2022 CENuM Workshop, September 2022

Twist-2 light quark distribution functions in a heavy baryon in the large Nc limit

arXiv:2208.10150

In collaboration with Hyun-Chul Kim

Hyeon-Dong Son

CENuM, Korea University

Hadron Theory Group, Inha University

Introduction

Parton distribution functions (PDFs)

Probability density (properly defined on the light-cone)

Universality

PDFs do not distinguish different types of reactions eg. Deep inelastic scattering (ep), Drell-Yan process (pp) Fitting model PDFs using various reactions (**Global analysis**)

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution (1970')

Perturbative scale(μ) evolution of PDFs

$$\frac{dq_i(x,\mu^2)}{\partial\mu^2} = P_{qq} \otimes q_i + P_{qg} \otimes g$$

Splitting functions P_{ij}: probability of perturbative emission of i from j

- How partons (quarks and gluons) are distributed inside a hadron (momentum fraction $x=k^{+}/p^{+}$)
- Justification of **factorization** ($\sigma \sim \sigma_{pQCD} \otimes PDF$) is essential but mostly assumed

Parton distribution functions (PDFs)

Proton, global analyses, plots from PDG 2019

E. R. Nocera et al. (NNPDF), Nucl. Phys. B887, 276 (2014)

Theoretical understanding of PDFs

Non-perturbative object

- Direct computation (x-dependence) from QCD is not possible

Lattice QCD

- Large Momentum Effective Theory (LaMET): quasi-PDFs

$$q(x,\mu,P^{z}) = \int \frac{dz}{4\pi} e^{-ixP^{z}z} \langle P|\bar{\psi}(0)\gamma^{z} \exp\left[-ig\int_{0}^{z} dz' A^{z}(z')\right]\psi(z)|P\rangle + \mathcal{O}(\frac{\Lambda_{\rm QCD}^{2}}{(P^{z})^{2}},\frac{M_{N}^{2}}{(P^{z})^{2}})$$

 $x \in (-\infty, +\infty)$

μ: renormalization scale P_z: nucleon momentum

[Ji, Phys. Rev. Lett. 110, 262002 (2013)]

Theoretical understanding of PDFs

Non-perturbative object

- Direct computation (x-dependence) from QCD is not possible

Effective models (at low renormalization scale)

- provide initial conditions of the QCD evolution
- To understand the detailed mechanism in terms of the effective degrees of freedom
- Positivity, sum-rules ← Gauge and Lorentz symmetries
- New predictions ← Nonperturbative

Chiral quark-soliton model [D. Diakonov, V. Y. Petrov, P. V. Pobylitsa, M. Polyakov, and C. Weiss, Nuclear Physics B 480, 341 (1996)]

- quark and antiquark distribution at low renormalization scale, µ~600 MeV
- Positivity for antiquark
- Predictions: longitudinally polarized antiquark flavor asymmetry $\Delta u \Delta d > 0$

FIG. 1. The isosinglet unpolarized quark and antiquark distributions. Solid line: quark distribution, u(x) + d(x), total result (discrete level plus Dirac continuum); dotted line: contribution of the discrete level (after PV subtraction) to u(x) + d(x). Dashed line: antiquark distribution, $\overline{u}(x) + \overline{d}(x)$, total result; dot-dashed line: contribution of the discrete level to $\overline{u}(x) + \overline{d}(x)$.

[D. Diakonov, V. Y. Petrov, P. V. Pobylitsa, M. Polyakov, and C. Weiss, PRD 56 (1997)]

FIG. 2. The isovector polarized quark and antiquark distributions. Solid line: quark distribution, $\Delta u(x) - \Delta d(x)$, total result (discrete level plus Dirac continuum); dotted line: contribution of the discrete level (after PV subtraction) to $\Delta u(x) - \Delta d(x)$. Dashed *line:* antiquark distribution, $\Delta \overline{u}(x) - \Delta \overline{d}(x)$, total result; *dot*dashed line: contribution of the discrete level to $\Delta \overline{u}(x) - \Delta \overline{d}(x)$.

Quarks inside a heavy baryon?

New experimental data on spectroscopy & decays Difficult to measure structures: form factors, PDFs... Heavy scale: M_Q Heavy quark flavor/spin symmetry Lattice / effective model studies are possible PDFs: redistribution of momentum between heavy/light quarks Can we obtain a quantitative picture?

A model for heavy baryon

 $M_Q/\Lambda_{QCD} \to \infty$

Heavy quark symmetry → Light quark degrees of freedom does not distinguish heavy flavor/spin

Structure of a heavy baryon is governed by the light quarks

Heavy quark → static color source

Light quarks → chiral quark-soliton model

 $N_c \to \infty$

Derive model PDFs and study their properties

Final numerical step: finite M_Q, N_c

Interaction is suppressed by ~ $\frac{1}{M_Q}$, $\frac{1}{N_c}$

Heavy baryon in the chiral quark-soliton model

Heavy quark symmetry →

Nc-1 chiral quark-soliton in the large Nc

Recent studies on

- \rightarrow baryon mass spectrum [J.Y-. Kim H.-Ch. Kim, G.-S. Yang, PRD 2018]
- \rightarrow EM ffs: good agreements with lattice calculations, Axial properties [J.Y-. Kim H.-Ch. Kim, PRD 2018/EPJC 2019,2020]
- \rightarrow Gravitational form factors

[J.Y-. Kim, H.-Ch. Kim, M. Polyakov, HDS, PRD 2021]

Light quark distribution functions in a heavy baryon

Momentum distribution of the light quarks in a heavy baryon vs. nucleon? Heavy quark PDF studies in heavy baryon/meson (heavyquark-diquark) DIS not possible / Related to the fragmentation functions by crossing of the DIS and e⁺e⁻ (Drell-Levi-Yan) [Drell, Levy, Yan, PR 1969, PRD 1970]

+ Heavy quark in the heavy quark limit

[J.-M. Suh and H.-Ch. Kim, arXiv:2204.13982] [J.-M. Suh et al., arXiv: 2208.04447] \rightarrow Jung-Min's talk

[Guo, Thomas, Williams, PRD64 (2001)] [J. Lan et al. PRD102 (2020)]

Outline

Light quarks: chiral quark-soliton model

Light quark and antiquark isoscalar unpolarized and isovector longitudinally polarized quark distributions

- Derivation of quark distribution functions in the xQSM \bullet
- Numerical results \bullet
- Sum rules
- Inequalities \bullet

Summary

Nucleon and heavy baryon in the Chiral quark-soliton model

Effective partition function from the instanton vacuum

[D. Diakonov, V. Petrov, and P. Pobylitsa, Nucl. Phys. B 306, 809 (1988)]

$$Z = \int \mathcal{D}\pi^a d\psi^{\dagger} d\psi \, \exp \int d^4 x \psi^{\dagger}(x) (i \partial \!\!\!/ + i M U^{\gamma_5}) \psi(x)$$
$$U^{\gamma_5}(x) = U(x) \frac{1+\gamma_5}{2} + U^{\dagger}(x) \frac{1-\gamma_5}{2} \qquad U(x) = \exp\left[\frac{i}{F_{\pi}} \pi^a(x) \tau^a\right]$$

From QCD to the low energy effective theory via the **instantons** Intrinsic renormalisation scale $\Lambda \sim 1/\bar{\rho} \approx 600 \text{ MeV}$ Fully field theoretic: successfully describes various baryon properties Baryon: chiral soliton in the large Nc, quarks are bound by a self-consistent mean-field Interplays the quark-model and (topological) soliton picture of the baryons Systematic large Nc counting (eg. $M_N \sim Nc$, $M_{N-\Delta} \sim 1/N_c$, $D(t) \sim N_c^2$,...)

- Instanton parameters: average size $\bar{\rho} \sim 1/3 \text{ fm}$ & distance $\bar{R} \sim 1 \text{ fm}$ (no more parameters, Λ_{QCD})
- Spontaneous chiral symmetry breaking & dynamically generated quark mass M = 350 MeV

 - - [E. Witten, Nucl. Phys. B 160, 57 (1979)]

Light quark distributions in a heavy baryon

Unpolarized quark distributions

$$\int \frac{dz^{-}}{4\pi} \exp[iz^{-}P^{+}x] \left\langle P \left| \bar{\psi}(0)\gamma^{+}\psi(z) \right| P \right\rangle = u(x) + d(x)$$
$$\int \frac{dz^{-}}{4\pi} \exp[iz^{-}P^{+}x] \left\langle P \left| \bar{\psi}(0)\gamma^{+}\tau^{3}\psi(z) \right| P \right\rangle = u(x) - d(x)$$

Probability to find a quark with momentum fraction $x \sim dx$

Baryon number and momentum sum rules

→ Momentum sum-rule: Mass form factor (EMT)

Longitudinally polarized quark distribution

$$\int \frac{dz^{-}}{4\pi} \exp[iz^{-}P^{+}x] \left\langle P \left| \bar{\psi}(0)\gamma^{+}\gamma^{5}\tau^{3}\psi(z) \right| P \right\rangle = \Delta u(x) - \Delta d(x)$$
$$\int \frac{dz^{-}}{4\pi} \exp[iz^{-}P^{+}x] \left\langle P \left| \bar{\psi}(0)\gamma^{+}\gamma^{5}\psi(z) \right| P \right\rangle = \Delta u(x) + \Delta d(x)$$

Probability to find a quark with

longitudinal spin parallel to hadron momentum (helicity)

Spin sum-rule and axial charge

→ Hadron spin decomposition [

[Jaffee, Manohar, NPB 337 (1990)]

$$1/2 = \frac{1}{2} \int_0^1 dx \ \Delta \Sigma(x, Q^2) + \int_0^1 dx \ \Delta g(x, Q^2) + \sum_q L_q + L_g$$

Large Nc behavior of the unpolarized

and longitudinally polarized quark distributions

$$u(x) + d(x) \sim N_c^2 \rho$$

$$\Delta u(x) - \Delta d(x)$$

VS

$$u(x) - d(x) \sim N_c \rho(x)$$

$$\Delta u(x) + \Delta d(x)$$

 $P(N_c x)$

Quark and antiquark quasi number densities

$$D_f(x,v) = \frac{1}{2E_h} \int \frac{d^3k}{(2\pi)^3} \delta\left(x - \frac{k^3}{P_h}\right) \int d^3x e^{-i\boldsymbol{k}\cdot\boldsymbol{x}} \langle h_v | \bar{\psi}_f\left(-\boldsymbol{x}/2,t\right) \Gamma \psi_f\left(\boldsymbol{x}/2,t\right) | h_v \rangle$$

$$\bar{D}_f(x,v) = \frac{1}{2E_h} \int \frac{d^3k}{(2\pi)^3} \delta\left(x - \frac{k^3}{P_h}\right) \int d^3x e^{-i\mathbf{k}\cdot\mathbf{x}} \langle h_v | \text{Tr}\left[\Gamma\bar{\psi}_f\left(-\mathbf{x}/2,t\right)\psi_f\left(\mathbf{x}/2,t\right)\right] |h_v\rangle$$

Quark bi-local operators in (equal-time) Euclidean separation **become exact number densities** in the limit $v \rightarrow 1$, approaching the light-cone, $x \in [0,1]$

 $x \in (-\infty, \infty)$

Isoscalar unpolarized distributions

$$u(x) + d(x) = (N_c - 1)M_h \int \frac{d^3k}{(2\pi)^3} \Phi_{\text{level}}^{\dagger}(\vec{k})(1 + \gamma^0 \gamma^3) \Phi_{\text{level}}(\vec{k})\delta(k_3 - xM_h + E_{\text{level}}) + N_c M_h \sum_{E_n < 0} \int \frac{d^3k}{(2\pi)^3} \Phi_n^{\dagger}(\vec{k})(1 + \gamma^0 \gamma^3) \Phi_n(\vec{k}) - (U \to 1), \bar{u}(x) + \bar{d}(x) = -(u(-x) + d(-x))$$

Isovector polarized distributions

$$\begin{split} \Delta u(x) - \Delta d(x) &= -\frac{1}{3} (2T_3) (N_c - 1) M_h \int \frac{d^3 k}{(2\pi)^3} \Phi_{\text{level}}^{\dagger}(\vec{k}) (1 + \gamma^0 \gamma^3) \tau^3 \gamma_5 \Phi_{\text{level}}(\vec{k}) \\ &- \frac{1}{3} (2T_3) N_c M_h \sum_{E_n < 0} \int \frac{d^3 k}{(2\pi)^3} \Phi_n^{\dagger}(\vec{k}) (1 + \gamma^0 \gamma^3) \tau^3 \gamma_5 \Phi_n(\vec{k}) - (U \to 1), \\ \Delta \bar{u}(x) - \Delta \bar{d}(x) &= \Delta u(-x) - \Delta d(-x). \end{split}$$
[HDS, H.-Ch.]

 $H\Phi_n(\vec{x}) = E_n\Phi_n(\vec{x})$

Kim, arXiv:2208.10150]

Sum-rules: heavy baryon PDFs

Numerical results and discussions

u(x) + d(x)

Light quarks inside a heavy baron are more concentrated at small x region More probable to find a quark with small momentum fraction Momentum sum-rule: light quarks are less energetic in a heavy baryon (M_{sol}/M_h) δ-like heavy quark distribution function $Q(x) = \delta(x - M_O/M_h)$

Heavy quark masses $M_Q = (1.3, 4.2)$ GeV as parameters to demonstrate Σc and Σb

 $M_{sol} = 0.9 \text{ GeV}$ is computed self-consistently. $M_h = M_{sol} + M_O$

u(x) + d(x): naive quark limit

Mean-field size \rightarrow **0**, the model exhibit the properties of the naive quark limit

No interaction: naive parton model

Proton:

 $u(x) + d(x) = N_c \delta(x - M/M_N)$, M: constituent quark mass $(M_N = N_c M)$

Momentum sum-rule:

$$\int_{0}^{1} dx \ x \ u(x) + d(x) = N_{c}M/M_{N} = 1$$

Heavy baryon:

$$u(x) + d(x) = (N_c - 1)\delta(x - M/M_h), \ M_h = (N_c - 1)M + M_h$$

 \rightarrow The distribution is squeezed to small x as M_O grows

Momentum sum-rule:

 $\int_0^1 dx \ x \ u(x) + d(x) = (N_c - 1)M/M_h \text{ goes to 0 in the limit } M_Q \to \infty$

 M_O

 $\Delta u(x) - \Delta d(x)$

Similar behavior as the isoscalar unpolarized distribution, squeezed into small x

Spin sum-rule
$$\int_{0}^{1} dx [\Delta u(x) - \Delta d(x) + \Delta \bar{u}(x)]$$

Numerically,
$$\int_{0}^{1} dx [\Delta u(x) - \Delta d(x) + \Delta \bar{u}(x) - \Delta d(x)]$$

 $(x) - \Delta \overline{d}(x)$] is identical for Σ_c and Σ_b

 $-\Delta \bar{d}(x)$] = 0.7 (T₃=+1). (Δc =-1/3, NR)

Positivity and inequality

Twist-2 Quark distribution functions (singlet)

Unpolarized $f_1^a = (q^{\uparrow a} +$ Longitudinally polarized $g_1^a = (q^{\uparrow a} -$

$$f_1^a + g_1^a = q^{\uparrow a}$$
$$f_1^a - g_1^a = q^{\downarrow a}$$

Probability to find a quark with spin parallel / antiparallel to the target \rightarrow Positive

$$q^{\downarrow a})/2$$

 $q^{\downarrow a})/2$

Positivity and inequality

 $f_1^a \ge |g_1^a|$ In the large Nc, u-d and $\Delta u + \Delta d$ are small \rightarrow

$$u + d - |\Delta u - \Delta d| \ge 0$$

[[]HDS, H.-Ch. Kim, arXiv:2208.10150]

Closing remarks

Summary and outlook

- Light-quark distribution functions in a heavy baryon
- Light quarks in a heavy baryon are much less energetic than those in a proton
- Can this be studied from experiment, at least indirectly?
- 1/M_Q corrections

Smearing of the heavy quark distribution Heavy-quark \leftrightarrow mean field, small? Stability?

- ?Can be computed in the LaMET framework on the lattice (but P is not enough!) Moments can be studied (eg. Momentum ratio of Heavy / light quarks)
- SU(3)_f extension: (sea) strange quark distributions in nucleon/heavy baryon

: suitable reaction? Decay of heavy baryon(b), heavy production in e+e-(DLY~fragmentation functions), ...

Backup slides

Given action $S[\phi]$,

- Nuclear shell models
- Ginzburg-Landau theory for superconductivity
- Quark potential models for baryons

= 0 : Solution of this saddle-point equation ϕ_0 This classical solution is regarded as a mean field.

Mean-field potential that is produced by all other particles.

Light Baryons

Light baryon correlation function $\langle J_B J_B^{\dagger} \rangle_0 \sim e^{-N_c E_{\rm val} T}$

Presence of Nc (Nc-1) quarks will polarize the vacuum or create mean fields.

Nc (Nc-1) valence quarks

HChK et al. PPNP 37 (1996) 91

Single heavy baryon correlation function

$$\langle J_{B_Q} J_{B_Q}^{\dagger} \rangle \sim e^{(N_c - 1)E_{\text{val}}T}$$

Vacuum polarization or meson mean fields

Light baryon classical mass $E_{\rm cl} = N_c E_{\rm val} + E_{\rm sea}$

 $\sim e^{-E_{
m sea}T}$

 $\frac{\delta E_{cl}}{\delta U} = 0 \longrightarrow M_{cl} \longrightarrow P(r)$

HChK et al. PPNP 37 (1996) 91

Yang, HChK, Praszalowicz, Polyakov, PRD 94 (2016) R071502

Single heavy baryon classical mass $E_{Q,cl} = (N_c - 1)E_{\rm va;} + E_{\rm sea} + m_Q$

P(r): Soliton profile function or Soliton field

Hedgehog Ansatz: U_S

$$\sigma_{\mathrm{SU}(2)} = \exp\left[i\gamma_5\mathbf{n}\cdot\boldsymbol{\tau}P(\boldsymbol{r})
ight]$$

Quantum Numbers:

 $\mathbf{G} = \mathbf{J} + \mathbf{\tau}$ **P** = (-1)^{G,G+1}

Quarks are bound by the pion mean-field

FIG. 5. Light-quark quasi distributions u(x, P) + d(x, P) in Σ_c and Σ_b .

[HDS, H.-Ch. Kim, manuscript under preparation]

FIG. 6. Light-quark quasi distributions $\Delta u(x, P) - \Delta d(x, P)$ in Σ_c and Σ_b .

[HDS, H.-Ch. Kim, manuscript under preparation]

u(x) + d(x)

Momentum sum-rule

$$\int_{0}^{1} dxx \left[u(x) + d(x) + \bar{u}(x) + \bar{d}(x) + Q(x) \right] = 1$$

$$M_{sol}/M_{h}$$

$$M_{Q}/M_{h}$$

Comparison of the light-quark momenta in (P, Σc , Σb) Momentum sum-rule: $I_h(y = 1) = M_{sol}$ y for I=0.8 GeV: y =(0.5, 0.35, 0.15) for (P, Σc, Σb)

Truncated momentum-sum

$$I_{h}(y) \equiv M_{h} \int_{0}^{y} dxx \left[u(x) + d(x) + \bar{u}(x) + \bar{d}(x) \right]$$

[HDS, H.-Ch. Kim, manuscript under preparation]

M. Constantinou et al. (2020) 2007.08636

M. Constantinou's slide @ Spin 2021, Japan

No continuum

The leptonic $W^+ \to e^+\nu$ and $W^- \to e^-\bar{\nu}$ decay channels provide sensitivity to the helicity distributions of the quarks, Δu and Δd , and antiquarks, $\Delta \bar{u}$ and $\Delta \bar{d}$, that is free of uncertainties associated with non-perturbative fragmentation. The cross-sections are well described [18]. The primary observable is the longitudinal single-spin asymmetry $A_L \equiv (\sigma_+ - \sigma_-)/(\sigma_+ + \sigma_-)$ where $\sigma_{+(-)}$ is the cross-section when the helicity of the polarized proton beam is positive (negative). At leading order,

$$A_L^{W^+}(y_W) \propto \frac{\Delta \bar{d}(x_1)u(x_2) - \Delta u(x_1)\bar{d}(x_2)}{\bar{d}(x_1)u(x_2) + u(x_1)\bar{d}(x_2)}, \qquad (1)$$

$$A_L^{W^-}(y_W) \propto \frac{\Delta \bar{u}(x_1)d(x_2) - \Delta d(x_1)\bar{u}(x_2)}{\bar{u}(x_1)d(x_2) + d(x_1)\bar{u}(x_2)}, \qquad (2)$$

where x_1 (x_2) is the momentum fraction carried by the colliding quark or antiquark in the polarized (unpolarized) beam. $A_L^{W^+}$ $(A_L^{W^-})$ approaches $-\Delta u/u$ $(-\Delta d/d)$ in the very forward region of W rapidity, $y_W \gg 0$, and $\Delta d/d$ $(\Delta \bar{u}/\bar{u})$ in the very backward region of W rapidity, $y_W \ll 0$. The observed positron and electron pseudorapidities, η_e , are related to y_W and to the decay angle of the positron and electron in the W rest frame [19]. Higher-order corrections to $A_L(\eta_e)$ are known [20–22] and have been incorporated into the aforementioned global analyses.

FIG. 5. Longitudinal single-spin asymmetries, A_L , for W^{\pm} production as a function of the positron or electron pseudorapidity, η_e , for the combined STAR 2011+2012 and 2013 data samples for $25 < E_T^e < 50 \,\text{GeV}$ (points) in comparison to theory expectations (curves and bands) described in the text.

Nucleon as a chiral soliton in the large N_c limit

Quarks are bound by a common pion mean-field, self-consistently generated by their interactions

Hedgehog Ansatz

 $U = \exp[i\gamma_5 \hat{n}^a \tau^a P(r)]$

Dirac spectra (n): Grandspin K= J + T and Parity P $H\Phi_n(\vec{x}) = E_n\Phi_n(\vec{x})$

Classical soliton energy U_c: pion mean-field at the saddle point $\frac{\delta}{\delta U} (N_c E_{\text{level}} + E_{\text{cont.}})|_{U=U_c} = 0 \quad \blacksquare$

Nucleon quantum numbers: quantization around the rotational zero-modes

$$M_{sol} = N_c E_{level}(U_c) + E_{cont.}(U_c)$$

Heavy baryon: Nc-1 quark-soliton & free heavy quark

Heavy quark mass $M_Q = (1.3, 4.2)$ GeV as parameters to demonstrate Σc and Σb

M=420 MeV: strong quark-pion coupling is needed because of Nc-1 (vs. 350 MeV in instanton picture)

Recent studies for the heavy baryons

- →ground-state mass spectrum
- →EM ffs: good agreements with lattice calculations, Axial & Tensor
- \rightarrow Energy-momentum tensor form factors
 - :Nc-1 level quarks produce a self-consistent mean-field
 - ~ key ingredient for the stability

[J.Y-. Kim, H.-Ch. Kim, M. Polyakov, HDS, PRD 2021]

+ heavy quark as a color source

u(x) + d(x)

u(x) + d(x)

u(x) + d(x)

u(x) + d(x)

[HDS, H.-Ch. Kim, arXiv:2208.10150]

scale ν_0^2 with the BS equation solved for Λ_Q in the limit $m_Q \rightarrow \infty$. (b) $\alpha Q(\alpha)$ for Λ_Q at $\nu^2 = 10 \text{ GeV}^2$ in the limit $m_Q \rightarrow \infty$. The lines on the right (left) are for Λ_b (Λ_c). The solid (dotted) lines correspond to $m_D = 0.70$ GeV and $\kappa = 0.02$ GeV³ ($\kappa = 0.10$ GeV³). The dashed (dot dashed) lines correspond to $\kappa = 0.06 \text{ GeV}^3$ and m_D $=0.65 \text{ GeV} (m_D = 0.75 \text{ GeV}).$

FIG. 1. (a) Heavy quark distribution functions at the hadronic

Guo, Thomas and Williams, Phys.Rev.D64 (2001)

Antiquark flavor asymmetry

Antiquark asymmetries in the proton

Unpolarized antiquarks: $\bar{d} > \bar{u}$ [Glück, Reya, Vogt, ZPC (1995)]

PDFs from polarized DIS: assumed $\Delta \bar{u} - \Delta \bar{d} = 0$

XQSM prediction: $\Delta \bar{u} - \Delta d$ is large and positive [Diakonov et al., NPB (1996) / PRD (1997)]

DIS is insensitive to the antiquark flavor asymmetry, but Drell-Yan is!

Analyses using DIS + SIDIS, Drell-Yan

[Glück et al., PRD 63 (2001)] [De Florian et al, PRD 80 (2009)] [Nocera et al. (NNPDF), NPB 887 (2014)]

Single spin asymmetry (W-boson) in polarized PP collision is used to study the asymmetry

(STAR collaboration)

[L. Adamczyk et al. PRL 113 (2014)] [A. Adare et al. PRD 98 (2018)] [J. Adam et al. PRD 99 (2019)]

Global analyses updates:

[De Florian et al. PRD 100 (2019)] [Cocuzza et al. (JAM) arXiv:2202.03371 (2022)]

[Glück, Reya, Volgesang, PLB 359 (1995)] [Glück et al., PRD 53 (1996)]

[Dressler et al, EPJC 14 (2000), EPJC 18 (2001)] [Kumano and Miyama, PLB 479 (2000)]

Antiquark asymmetries in the proton: new results

[SeaQuest, Nature 590 (2021) 7847, 561-565]

FIG. 6. The difference of the light sea-quark polarizations as a function of x at a scale of $Q^2 = 10 \,(\text{GeV}/c)^2$. The green band shows the NNPDFpol1.1 results [1] and the blue hatched band shows the corresponding distribution after the STAR 2013 W^{\pm} data are included by reweighting.

[STAR collaboration, Phys.Rev.D 99 (2019) 5, 051102]

Polarized antiquark flavor asymmetry: model case

[STAR collaboration, Phys.Rev.D 99 (2019) 5, 051102]

FIG. 6. The difference of the light sea-quark polarizations as a function of x at a scale of $Q^2 = 10 \, (\text{GeV}/c)^2$. The green band shows the NNPDFpol1.1 results [1] and the blue hatched band shows the corresponding distribution after the STAR $2013 W^{\pm}$ data are included by reweighting.

Band: Model systematic uncertainty

fixed $\rho \sim 1/(600 \text{MeV})$, in the chiral limit

M [MeV]	330	420
M _N [MeV]	1161	1077
ρ/R	0.32	0.37
F _π [MeV]	77	90

Continuum contribution (Polarized vacuum) is crucial Softness: quark virtuality (momentum dep. mass) 1/Nc correction can enhance the PDF ~30% Scale evolution

Antiquark flavor asymmetry: heavy baryon

[HDS, H.-Ch. Kim, In preparation]

