The elastic π^+A scattering with density effects

¹Pukyong National University (PKNU) ²Center for Extreme Nuclear Matters (CENuM)

Hyeon-dong Han^{1,2}, Parada Hutauruk¹, Seung-il Nam^{1,2}

Table of contents

Motivation Ι.

II. Elastic $\pi^+ p$ scattering at finite baryon density

III. Elastic π^+A scattering at finite baryon density

IV. Preliminary Results

I. Motivation

We studied about the elastic $\pi^+ p$ scattering at finite baryon density. [1] <u>https://doi.org/10.48550/arXiv.2112.11060</u> And our next study is the elastic π^+A scattering at finite baryon density.

the elastic $\pi^+ p$ scattering at finite baryon density Using Quark-Meson Coupling (QMC) Model (Considered with nuclear matter)

the elastic π^+A scattering at finite baryon density Using Eikonal Glauber Model (Considered with finite nuclei)

We used the effective Lagrangians for $\pi^+ p$ elastic scattering at tree level for each contributions.

II. Elastic $\pi^+ p$ scattering at finite baryon density O The TCS & DCS as a function of $cos\theta$ of the elastic π^+p scattering in vacuum 250 20 IHEP CERN at $P_{lab} = 378 \text{ MeV/c}$ SIN Theory (Vacuum) Theory (Vacuum) s-channel of Δ^{++} 200 s-channel of Δ^{++} (u-channel of Δ^0) x50 15 (u-channel of Δ^0) x50 (u-channel of n) x50 do/dΩ [mb/sr] (u-channel of n) x50 [qm] م (WT interaction) x50 (WT interaction) x50 100 50 200 600 800 400 0.5 -0.5 0 Plab [MeV/c] $\cos\theta$ Delta mass (M_{Δ}) : 1215.5 MeV Delta Breit-Wigner mass (M^0_{Λ}) : 1232 MeV Delta decay width (Γ_{Δ}^{0}) : 94.0 MeV

5

Delta Breit-Wigner width (Γ_{Λ}^{0}) : 117 MeV

At finite density, hadron structure properties change (mass, decay width..) so we apply the Quark-meson coupling (QMC) model to include medium effect.

O Quark-Meson Coupling (QMC) Model

 σ : The scalar mean field

,
$$M_N^* = M_N - g_\sigma \sigma$$

Effective baryon masses are calculated by Dr. Parada. (We fixed the pion mass & coupling constant in this work)

> Nucleon and Δ baryon masses decrease as the baryon density increases.

II. Elastic $\pi^+ p$ scattering at finite baryon density O In-medium Δ decay width Γ^*_{Λ} $\Gamma_{\Delta}^{*}(\sqrt{s^{*}}) = \Gamma_{sp}\left(\frac{\rho_{B}}{\rho_{0}}\right) + \Gamma_{\Delta}^{0}\left[\frac{q(\sqrt{s^{*}}, m_{N}^{*}, m_{\pi})}{q(m_{\Delta}, m_{N}, m_{\pi})}\right]^{3} \frac{m_{\Delta}^{*}}{\sqrt{s^{*}}} \frac{\beta_{0}^{2} + q^{2}(m_{\Delta}^{*}, m_{N}^{*}, m_{\pi})}{\beta_{0}^{2} + q^{2}(\sqrt{s^{*}}, m_{N}^{*}, m_{\pi})}$ [2] A. B. Larionov and U. Mosel, The N N —>N Delta cross-section in nuclear matter, Nucl. Phys. A728, 135-164 (2003) $< \Delta$ (1232) resonance contribution > $\mathscr{L}_{\pi N\Delta} = \frac{f_{\pi N\Delta}}{M_{-}} \overline{\Delta}^{\mu} S^{\dagger} \partial_{\mu} \pi N + h.c.$ π^+ $\therefore \mathcal{M}_s^{\Delta^{++}} = i \frac{f_{\pi N \Delta}^2}{M^2} \overline{u}(p') k'_{\mu} G^{\mu\nu}(p+k) k_{\nu} u(p)$ Ŋ Λ++ $G^{\mu\nu}(q) = i \frac{(q + M_{\Delta})}{q^2 - M_{\Delta}^2 + iM_{\Delta}\Gamma_{\Delta}} \times \left[-g^{\mu\nu} + \frac{1}{3}\gamma^{\mu}\gamma^{\nu} + \frac{2q^{\mu}q^{\nu}}{3M_{\star}^2} - \frac{q^{\mu}\gamma^{\nu} - q^{\nu}\gamma^{\mu}}{3M_{\star}^2} - \frac{q^{\mu}\gamma^{\nu} - q^{\nu}\gamma^{\mu}}{3M_{\star}^2} \right]$ s channel of Δ^{++}

[4] Snigdha Ghosh, Sourav Sarkar, and Sukanya Mitra Phys. Rev. D 95, 056010

$$\sigma_{\pi^+A\to\pi^+A}(\sqrt{s}) = \int d^2b \left[1 - ex\right]$$

From the Glauber model, total cross section of the elastic π^+A scattering is given by

 $\exp\left[-\tilde{\sigma}_{\pi^+N\to\pi^+N}(\sqrt{s},\rho_A^{(n,p)})\cdot T_A^{(n,p)}(\boldsymbol{b})\right]\right]$

From the Glauber model, total cross section of the elastic π^+A scattering is given by

$$\sigma_{\pi^{+}A \to \pi^{+}A}(\sqrt{s}) = \int d^{2}b \left[1 - \exp[-\tilde{\sigma}_{\pi^{+}N \to \pi^{+}N}(\sqrt{s}, \rho_{A}^{(n,p)}) \cdot T_{A}^{(n,p)}(b)] \right]$$

$$p) = \int_{-\infty}^{\infty} \rho_{A}^{(n,p)}(\sqrt{|b|^{2} + z^{2}}) dz, \quad \left[\rho_{A}^{(n,p)}(r) = \frac{\rho_{0}^{A} \left[1 + c(r/r_{A})^{2} \right]}{1 + \exp[(r - r_{A})/d]} \cdot \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right) dz + \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z$$

$$\sigma_{\pi^{+}A \to \pi^{+}A}(\sqrt{s}) = \int d^{2}b \left[1 - \exp[-\tilde{\sigma}_{\pi^{+}N \to \pi^{+}N}(\sqrt{s}, \rho_{A}^{(n,p)}) \cdot T_{A}^{(n,p)}(b)] \right]$$

$$T_{A}^{(n,p)}(b) = \int_{-\infty}^{\infty} \rho_{A}^{(n,p)}(\sqrt{|b|^{2} + z^{2}}) dz, \quad \rho_{A}^{(n,p)}(r) = \frac{\rho_{0}^{A} \left[1 + c(r/r_{A})^{2} \right]}{1 + \exp[(r - r_{A})/d]} \cdot \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^{2} + z^{2}} \right)$$

$$\frac{\operatorname{Nucleus} A |Z| r_{A} \operatorname{Im}|d| \operatorname{Im}|\rho_{0}^{A} \operatorname{Im}^{-3}|}{\operatorname{He} 4 |2| 1.01| 0.327| 0.2381}$$

$$C |12| 6| 2.36| 0.522| 0.1823}{\operatorname{Au} |197| 79| 6.38| 0.535| 0.1772} \right]$$

$$\frac{\operatorname{Nucleus} A |Z| r_{A} \operatorname{Im}|d| \operatorname{Im}|\rho_{0}^{A} \operatorname{Im}^{-3}|}{\operatorname{Pb} |208| 82| 6.62| 0.549| 0.1700|}$$

[5] ATOMIC DATA AND NUCLEAR DATA TABLES 14, 479-508 (1974)

III. Elastic
$$\pi^+ A$$
 scattering at finite baryon density
From the Glauber model, total cross section of the elastic $\pi^+ A$ scattering is given by

$$\begin{aligned}
\sigma_{\pi^+ A \to \pi^+ A}(\sqrt{s}) &= \int d^2 b \left[1 - \exp[-\tilde{\sigma}_{\pi^+ N \to \pi^+ N}(\sqrt{s}, \rho_A^{(n,p)}) \cdot T_A^{(n,p)}(b)] \right] \\
T_A^{(n,p)}(b) &= \int_{-\infty}^{\infty} \rho_A^{(n,p)}(\sqrt{|b|^2 + z^2}) dz, \quad \left[\rho_A^{(n,p)}(r) = \frac{\rho_0^A \left[1 + c(r/r_A)^2 \right]}{1 + \exp[(r - r_A)/d]} \right] \cdot \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^2 + z^2} \right) \\
\xrightarrow{*} \tilde{\sigma}_{\pi^+ N \to \pi^+ N} &= \sum_{N=n,p} \bar{\sigma}_{\pi^+ N \to \pi^+ N} = \left(\frac{A - Z}{A} \right) \cdot \sigma_{\pi^+ n \to \pi^+ n} + \left(\frac{Z}{A} \right) \cdot \sigma_{\pi^+ p \to \pi^+ p} \end{aligned}$$

[5] ATOMIC DATA AND NUCLEAR DATA TABLES 14, 479-508 (1974)

III. Elastic
$$\pi^+ A$$
 scattering at finite baryon density
From the Glauber model, total cross section of the elastic $\pi^+ A$ scattering is given by
 $\sigma_{\pi^+A\to\pi^+A}(\sqrt{s}) = \int d^2 b \left[1 - \exp[-\tilde{\sigma}_{\pi^+N\to\pi^+N}(\sqrt{s},\rho_A^{(n,p)}) \cdot T_A^{(n,p)}(b)]\right]$
 $T_A^{(n,p)}(b) = \int_{-\infty}^{\infty} \rho_A^{(n,p)}(\sqrt{|b|^2 + z^2}) dz, \quad \rho_A^{(n,p)}(r) = \frac{\rho_0^A \left[1 + c(r/r_A)^2\right]}{1 + \exp[(r - r_A)/d]} \cdot \frac{(A - Z, Z)}{A} \quad \left(r = \sqrt{|b|^2 + z^2}\right)$
 $The Wood-Saxon density provide the elastic $A = \frac{1}{2} \int_{N=n,p}^{\infty} \bar{\sigma}_{\pi^+N\to\pi^+N} = \left(\frac{A - Z}{A}\right) \cdot \sigma_{\pi^+n\to\pi^+n} + \left(\frac{Z}{A}\right) \cdot \sigma_{\pi^+p\to\pi^+p}$$

And
$$\rho_A^{(n,p)}(r)$$
 is normalized with the atomic mass number A by

$$A = \sum_{N=n,p} \int dz d^2 \boldsymbol{b} \rho_A^{(n,p)} \left(\sqrt{|\boldsymbol{b}|^2 + z^2} \right) = \sum_{N=n,p} 2\pi \int_{-\infty}^{\infty} dz \int_{0}^{\infty} b db \rho_A^{(n,p)} \left(\sqrt{|\boldsymbol{b}|^2 + z^2} \right)$$

[5] ATOMIC DATA AND NUCLEAR DATA TABLES 14, 479-508 (1974)

O Nuclear density distribution ρ_A as a function of r

2022 CENuM workshop, 2~3 September 2022

c

0

0

O Effective baryon mass m_R^* as a function of r

$$m_B^* = m_B + C_1 \rho_A^{(n,p)} + C_2 (\rho_A^{(n,p)})^2 (B = C_1 = -1543.08, C_2 = 2036.14$$

$$(C_1, C_2 \text{ are parameterized by the QMC models and the provided of the terms of terms of the terms of terms o$$

O In-medium Δ decay width Γ^*_{Λ} as a function of ρ_A

$$\Gamma_{\Delta}^{*} = \Gamma_{\rm sp} \left(\frac{\rho_A}{\rho_0} \right) + \Gamma_{\Delta}^{0} \left[\frac{q(m_N^{*}, m_N^{*})}{q(m_N^{*})} \right]$$

IV. Preliminary Results

O The TCS of the elastic π^+A scattering for 4 He, 12 C

Sum of Gaussians : Model-independent analysis by means of an expansion for ρ_A $\rho(r) = \sum A_i \left\{ \exp(-\left[(r - R_i)/\gamma\right]^2) + \exp(-\left[(r + R_i)/\gamma\right]^2) \right\} \text{ with } A_i = ZeQ_i / \left[2\pi^{3/2}\gamma^3(1 + 2R_i^2/\gamma^2)\right].$ [4] ATOMIC DATA AND NUCLEAR DATA TABLES 36, 495-536 (1987)

Summary

I. We studied about the elastic $\pi^+ p$ scattering at finite baryon density in symmetric nuclear matter using QMC model.

using QMC model and improve our preliminary results.

- II. The elastic π^+A scattering at finite baryon density has been investigated using Glauber model with $\tilde{\sigma}_{\pi^+N}(\sqrt{s},\rho_A)$ which is the result of previous study.
- III. We are planning to consider in-medium coupling constant such as $f^*_{\pi N\Lambda}$

Thank you for your attention!

II. Elastic
$$\pi^+ p$$
 scattering at find Ω in-medium Δ decay width Γ_{Δ}^*
 $\Gamma_{\Delta}^*(\sqrt{s^*}) = \Gamma_{sp} \left(\frac{\rho_B}{\rho_0}\right) + \Gamma_{\Delta}^0 \left[\frac{q(\sqrt{s})}{q(m-1)}\right]$
 $\Gamma_{\Delta}^*(\sqrt{s^*}) = \Gamma_{sp} \left(\frac{\rho_B}{\rho_0}\right) + \Gamma_{\Delta}^0 \left[\frac{q(\sqrt{s})}{q(m-1)}\right]$
 $\Gamma_{sp} = \Delta$ -spreading width (=80MeV)
 $B_0 = \text{cut-off parameter } (=200\text{MeV/c})$
 $B_0 = \text{cut-off parameter } (=200\text{MeV/c})$
 $B_0 = \text{nuclear saturation density } (=0.15\text{fm}^{-3})$
 $\mu(m, m_1, m_2) = \sqrt{\frac{(m^2 + m_1^2 - m_2^2)^2}{4m^2} - m_1^2} = \frac{1}{m^2}$

nite baryon density

 $\frac{\langle s^*, m_N^*, m_\pi \rangle}{m_\Delta, m_N, m_\pi} \left[\frac{3}{\sqrt{s^*}} \frac{m_\Delta^2}{\beta_0^2 + q^2(m_\Delta^*, m_N^*, m_\pi)} \frac{\beta_0^2 + q^2(m_\Delta^*, m_N^*, m_\pi)}{\sqrt{s^*} \beta_0^2 + q^2(\sqrt{s^*}, m_N^*, m_\pi)} \right]$ ->N Delta cross-section in nuclear matter, Nucl. Phys. A728, 135-164 (2003)

the c.m. momentum of outgoing particles with masses m_1 and m_2 from the decay of a particle with mass m.

The in-medium Δ decay width increases as the baryon density increases.

O The differential cross-section of elastic $\pi^+ p$ scattering at finite baryon density

