The axial-vector meson in coupled-channel approach

S. Clymton and $\mathrm{H}-\mathrm{Ch}$. Kim

Hadron Theory Group
Department of Physics
Inha University

2022 CENuM Workshop

- 일정 : 2022년 9월 2일(금) - 9월 3일(토) - 장소 : 인하대학교 정석학술정보관, 60 주년 기념관

Outlines

(1) Motivation
(2) Formalism
(3) Results and Discussion

4 Summary and Conclusion

Motivation

- The axial-vector meson
- The existence of a_{1} meson was proven experimentally around four decades ago. [C.Daum (ACCMOR), PLB89, 281 (1980)]
- Until now the uncertainty of its mass and width are still large.
- Their nature is still unclear. Composite? Elementary?

Motivation

- The axial-vector meson
- The existence of a_{1} meson was proven experimentally around four decades ago. [C.Daum (ACCMOR), PLB89, 281 (1980)]
- Until now the uncertainty of its mass and width are still large.
- Their nature is still unclear. Composite? Elementary?

$$
\begin{array}{lll}
I=0 & h_{1}(1170) 0^{-} & f_{1}(1285) 0^{+} \\
I=1 & b_{1}(1235) 1^{+} & a_{1}(1260) 1^{-} \\
I=1 / 2 & K_{1}(1270) &
\end{array}
$$

Motivation

- The axial-vector meson
- The existence of a_{1} meson was proven experimentally around four decades ago. [C.Daum (ACCMOR), PLB89, 281 (1980)]
- Until now the uncertainty of its mass and width are still large.
- Their nature is still unclear. Composite? Elementary?
- The full off-shell T matrix of this interaction can then be applied to other processes as an elementary process.
- $D \bar{D}$ and $D \bar{D}^{*}$ process
- $N \rightarrow \Delta$ axial-vector form factor
- Ω baryon radiative form factor
- τ decay
- etc

Formalism

Blanckenbecler-Sugar Scheme

We start from the S matrix, $S=1+i T$, which can be written as

$$
S_{f i}=\delta_{f i}-i(2 \pi)^{4} \delta^{4}\left(P_{f}-P_{i}\right) \mathcal{T}_{f i}
$$

The Bethe-Salpeter equation for two-body interaction expressed as

$$
\mathcal{T}_{f i}\left(p^{\prime}, p\right)=\mathcal{V}_{f i}\left(p^{\prime}, p\right)+\frac{1}{(2 \pi)^{4}} \int d^{4} q \mathcal{V}_{f g}\left(p^{\prime}, q\right) \mathcal{G}_{g}(q) \mathcal{T}_{g i}(q, p)
$$

The unitarity requirement of S matrix bring us to Blanckenbecler-Sugar scheme. [R. Blankenbecler, PR142, 1051 (1966)]

$$
\mathcal{G}_{g}(q)=\delta\left(q_{0}-\frac{E_{1 g}}{2}+\frac{E_{2 g}}{2}\right) \frac{\pi}{E_{1 g} E_{2 g}} \frac{E_{g}}{s-E_{g}^{2}}
$$

Blanckenbecler-Sugar Scheme

We start from the S matrix, $S=1+i T$, which can be written as

$$
S_{f i}=\delta_{f i}-i(2 \pi)^{4} \delta^{4}\left(P_{f}-P_{i}\right) \mathcal{T}_{f i}
$$

The Bethe-Salpeter equation for two-body interaction expressed as

$$
\mathcal{T}_{f i}\left(p^{\prime}, p\right)=\mathcal{V}_{f i}\left(p^{\prime}, p\right)+\frac{1}{(2 \pi)^{4}} \int d^{4} q \mathcal{V}_{f g}\left(p^{\prime}, q\right) \mathcal{G}_{g}(q) \mathcal{T}_{g i}(q, p)
$$

The unitarity requirement of S matrix bring us to Blanckenbecler-Sugar scheme. [R. Blankenbecler, PR142, 1051 (1966)]

$$
\mathcal{T}_{f i}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)=\mathcal{V}_{f i}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)+\frac{1}{(2 \pi)^{3}} \int \frac{d^{3} q}{2 E_{1 g} E_{2 g}} \mathcal{V}_{f g}(\mathbf{p}, \mathbf{q}) \frac{E_{g}}{s-E_{g}^{2}} \mathcal{T}_{g i}\left(\mathbf{q}, \mathbf{p}^{\prime}\right)
$$

Potential

The potential is modeled by one meson exchange diagram

Each diagram gives

$$
\mathcal{V}=I S \times F^{2} \times \Gamma_{1} \times \mathcal{P} \times \Gamma_{2}
$$

Potential

The potential is modeled by one meson exchange diagram

$$
\mathcal{V}=I S \times F^{2} \times \Gamma_{1} \times \mathcal{P} \times \Gamma_{2}
$$

$$
\mathcal{L}_{P P V}=g_{P P V} \operatorname{Tr}\left(\left[P, \partial_{\mu} P\right]_{-} V^{\mu}\right)
$$

Coupling constants :

$$
\mathcal{L}_{V V V}=-\frac{1}{2} g_{V V V} \operatorname{Tr}\left[\left(\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}\right) V^{\mu} V^{\nu}\right]
$$

$$
\mathcal{L}_{P V V}=\frac{g_{P V V}}{m_{V}} \varepsilon^{\mu \nu \alpha \beta} \operatorname{Tr}\left(\partial_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} P\right)
$$

$$
\begin{aligned}
& g_{P P V}^{2} / 4 \pi=0.71 \\
& g_{P V V}^{2} / 4 \pi=1.88
\end{aligned}
$$

Ref: G.Janssen, PRC49, 2763 (1994)
*Note that we choose $g_{P P V}=g_{V V V}$

$$
P=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta
\end{array}\right)
$$

Potential

The potential is modeled by one meson exchange diagram

$$
\mathcal{V}=I S \times F^{2} \times \Gamma_{1} \times \mathcal{P} \times \Gamma_{2}
$$

Coupling constants :

$$
\mathcal{L}_{P P V}=g_{P P V} \operatorname{Tr}\left(\left[P, \partial_{\mu} P\right]_{-} V^{\mu}\right)
$$

$$
\mathcal{L}_{V V V}=-\frac{1}{2} g_{V V V} \operatorname{Tr}\left[\left(\partial_{\mu} V_{\nu}-\partial_{\nu} V_{\mu}\right) V^{\mu} V^{\nu}\right]
$$

$$
g_{P P V}{ }^{2} / 4 \pi=0.71
$$

$$
\mathcal{L}_{P V V}=\frac{g_{P V V}}{m_{V}} \varepsilon^{\mu \nu \alpha \beta} \operatorname{Tr}\left(\partial_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} P\right)
$$

$$
g_{P V V}{ }^{2} / 4 \pi=1.88
$$

Ref: G.Janssen, PRC49, 2763 (1994)
*Note that we choose $g_{P P V}=g_{V V V}$

$$
V_{\mu}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \rho_{\mu}^{0}+\frac{1}{\sqrt{2}} \omega_{\mu} & \rho_{\mu}^{+} & K_{\mu}^{*+} \\
\rho_{\mu}^{-} & -\frac{1}{\sqrt{2}} \rho_{\mu}^{0}+\frac{1}{\sqrt{2}} \omega_{\mu} & K_{\mu}^{* 0} \\
K_{\mu}^{*-} & \bar{K}_{\mu}^{*-} & \phi_{\mu}
\end{array}\right)
$$

Potential

The potential is modeled by one meson exchange diagram

$$
\mathcal{V}=I S \times F^{2} \times \Gamma_{1} \times \mathcal{P} \times \Gamma_{2}
$$

We use static propagator,

$$
\mathcal{P}=\frac{1}{\left(p^{\prime}-p\right)^{2}-m^{2}} \Longrightarrow \frac{-1}{\left(\vec{p}^{\prime}-\vec{p}\right)^{2}+m^{2}}
$$

And the form factor

$$
F\left(n, \vec{p}, \vec{p}^{\prime}\right)=\left(\frac{n \Lambda^{2}-m^{2}}{n \Lambda^{2}+\vec{p}^{2}+\vec{p}^{2}}\right)^{n}
$$

with

$$
\Lambda=\lambda+m
$$

One-dimensional integral

Through the partial wave decomposition, the BS equation becomes

$$
\mathcal{T}_{\lambda^{\prime} \lambda}^{f i}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)=\mathcal{V}_{\lambda^{\prime} \lambda}^{f i}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)+\frac{1}{(2 \pi)^{3}} \sum_{g, \lambda_{g}} \int \frac{\mathrm{q}^{2} d \mathrm{q}}{2 E_{g 1} E_{g 2}} \mathcal{V}_{\lambda^{\prime} \lambda_{g}}^{f g}(\mathrm{p}, \mathrm{q}) \frac{E_{g}}{s-E_{g}^{2}} \mathcal{T}_{\lambda_{g} \lambda}^{g i}\left(\mathrm{q}, \mathrm{p}^{\prime}\right)
$$

where

$$
\mathcal{V}_{\lambda^{\prime} \lambda}^{f i}\left(\mathrm{p}^{\prime}, \mathrm{p}\right)=2 \pi \int \mathrm{~d}(\cos \theta) d_{\lambda^{\prime} \lambda}^{J}(\theta) \mathcal{V}_{\lambda^{\prime} \lambda}^{f i}\left(\mathrm{p}^{\prime}, \mathrm{p}, \theta\right),
$$

Evaluating this integral by using principal value

$$
\begin{aligned}
\mathcal{T}_{\lambda^{\prime} \lambda}^{f i}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)= & \mathcal{V}_{\lambda^{\prime} \lambda}^{f i}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)+\frac{1}{(2 \pi)^{3}} \sum_{g, \lambda_{g}}\left[\int d E_{g} \frac{\mathcal{F}\left(E_{g}\right)-\mathcal{F}(\sqrt{s})}{s-E_{g}^{2}}\right. \\
& \left.-\frac{\mathcal{F}(\sqrt{s})}{2 \sqrt{s}}\left(\ln \left|\frac{\sqrt{s}+E_{g}^{\mathrm{thr}}}{\sqrt{s}-E_{g}^{\mathrm{thr}}}\right|+i \pi\right)\right]
\end{aligned}
$$

with

$$
\mathcal{F}\left(E_{g}\right)=\frac{1}{2} \mathcal{q}_{\lambda^{\prime} \lambda_{g}}^{f g}(\mathrm{p}, \mathrm{q}) \mathcal{T}_{\lambda_{g \lambda}}^{g i}(\mathrm{p}, \mathrm{q}),
$$

We solved this integral by utilizing matrix inversion method.

Results and Discussion

$G=-1$ and $I=1$
 a_{1} resonance

Diagrams and Parameters

Channels involved : $\pi \rho$ and $K \bar{K}^{*}$
Since K and K^{*} have no definite G-parity,

$$
\left|K \bar{K}^{*}(-)\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K \bar{K}^{*}\right\rangle-\left|\bar{K} K^{*}\right\rangle\right)
$$

Potential :

$$
V^{f i}=\left(\begin{array}{cc}
V^{\pi \rho \rightarrow \pi \rho} & V^{K} \bar{K}^{*} \rightarrow \pi \rho \\
V^{\pi \rho \rightarrow K \bar{K}^{*}} & V^{K \bar{K}^{*} \rightarrow K \bar{K}^{*}}
\end{array}\right)
$$

Diagrams and Parameters

Channels involved : $\pi \rho$ and $K \bar{K}^{*}$

	meson	channel	IS	$\lambda(\mathrm{MeV})$	n
$\pi \rho \rightarrow \pi \rho$	π	u	4	600	1
$\pi \rho \rightarrow K \bar{K}^{*}\left(\bar{K} K^{*}\right)$	ρ	t	-4	600	1
$K \bar{K}^{*} \rightarrow K \bar{K}^{*}$	K	u	-4	600	2
	K^{*}	u	$-2(2)$	1500	1
$K \bar{K}^{*} \rightarrow \bar{K} K^{*}$	ρ	t	$2(-2)$	1110	1
	ω	t	1	1050	1
	ϕ	t	-1	1050	1
	π	u	1	1700	1
	η	u	-3	1050	1
	ρ	u	-1	1050	1
	ω	u	1	1050	2
	ϕ	u	2	1700	2

*Note that for ϕ-exchange diagram the coupling g differ by about 14%

a_{1} resonance

The singularities arises as a result of integral equation in the region below $K \bar{K}^{*}$ threshold.

a_{1} resonance

We compare the model to experimental data from charge exchange reaction $\pi p \rightarrow 3 \pi n$.

And define:

$$
\sigma \equiv-C \operatorname{Im}\left[T_{\pi \rho}\left(M_{\pi \rho}\right)\right]
$$

Exp.Data : J.A.Dankowych, PRL46 (1981).
Model: G.Janssen, PRC54 (1996)

a_{1} properties

- The $a_{1}(1260)$ pole position, $\sqrt{s_{R}}=1170.1-i 104.1[\mathrm{MeV}]$
- Residue and coupling strength can be defined as

$$
\lim _{s \rightarrow s_{R}}\left(s-s_{R}\right) T_{a, b}=R_{a, b}, \quad g_{a}=\sqrt{R_{a, a}}
$$

- The elastic residue and coupling strength of $a_{1}(1260)$ resonance for S-wave and D-wave are

	S-wave	D-wave	Unit
$R_{\pi \rho}$	$26.68-i 6.54$	$0.31+i 0.02$	GeV^{2}
$R_{K \bar{K}^{*}}$	$37.17-i 4.74$	$0.09+i 0.16$	GeV^{2}
$g_{\pi \rho}$	$5.20-i 0.63$	$0.56+i 0.02$	GeV
$g_{K \bar{K}^{*}}$	$6.11-i 0.39$	$0.37+i 0.22$	GeV

$G=-1$ and $I=0$

h_{1} resonance

Diagrams and Parameters

Channels involved : $\pi \rho, \eta \omega, K \bar{K}^{*}$ and $\eta \phi$.

$$
\left|K \bar{K}^{*}(-)\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K \bar{K}^{*}\right\rangle-\left|\bar{K} K^{*}\right\rangle\right)
$$

Potential :

$$
V^{f i}=\left(\begin{array}{cccc}
V^{\pi \rho \rightarrow \pi \rho} & V^{\eta \omega \rightarrow \pi \rho} & V^{K \bar{K}^{*} \rightarrow \pi \rho} & V^{\eta \phi \rightarrow \pi \rho}=0 \\
V^{\pi \rho \rightarrow \eta \omega} & V^{\eta \omega \rightarrow \eta \omega} & V^{K} \bar{K}^{*} \rightarrow \eta \omega & V^{\eta \phi \rightarrow \eta \omega}=0 \\
V^{\pi \rho \rightarrow K \bar{K}^{*}} & V^{\eta \omega \rightarrow K \bar{K}^{*}} & V^{K \bar{K}^{*} \rightarrow K \bar{K}^{*}} & V^{\eta \phi \rightarrow K \bar{K}^{*}} \\
V^{\eta \phi \rightarrow \pi \rho}=0 & V^{\eta \omega \rightarrow \eta \phi}=0 & V^{K \bar{K}^{*} \rightarrow \eta \phi} & V^{\eta \phi \rightarrow \eta \phi}
\end{array}\right)
$$

Diagrams and Parameters

Channels involved : $\pi \rho, \eta \omega, K \bar{K}^{*}$ and $\eta \phi$.

	meson	channel	IS	$\lambda(\mathrm{MeV})$	n
$\pi \rho \rightarrow \pi \rho$	π	u	-8	600	1
π	ρ	t	-8	600	1
$\pi \rho \rightarrow K \bar{K}^{*}\left(\bar{K} K^{*}\right)$	ω	u	4	600	2
K	u	$\sqrt{6}(-\sqrt{6})$	1500	1	
$K \bar{K}^{*} \rightarrow K \bar{K}^{*}$	K^{*}	t	$\sqrt{6}(-\sqrt{6})$	1110	1
	ρ	t	-3	1050	1
$K \bar{K}^{*} \rightarrow \bar{K} K^{*}$	ω	t	-1	1050	1
	ϕ	t	-2	1700	1
	π	u	3	1050	1
	η	u	3	1050	1
	ρ	u	-3	1050	2
	ω	u	-1	1050	2
	ϕ	u	-2	1700	2

*All same as in a_{1} channel except IS values

Diagrams and Parameters

Channels involved : $\pi \rho, \eta \omega, K \bar{K}^{*}$ and $\eta \phi$.

	meson	channel	IS	$\lambda(\mathrm{MeV})$	n
$\pi \rho \rightarrow \eta \omega$	ρ	u	-4	600	2
$\eta \omega \rightarrow \eta \omega$	ω	u	$4 / 3$	600	2
$\eta \omega \rightarrow K \bar{K}^{*}\left(\bar{K} K^{*}\right)$	K	u	$-\sqrt{6}(\sqrt{6})$	940	1
	K^{*}	t	$-\sqrt{6}(\sqrt{6})$	940	1
$K \bar{K}^{*}\left(\bar{K} K^{*}\right) \rightarrow \eta \phi$	K	u	$2 \sqrt{3}(-2 \sqrt{3})$	940	1
	K^{*}	t	$2 \sqrt{3}(-2 \sqrt{3})$	940	1
$\eta \phi \rightarrow \eta \phi$	ϕ	u	$16 / 3$	1400	2

*Note that for ϕ-exchange diagram the coupling g_{2} differ by about 11%

h_{1} resonance

We compare the model to experimental data from charge exchange reaction $\pi p \rightarrow 3 \pi n$.

And define:

$$
\sigma \equiv-C \operatorname{Im}\left[T_{\pi \rho}\left(M_{\pi \rho}\right)\right]
$$

Exp.Data : J.A.Dankowych, PRL46 (1981). Model: G.Janssen, PRC54 (1996)

h_{1} properties

- The $h_{1}(1170)$ pole position, $\sqrt{s_{R}}=1152.3-i 162.7[\mathrm{MeV}]$
- Residue and coupling strength can be defined as

$$
\lim _{s \rightarrow s_{R}}\left(s-s_{R}\right) T_{a, b}=R_{a, b}, \quad g_{a}=\sqrt{R_{a, a}}
$$

- The elastic residue of $h_{1}(1170)$ resonance for S-wave and D-wave are

	S-wave	D-wave	Unit
$R_{\pi \rho}$	$17.84-i 10.75$	$0.31+i 0.01$	GeV^{2}
$R_{\eta \omega}$	$16.57+i 6.40$	$0.08+i 0.04$	GeV^{2}
$R_{K \bar{K}^{*}}$	$24.86+i 2.26$	$-0.02+i 0.22$	GeV^{2}
$R_{\eta \phi}$	$70.88-i 12.89$	$0.96+i 0.10$	GeV^{2}

$G=+1$ and $I=1$

b_{1} resonance

Diagrams and Parameters

Channels involved : $\pi \omega, \pi \phi, \eta \rho$ and $K \bar{K}^{*}$.

$$
\left|K \bar{K}^{*}(+)\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K \bar{K}^{*}\right\rangle+\left|\bar{K} K^{*}\right\rangle\right)
$$

Potential :

$$
V^{f i}=\left(\begin{array}{cccc}
V^{\pi \omega \rightarrow \pi \omega} & V^{\pi \phi \rightarrow \pi \omega}=0 & V^{\eta \rho \rightarrow \pi \omega} & V^{K \bar{K}^{*} \rightarrow \pi \omega} \\
V^{\pi \omega \rightarrow \pi \phi}=0 & V^{\pi \phi \rightarrow \pi \phi}=0 & V^{\eta \rho \rightarrow \pi \phi}=0 & V^{K \bar{K}^{*} \rightarrow \pi \phi} \\
V^{\pi \omega \rightarrow \eta \rho} & V^{\pi \phi \rightarrow \eta \rho}=0 & V^{\eta \rho \rightarrow \eta \rho} & V^{K} \bar{K}^{*} \rightarrow \eta \rho \\
V^{\pi \omega \rightarrow K \bar{K}^{*}} & V^{\pi \phi \rightarrow K} \bar{K}^{*} & V^{\eta \rho \rightarrow K \bar{K}^{*}} & V^{K} \bar{K}^{*} \rightarrow K \bar{K}^{*}
\end{array}\right)
$$

Diagrams and Parameters

Channels involved : $\pi \omega, \pi \phi, \eta \rho$ and $K \bar{K}^{*}$.

	meson	channel	IS	$\lambda(\mathrm{MeV})$	n
$K \bar{K}^{*} \rightarrow K \bar{K}^{*}$	ρ	t	1	1050	1
	ω	t	-1	1050	1
$K \bar{K}^{*} \rightarrow \bar{K} K^{*}$	ϕ	t	-2	1700	1
	π	u	1	1050	1
	η	u	-3	1050	1
	ρ	u	-1	1050	2
	ω	u	1	1050	2
	ϕ	u	2	1700	2

*All same as in a_{1} channel

Diagrams and Parameters

Channels involved : $\pi \omega, \pi \phi, \eta \rho$ and $K \bar{K}^{*}$.

	meson	channel	IS	$\lambda(\mathrm{MeV})$	n
$\pi \omega \rightarrow \pi \omega$	ρ	u	4	600	2
$\pi \omega \rightarrow \eta \rho$	ω	u	$4 / \sqrt{3}$	600	2
$\pi \omega \rightarrow K \bar{K}^{*}\left(\bar{K} K^{*}\right)$	K	u	$\sqrt{2}(\sqrt{2})$	660	1
	K^{*}	t	$\sqrt{2}(\sqrt{2})$	660	1
$\pi \phi \rightarrow K \bar{K}^{*}\left(\bar{K} K^{*}\right)$	K	u	$-2(-2)$	610	1
	K^{*}	t	$-2(-2)$	610	1
$\eta \rho \rightarrow \eta \rho$	ρ	u	$4 / 3$	600	2
$\eta \rho \rightarrow K \bar{K}^{*}\left(\bar{K} K^{*}\right)$	K	u	$\sqrt{6}(\sqrt{6})$	560	1
	K^{*}	t	$\sqrt{6}(\sqrt{6})$	560	1

b_{1} resonance

We compare the model to experimental data from charge exchange reaction $\pi p \rightarrow \omega \pi n$.

And define:

$$
\sigma \equiv-C \operatorname{Im}\left[T_{\pi \omega}\left(M_{\pi \omega}\right)\right]
$$

Exp.Data: S.Fukui, PLB257 (1991)

b_{1} properties

- The $b_{1}(1235)$ pole position, $\sqrt{s_{R}}=1307.6-i 61.9[\mathrm{MeV}]$
- Residue and coupling strength can be defined as

$$
\lim _{s \rightarrow s_{R}}\left(s-s_{R}\right) T_{a, b}=R_{a, b}, \quad g_{a}=\sqrt{R_{a, a}}
$$

- The elastic residue of $b_{1}(1235)$ resonance for S-wave and D-wave are

	S-wave	D-wave	Unit
$R_{\pi \omega}$	$4.72+i 4.82$	$0.02+i 0.03$	GeV^{2}
$R_{\pi \phi}$	$10.36+i 8.33$	$0.00+i 0.00$	GeV^{2}
$R_{\eta \rho}$	$8.13+i 7.94$	$0.00+i 0.00$	GeV^{2}
$R_{K \bar{K}^{*}}$	$117.80-i 60.23$	$-0.03+i 0.09$	GeV^{2}

Summary and Conclusion

- We investigated the axial-vector meson resonance from pseudoscalar and vector meson interaction based on the fully off-mass-shell coupled channel formalism.
- By doing so, we generate a_{1}, h_{1} and b_{1} axial-vector meson dynamically.
- We also present the comparison of the model calculation to the experimental data from charge exchange reaction and we extracted the resonance properties of a_{1}, h_{1} and b_{1} axial-vector meson.
- For the future project, we will investigate $S= \pm 1$ channel.

Thank You

