Deeply virtual Compton scattering with CLAS and CLAS12

Hyon-Suk Jo Kyungpook National University

Inha HTG workshop: Modern issues in Hadronic Physics

Inha University - 2022.07.08

- Generalized parton distributions (GPDs)
- Deeply virtual Compton scattering (DVCS)
- DVCS with CLAS
- DVCS with CLAS12
- Overview

Generalized parton distributions (GPDs)

In this model, valence quarks (high x) are at the heart of the nucleon and sea quarks (low x) extend to its periphery

Interpretation of GPDs : impact parameter b_{\perp} as a function of x

Transverse position b_{\perp} of the quarks inside the nucleon for different values of longitudinal momentum fraction *x*

Deeply Virtual Compton Scattering (DVCS) and GPDs

DVCS is the key reaction to access the GPDs as it offers the simplest interpretation in terms of GPDs x longitudinal momentum fraction carried by the active quark.

 $\xi \sim \frac{x_B}{2-x_B}$ the longitudinal momentum transfer.

 $t = (p' - p)^2$ squared momentum transfer to the nucleon.

Deeply Virtual Compton Scattering (DVCS) and GPDs

DVCS is the key reaction to access the GPDs as it offers the simplest interpretation in terms of GPDs At leading-order QCD, leading twist, there are 4 chiral-even (parton helicity is conserved) GPDs for each parton

$H^{q,g}(x,\xi,t)$	$E^{q,g}(x,\xi,t)$	for sum over parton helicities
$\widetilde{H}^{q,g}(x,\xi,t)$	$\widetilde{E}^{q,g}(x,\xi,t)$	for difference over parton helicities
nucleon helicity conserved	nucleon helicity changed	

Proton spin puzzle : The origin of the proton spin is still unknown

$$\frac{1}{2} = J^{q} + J^{g} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q} + L_{g}$$
Orbital angular momentum

GPDs H and E provide access to the total angular momentum of the partons in the nucleon

Ji's angular momentum sum rule:

$$\mathsf{J}^{\mathbf{q},\mathbf{g}} = \frac{1}{2} \int_{-1}^{1} x dx (\mathsf{H}^{\mathbf{q},\mathbf{g}}(x,\xi,t=0) + \mathsf{E}^{\mathbf{q},\mathbf{g}}(x,\xi,t=0))$$

DVCS and Bethe-Heitler processes

Compton Form Factors (CFFs) and DVCS observables

Compton
Form Factors
$$Re\mathcal{H}_q = e_q^2 P \int_0^{+1} (H^q(x,\xi,t) - H^q(-x,\xi,t)) \left[\frac{1}{\xi - x} + \frac{1}{\xi + x} \right] dx$$

 $Im\mathcal{H}_q = \pi e_q^2 \left[H^q(\xi,\xi,t) - H^q(-\xi,\xi,t) \right]$
 $\xi = x_B/(2-x_B)$ $k = t/4M^2$
 $k = t/4M^2$
 $k = t/4M^2$

Each DVCS observable is sensitive to a different combination of GPDs

Proton Neutron

Polarized beam, unpolarized target: $\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{F_1 \mathcal{H} + \xi(F_1 + F_2) \widetilde{\mathcal{H}} - kF_2 \mathcal{E} + \ldots\} \longrightarrow \frac{Im \{\mathcal{H}_p, \widetilde{\mathcal{H}}_p, \mathcal{E}_p\}}{Im \{\mathcal{H}_n, \widetilde{\mathcal{H}}_n, \mathcal{E}_n\}}$

Unpolarized beam, longitudinal target: $\Delta \sigma_{UL} \sim \sin \phi Im \{F_1 \widetilde{\mathcal{H}} + \xi(F_1 + F_2)(\mathcal{H} + x_B/2\mathcal{E}) - \xi k F_2 \widetilde{\mathcal{E}}\} \longrightarrow \frac{Im \{\mathcal{H}_p, \widetilde{\mathcal{H}}_p\}}{Im \{\mathcal{H}_n, \mathcal{E}_n\}}$

Polarized beam, longitudinal target: $\Delta \sigma_{LL} \sim (A + B \cos \phi) \operatorname{Re} \{F_1 \widetilde{\mathcal{H}} + \xi (F_1 + F_2) (\mathcal{H} + x_B/2\mathcal{E}) + \dots\} \longrightarrow \operatorname{Re} \{\mathcal{H}_p, \widetilde{\mathcal{H}}_p\}$

Unpolarized beam, transverse target: $\Delta \sigma_{\text{UT}} \sim \cos\phi \sin(\phi_{\text{s}} - \phi) \text{Im} \{ k(F_{2}\mathcal{H} - F_{1}\mathcal{E}) + \dots \} \longrightarrow \frac{Im \{\mathcal{H}_{p}, \mathcal{E}_{p}\}}{Im \{\mathcal{H}_{n}\}}$

Quark-flavor separation of GPDs

- 1st method : Neutron DVCS
 - A combined analysis of DVCS observables for proton and neutron (deuterium) targets is needed to perform a quark-flavor separation of the GPDs
 - High sensitivity to GPD E with a polarized beam

$$(H,E)_{u}(\xi,\xi,t) = \frac{9}{15} \Big[4 \big(H,E\big)_{p}(\xi,\xi,t) - \big(H,E\big)_{n}(\xi,\xi,t) \Big] (H,E)_{d}(\xi,\xi,t) = \frac{9}{15} \Big[4 \big(H,E\big)_{n}(\xi,\xi,t) - \big(H,E\big)_{p}(\xi,\xi,t) \Big]$$

- 2nd method : Deeply virtual meson production (DVMP)
 - DVMP cross-section measurements are another way to access quark-flavor separation of GPDs
 - Gives also access to transversity GPDs (chiral-odd GPDs, where parton helicity is changed)

DVCS and DVMP diagrams for gluons GPDs

Kinematic coverage of the different experiments

Jefferson Lab 6 GeV and the CLAS detector

Jefferson Lab

DVCS unpolarized and beam-polarized cross sections from CLAS data

Interpretation of fit results obtained from the cross sections

DVCS on longitudinally polarized target from CLAS data

DVCS on longitudinally polarized target from CLAS data

DVCS on longitudinally polarized target from CLAS data

Extraction of H_{Im} from the fits of Jefferson Lab 6 GeV data

- **G** Fit to CLAS σ and $\Delta \sigma$
- Fit to CLAS σ , $\Delta \sigma$, A_{UL} , A_{LL}
- Fit to Hall A σ and Δ σ
- ★ VGG model

 $H_{Im}(\xi,t) = A(\xi)e^{b(\xi)t}$

$$\xi \approx \frac{x_B}{2 - x_B}$$

R. Dupré, M. Guidal, S. Niccolai, and M. Vanderhaeghen, Eur. Phys. J. A 53, 171 (2017)

From CFFs to proton tomography

Longitudinal momentum fraction x

R. Dupré, M. Guidal, S. Niccolai, and M. Vanderhaeghen, Eur. Phys. J. A 53, 171 (2017)

Jefferson Lab upgrade to 12 GeV

Jefferson Lab 12 GeV and the CLAS12 detector

Jefferson Lab

Data taking with the new CLAS12 detector started in 2018

DVCS experiments in Hall A and Hall C of Jefferson Lab

Jefferson Lab

Projected results for DVCS A_{LU} and A_{UL} with CLAS12

Projected results for other DVCS observables with CLAS12

and also exclusive electroproduction of mesons, etc...

Projected results for CFFs with CLAS12

Typical DVCS event in CLAS12

- Electron: measured in the Forward Detector or in the Forward Calorimeter
- Photon: in the FT (or FD) calorimeter
- Proton: most often in the Central Detector

Preliminary proton DVCS A_{LU} with CLAS12

Beam spin asymmetry

$${\sf A}_{LU}=rac{\sigma^+-\sigma^-}{\sigma^++\sigma^-}$$

$$egin{aligned} \mathcal{A}_{LU} &= rac{1}{P} rac{\mathcal{N}^+(\phi_{\mathit{Trento}}) - \mathcal{N}^-(\phi_{\mathit{Trento}})}{\mathcal{N}^+(\phi_{\mathit{Trento}}) + \mathcal{N}^-(\phi_{\mathit{Trento}})} \end{aligned}$$

- P: electron polarization
- N⁺⁽⁻⁾: number of photon electroproduction candidates with beam helicity +(-)

Preliminary neutron DVCS A_{LU} with CLAS12

DVCS at the Electron-Ion Collider (EIC)

Nucleon tomography of the gluons and sea quarks (low momentum fraction x)

The Electron-Ion Collider (EIC) will be constructed at BNL

eRHIC design (BNL)

DVCS at the EIC : gluons and sea quarks

- Collision of polarized electrons with polarized protons, light and heavy nuclei - High Luminosity : $L_{ep} \ge 10^{33-34} \text{ cm}^{-2} \text{ s}^{-1}$ (100-1000 times HERA)

Overview

- DVCS 6 GeV CLAS data were used to extract a first experimental result of nucleon tomography.
- Jefferson 12 GeV data will provide high-precision measurements covering a large unexplored kinematic domain at high *x*.
- While Jefferson Lab is a unique facility to study the valence quarks, the future Electron-Ion Collider (EIC) will provide high-precision GPD measurements at low *x*, allowing us to perform nucleon tomography of the gluons and sea quarks.

Thank you