac{E_{1g}}{2} + \frac{E_{2g}}{2} \right) \frac{\pi}{E_{1g}E_{2g}} \frac{E_{g}}{s - E_{g}^{2}}$$

We start from the S matrix, S = 1 + iT, which can be written as

$$S_{fi} = \delta_{fi} - i(2\pi)^4 \delta^4 (P_f - P_i) \mathcal{T}_{fi}$$

The Bethe-Salpeter equation for two-body interaction expressed as

$$\mathcal{T}_{fi}(p',p) = \mathcal{V}_{fi}(p',p) + \frac{1}{(2\pi)^4} \int d^4q \mathcal{V}_{fg}(p',q) \mathcal{G}_g(q) \mathcal{T}_{gi}(q,p)$$

The unitarity requirement of S matrix bring us to Blanckenbecler-Sugar scheme. [R. Blankenbecler, PR142, 1051 (1966)]

$$\mathcal{T}_{fi}(\mathbf{p},\mathbf{p}') = \mathcal{V}_{fi}(\mathbf{p},\mathbf{p}') + \frac{1}{(2\pi)^3} \int \frac{d^3q}{2E_{1g}E_{2g}} \mathcal{V}_{fg}(\mathbf{p},\mathbf{q}) \frac{E_g}{s - E_g^2} \mathcal{T}_{gi}(\mathbf{q},\mathbf{p}')$$

The potential is modeled by one meson exchange diagram

Each diagram gives

 $\mathcal{V} = IS \times F^2 \times \Gamma_1 \times \mathcal{P} \times \Gamma_2$

Lagrangian

We use the SU(3) symmetric Lagrangian given by

$$\mathcal{L}_{PPV} = g_1 \operatorname{Tr} \left([P, \partial_{\mu} P]_{-} V^{\mu} \right)$$
$$\mathcal{L}_{VVV} = -\frac{1}{2} g_1 \operatorname{Tr} \left[(\partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu}) V^{\mu} V^{\nu} \right]$$
$$\mathcal{L}_{PVV} = \frac{g_2}{m_V} \varepsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \left(\partial_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} P \right)$$

with

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & K^0 \\ K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}$$

$$V_{\mu} = \begin{pmatrix} \frac{1}{\sqrt{2}}\rho_{\mu}^{0} + \frac{1}{\sqrt{2}}\omega_{\mu} & \rho_{\mu}^{+} & K_{\mu}^{*+} \\ \rho_{\mu}^{-} & -\frac{1}{\sqrt{2}}\rho_{\mu}^{0} + \frac{1}{\sqrt{2}}\omega_{\mu} & K_{\mu}^{*0} \\ K_{\mu}^{*-} & \bar{K}_{\mu}^{*0} & \phi_{\mu} \end{pmatrix}$$

æ

イロト イヨト イヨト イヨト

Lagrangian

We use the SU(3) symmetric Lagrangian given by

$$\mathcal{L}_{PPV} = g_1 \operatorname{Tr} \left([P, \partial_{\mu} P]_{-} V^{\mu} \right)$$
$$\mathcal{L}_{VVV} = -\frac{1}{2} g_1 \operatorname{Tr} \left[(\partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu}) V^{\mu} V^{\nu} \right]$$
$$\mathcal{L}_{PVV} = \frac{g_2}{m_V} \varepsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \left(\partial_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} P \right)$$

where the coupling constants are

$$g_1^2/4\pi = 0.71$$
 and $g_2^2/4\pi = 1.88$

* G.Janssen, PRC49, 2763 (1994)

• We use static propagator,

$$\frac{1}{(k'-k)^2 - m^2} \Longrightarrow \frac{-1}{\left(\vec{k'} - \vec{k}\right)^2 + m^2}$$

• Since hadron has a finite size, we need to introduce form factor in each vertex in the diagrams.

$$F(n,k,k') = \left(\frac{n\Lambda^2 - m^2}{n\Lambda^2 + k^2 + k'^2}\right)^n$$

As for cut-off mass Λ ,

$$\Lambda = \lambda + m.$$

One-dimensional integral

• Through the partial wave decomposition, the BS equation becomes

$$\mathcal{T}^{fi}_{\lambda'\lambda}(\mathbf{p},\mathbf{p}') = \mathcal{V}^{fi}_{\lambda'\lambda}(\mathbf{p},\mathbf{p}') + \frac{1}{(2\pi)^3} \sum_{g,\lambda_g} \int \frac{\mathbf{q}^2 d\mathbf{q}}{2E_{g1}E_{g2}} \mathcal{V}^{fg}_{\lambda'\lambda_g}(\mathbf{p},\mathbf{q}) \frac{E_g}{s - E_g^2} \mathcal{T}^{gi}_{\lambda_g\lambda}(\mathbf{q},\mathbf{p}')$$

where

$$\mathcal{V}^{fi}_{\lambda'\lambda}(\mathbf{p}',\mathbf{p}) = 2\pi \int \mathbf{d}(\cos\theta) d^{J}_{\lambda'\lambda}(\theta) \mathcal{V}^{fi}_{\lambda'\lambda}(\mathbf{p}',\mathbf{p},\theta),$$

• Evaluating this integral by using principal value

$$\begin{split} \mathcal{T}_{\lambda'\lambda}^{fi}(\mathbf{p},\mathbf{p}') = & \mathcal{V}_{\lambda'\lambda}^{fi}(\mathbf{p},\mathbf{p}') + \frac{1}{(2\pi)^3} \sum_{g,\,\lambda_g} \left[\int dE_g \frac{\mathcal{F}(E_g) - \mathcal{F}(\sqrt{s})}{s - E_g^2} \right. \\ & \left. - \frac{\mathcal{F}(\sqrt{s})}{2\sqrt{s}} \left(\ln \left| \frac{\sqrt{s} + E_g^{\text{thr}}}{\sqrt{s} - E_g^{\text{thr}}} \right| + i\pi \right) \right] \end{split}$$

with

$$\mathcal{F}(E_g) = \frac{1}{2} q \, \mathcal{V}^{fg}_{\lambda'\lambda_g}(\mathbf{p},\mathbf{q}) \, \mathcal{T}^{gi}_{\lambda_g\lambda}(\mathbf{p},\mathbf{q}),$$

• We solved this integral by utilizing matrix inversion method.

(日)

Results and Discussion

.

G = -1 and I = 1 a_1 resonance

æ

メロト メポト メヨト メヨト

Diagrams and Parameters

Channels involved : $\pi \rho$ and $K\bar{K}^*$

Since K and K^* have no definite G-parity,

$$|KK^*(-)\rangle = \frac{1}{\sqrt{2}} \left(|K\bar{K}^*\rangle - |\bar{K}K^*\rangle \right)$$

Potential :

$$V^{fi} = \begin{pmatrix} V^{\pi\rho \to \pi\rho} & V^{K\bar{K}^* \to \pi\rho} \\ V^{\pi\rho \to K\bar{K}^*} & V^{K\bar{K}^* \to K\bar{K}^*} \end{pmatrix}$$

∃ ► < ∃ ►

Channels involved : $\pi \rho$ and $K\bar{K}^*$

	meson	channel	IS	$\lambda ~({ m MeV})$	$\mid n$
$\pi \rho \to \pi \rho$	π	u	4	600	1
	ρ	t	-4	600	1
	ω	u	-4	600	2
$\pi \rho \to K \bar{K}^* (\bar{K} K^*)$	K	u	-2(2)	1500	1
	K^*	t	2(-2)	1110	1
$K\bar{K}^* \to K\bar{K}^*$	ρ	t	1	1050	1
	ω	t	-1	1050	1
	ϕ	t	-2	1700	1
$K\bar{K}^* \to \bar{K}K^*$	π	u	1	1050	1
	η	u	-3	1050	1
	ρ	u	-1	1050	2
	ω	u	1	1050	2
	ϕ	u	2	1050	2

*Note that for ϕ -exchange diagram the coupling g differ by about 14%

イロト イポト イヨト イヨト 三日

a_1 resonance

The singularities arises as a result of integral equation in the region below $K\bar{K}^*$ threshold.

< ロト < 同ト < ヨト < ヨト

a_1 resonance

Exp.Data : J.A.Dankowych, PRL46 (1981). Model : G.Janssen, PRC54 (1996)

コト 4 聞 ト 4 画 ト 4 画 ト 9 9 9 9

14 / 25

- The $a_1(1260)$ pole position, $\sqrt{s_R} = 1170.1 i104.1$
- Residue and coupling strength can be defined as

$$\lim_{s \to s_R} \left(s - s_R \right) T_{a,b} = R_{a,b}, \qquad g_a = \sqrt{R_{a,a}}$$

• The elastic residue and coupling strength of $a_1(1260)$ resonance for S-wave and D-wave are

	S-wave	D-wave	Unit
$R_{\pi\rho}$	26.68 - i6.54	0.31 + i0.02	GeV^2
$R_{K\bar{K}^*}$	37.17 - i4.74	0.09 + i0.16	${ m GeV^2}$
$g_{\pi\rho}$	5.20 - i0.63	0.56 + i0.02	GeV
$g_{K\bar{K}^*}$	6.11 - i0.39	0.37 + i0.22	GeV

G = -1 and I = 0 h_1 resonance

æ

メロト メポト メヨト メヨト

Channels involved : $\pi\rho$, $\eta\omega$, $K\bar{K}^*$ and $\eta\phi$.

Potential :

$$V^{fi} = \begin{pmatrix} V^{\pi\rho \to \pi\rho} & V^{\eta\omega \to \pi\rho} & V^{K\bar{K}^* \to \pi\rho} & V^{\eta\phi \to \pi\rho} \\ V^{\pi\rho \to \eta\omega} & V^{\eta\omega \to \eta\omega} & V^{K\bar{K}^* \to \eta\omega} & V^{\eta\phi \to \eta\omega} \\ V^{\pi\rho \to K\bar{K}^*} & V^{\eta\omega \to K\bar{K}^*} & V^{K\bar{K}^* \to K\bar{K}^*} & V^{\eta\phi \to K\bar{K}^*} \\ V^{\pi\rho \to \eta\phi} & V^{\eta\omega \to \eta\phi} & V^{K\bar{K}^* \to \eta\phi} & V^{\eta\phi \to \eta\phi} \end{pmatrix}$$

	πho	$\eta\omega$	$K\bar{K}^*$	$\eta \phi$
$\pi \rho$	0	0	0	×
$\eta\omega$	0	0	0	Х
$K\bar{K}^*$	0	0	Ο	Ο
$\eta\phi$	×	×	Ο	0

æ

イロト イヨト イヨト イヨト

Channels involved : $\pi\rho$, $\eta\omega$, $K\bar{K}^*$ and $\eta\phi$.

	meson	channel	IS	λ (MeV)	$\mid n$
$\pi \rho \to \pi \rho$	π	u	-8	600	1
	ρ	t	-8	600	1
	ω	u	4	600	2
$\pi \rho \to K \bar{K}^* (\bar{K} K^*)$	K	u	$\sqrt{6}(-\sqrt{6})$	1500	1
	K^*	t	$\sqrt{6}(-\sqrt{6})$	1110	1
$K\bar{K}^* \to K\bar{K}^*$	ρ	t	-3	1050	1
	ω	t	-1	1050	1
	ϕ	t	-2	1700	1
$K\bar{K}^* \to \bar{K}K^*$	π	u	3	1050	1
	η	u	3	1050	1
	ρ	u	-3	1050	2
	ω	u	-1	1050	2
	ϕ	u	-2	1050	2

*All same as in a_1 channel except SIF values

Channels involved : $\pi\rho$, $\eta\omega$, $K\bar{K}^*$ and $\eta\phi$.

	meson	channel	IS	λ (MeV)	$\mid n$
$\pi \rho \to \eta \omega$	ρ	u	-4	600	2
$\eta\omega ightarrow \eta\omega$	ω	u	4/3	600	2
$\eta \omega \to K \bar{K}^* (\bar{K} K^*)$	K	u	$-\sqrt{6}(\sqrt{6})$	940	1
	K^*	t	$-\sqrt{6}(\sqrt{6})$	940	1
$K\bar{K}^*(\bar{K}K^*) \to \eta\phi$	K	u	$2\sqrt{3}(-2\sqrt{3})$	940	1
	K^*	t	$2\sqrt{3}(-2\sqrt{3})$	940	1
$\eta\phi\to\eta\phi$	ϕ	u	16/3	1400	2

*Note that for ϕ -exchange diagram the coupling g_2 differ by about 11%

(4) (日本)

h_1 resonance

Exp.Data : J.A.Dankowych, PRL46 (1981). Model : G.Janssen, PRC54 (1996)

э

-∢ ∃ ▶

- The $h_1(1170)$ pole position, $\sqrt{s_R} = 1152.3 i162.7$
- Residue and coupling strength can be defined as

$$\lim_{s \to s_R} \left(s - s_R \right) T_{a,b} = R_{a,b}, \qquad g_a = \sqrt{R_{a,a}}$$

• The elastic residue and coupling strength of $h_1(1170)$ resonance for S-wave and D-wave are

	S-wave	D-wave	Unit
$R_{\pi\rho}$	17.84 - i10.75	0.31 + i0.01	GeV^2
$R_{\eta\omega}$	16.57 + i6.40	0.08 + i0.04	${ m GeV^2}$
$R_{K\bar{K}^*}$	24.86 + i2.26	-0.02 + i0.22	${ m GeV^2}$
$R_{\eta\phi}$	70.88 - i12.89	0.96 + i0.10	${\rm GeV^2}$

G = +1 and I = 1 b_1 resonance

æ

メロト メポト メヨト メヨト

Diagrams and Parameters

Channels involved : $\pi\omega$, $\pi\phi$, $\eta\rho$ and $K\bar{K}^*$.

$$|KK^*(+)\rangle = \frac{1}{\sqrt{2}} \left(|K\bar{K}^*\rangle + |\bar{K}K^*\rangle \right)$$

Potential :

$$V^{fi} = \begin{pmatrix} V^{\pi\omega \to \pi\omega} & V^{\pi\phi \to \pi\omega} & V^{\eta\rho \to \pi\omega} & V^{K\bar{K}^* \to \pi\omega} \\ V^{\pi\omega \to \pi\phi} & V^{\pi\phi \to \pi\phi} & V^{\eta\rho \to \pi\phi} & V^{K\bar{K}^* \to \pi\phi} \\ V^{\pi\omega \to \eta\rho} & V^{\pi\phi \to \eta\rho} & V^{\eta\rho \to \eta\rho} & V^{K\bar{K}^* \to \eta\rho} \\ V^{\pi\omega \to K\bar{K}^*} & V^{\pi\phi \to K\bar{K}^*} & V^{\eta\rho \to K\bar{K}^*} & V^{K\bar{K}^* \to K\bar{K}^*} \end{pmatrix}$$

$$\begin{array}{c|cccc} \pi \omega & \pi \phi & \eta \rho & K \bar{K}^* \\ \hline \pi \omega & O & \times & O & O \\ \pi \phi & \times & \times & \times & O \\ \eta \rho & O & \times & O & O \\ K \bar{K}^* & O & O & O & O \end{array}$$

< □ > < 同 > < 回 > < 回 > < 回 >

Channels involved : $\pi\omega$, $\pi\phi$, $\eta\rho$ and $K\bar{K}^*$.

	meson	channel	IS	$\lambda ~({ m MeV})$	n
$K\bar{K}^* \to K\bar{K}^*$	ρ	t	1	1050	1
	ω	t	-1	1050	1
	ϕ	t	-2	1700	1
$K\bar{K}^* \to \bar{K}K^*$	π	u	1	1050	1
	η	u	-3	1050	1
	ho	u	-1	1050	2
	ω	u	1	1050	2
	ϕ	u	2	1050	2

*All same as in a_1 channel

æ

イロト イヨト イヨト イヨト

Diagrams and Parameters

Channels involved : $\pi\omega$, $\pi\phi$, $\eta\rho$ and $K\bar{K}^*$.

	meson	channel	IS	$\lambda ~({\rm MeV})$	n
$\pi\omega \to \pi\omega$	ρ	u	4	600	2
$\pi\omega\to\eta\rho$	ω	u	$4/\sqrt{3}$	600	2
$\pi\omega \to K\bar{K}^*(\bar{K}K^*)$	K	u	$\sqrt{2}(\sqrt{2})$	680	1
	K^*	t	$\sqrt{2}(\sqrt{2})$	680	1
$\pi\phi \to K\bar{K}^*(\bar{K}K^*)$	K	u	-2(-2)	660	1
	K^*	t	-2(-2)	660	1
$\eta \rho o \eta \rho$	ρ	u	4/3	600	2
$\eta \rho \to K \bar{K}^* (\bar{K} K^*)$	K	u	$\sqrt{6}(\sqrt{6})$	530	1
	K^*	t	$\sqrt{6}(\sqrt{6})$	530	1

< □ > < 同 > < 回 > < 回 > < 回 >

b_1 resonance

22 / 25

Exp.Data : S.Fukui, PLB257 (1991)

- The $b_1(1235)$ pole position, $\sqrt{s_R} = 1341.7 i71.1$
- Residue and coupling strength can be defined as

$$\lim_{s \to s_R} \left(s - s_R \right) T_{a,b} = R_{a,b}, \qquad g_a = \sqrt{R_{a,a}}$$

• The elastic residue and coupling strength of $b_1(1235)$ resonance for S-wave and D-wave are

	S-wave	D-wave	Unit
$R_{\pi\omega}$	4.35 + i8.65	-0.02 + i0.05	GeV^2
$R_{\pi\phi}$	12.34 + i14.07	0.01 + i0.01	${ m GeV^2}$
$R_{\eta\rho}$	5.87 + i10.45	0.00 + i0.00	${ m GeV^2}$
$R_{K\bar{K}^*}$	153.21 + i102.73	-0.08 + i0.04	${\rm GeV^2}$

- We investigated the axial-vector meson resonance from pseudoscalar and vector meson interaction based on the fully off-mass-shell coupled channel formalism.
- By doing so, we generate a_1 , h_1 and b_1 axial-vector meson dynamically.
- We also present the comparison of the model calculation to the experimental data from charge exchange reaction and we extracted the resonance properties of a_1 , h_1 and b_1 axial-vector meson.
- For the future project, we will investigate $S = \pm 1$ channel.

Thank You

æ

メロト メポト メヨト メヨト