# A New $\boldsymbol{p} K^{-}$Peak Structure at $\Lambda \boldsymbol{\eta}$ Threshold and J-PARC E72 

CENUM Workshop<br>September 2 ${ }^{\text {nd }}, 2022$

Seongbae Yang<br>Korea University

## Contents

1. J-PARC E72: "Search for a narrow $\wedge^{*}$ resonance through $p\left(K^{-}, \Lambda\right) \eta$ reaction"

- Motivation: Evidence of a new $\wedge^{*}$ resonance
- Experimental method
- Current status

2. Line-shape analysis for a narrow $p K^{-}$peak structure near $\Lambda \eta$ threshold

- Two models: Breit-Wigner and Flatté functions
- $p K^{-}$mass distribution
- Fit results

3. Summary

- Differential cross sections of $K^{-} p \rightarrow \eta \Lambda$, Crystal Ball group



Quadratic shapes from $\sqrt{s}=1669$ to $1677 \mathrm{MeV} / \mathrm{c}^{2}$
$\rightarrow$ A narrow resonance $\left(\sim 1.670 \mathrm{GeV} / c^{2}\right)$ with $\mathbf{J}=\mathbf{3} / \mathbf{2}$

- Partial wave analyzes of the $K p \rightarrow \eta \Lambda$ data sample
$\rightarrow$ Kamano et al. $\mathrm{J}^{\mathrm{p}}=3 / 2^{+}\left(\mathrm{P}_{03}\right), \mathrm{M}=1671 \mathrm{MeV} / c^{2}, \Gamma=10 \mathrm{MeV} / c^{2}$ PRC 92, 025205
$\rightarrow$ Liu \& Xie. $\mathrm{J}^{\mathrm{p}}=3 / 2^{-}\left(\mathrm{D}_{03}\right), \mathrm{M}=1668.5 \mathrm{MeV} / c^{2}, \Gamma=1.5 \mathrm{MeV} / \mathrm{c}^{2}$ PRC 85, 038201
$\rightarrow$ Both results indicate that there is a narrow $\wedge^{*}$ with $3 / 2$ spin near $\eta \Lambda$ mass threshold.
- Dalitz plot of $\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$,

- $M\left(p K^{-}\right)$Distribution of $\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$decays

- $\Lambda^{*}$ and $\Sigma^{*}$ have wider widths near the $\sim 1665 \mathrm{MeV} / c^{2}$ region on the PDG.

| Baryon | Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$ | Width $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$ |
| :---: | :---: | :---: |
| $\Lambda(1670)$ | $1660-1680$ | $25-50$ |
| $\Sigma(1660)$ | $1630-1690$ | $40-200$ |
| $\Sigma(1670)$ | $1665-1685$ | $40-80$ |
| $\Lambda(1690)$ | $1685-1695$ | $50-70$ |

$\rightarrow$ The narrow peak is distinguished from known baryons due to its narrow width.

## What is it?

Mass: ~1665 GeV/c² Width: $\sim 10 \mathrm{MeV}$ Spin: 3/2
molecular state?


Pentaquark?
A threshold cusp or ...??


## The new $\Lambda^{*}$ search at J-PARC (J-PARC E72).

- We aim to observe the $\Lambda^{*}$ at the first time and measure its properties including the spin and the parity.
- $K^{-} p \rightarrow \eta \Lambda$ reaction with $730 \mathrm{MeV} / c K^{-}$beam and hypTPC having a large acceptance.

- J-PARC K1.8BR beamline: $700 \sim 800 \mathrm{MeV} / \mathrm{c} K^{-}$beam with $\sim 30 \mathrm{k} /$ spill
- Hyperon spectrometer: Large acceptance with HypTPC


Helmholtz magnet ( $\mathrm{B}=1.0 \mathrm{~T}$ )

- A new TPC for hadron experiments at J-PARC
- High resolution and large acceptance
- Good performance in previous experiment (J-PARC E42)



## Trigger

- Trigger type
- Trigger A: Two or more hits of THD.
- Trigger B: At least one hit of THD with large energy deposit ( > 4 MeV ).
- Both A \& B: ' $K^{-}$beam trigger by beamline spectrometer' and KVF veto.
- Expected trigger rate (50 kW beam)
- All kaon reactions at Target: 140 /spill
- At other materials: 200 /spill
- $K^{-}$beam decay: 240 /spill
- Total: ~600 /spill



## Expected Spectrometer Performance

*with worse analysis level

- Resolution
- Momentum of $\pi^{-}: 2.2 \%$ @full range
- Momentum of p: 3.8\% @full range
- Invariant mass of $\Lambda: 1.6 \mathrm{MeV} / c^{2}$
- Missing mass of $\eta: 1.3 \mathrm{MeV} / c^{2}$
- Acceptance
- (Trigger A||B)\&' $\Lambda$ reconstruction': 83\%


## Expected Yield

*Using realistic parameters ( 50 kW beam and $\Phi 54 \mathrm{~mm}$ target).

- Parameters
- Branching fraction of $\Lambda \rightarrow p \pi^{-}: 0.64$ - $K^{-}$beam hit target: $15 \mathrm{k} / \mathrm{spill}$
- Protons in target: $2.1 \times 10^{23} \times 0.9 / \mathrm{cm}^{2}$
- Cross-section: Crystal-ball experiment data
- Acceptance: ~83\% - Overall eff.: 0.8

Expected yield per 1 day


Expected stat. uncertainty of $P_{\Lambda}$ for 21 days (per each reaction angle bin)


- The 'Stage-2' approved.
- A new LH2 target with a larger diameter. Ф54 mm $\rightarrow$ Ф80 mm
- New trigger counters with MPPC.
- All spectrometers will be ready in 2022.


Prototype of KVC


15



Two approaches to explain the peaking structure.
(a) Breit-Wigner function: a new resonance
(b) Flatté function: a visible cusp enhanced by $\Lambda(1670)$ pole

(b)

- Breit-Wigner function: a resonance peak of unstable particles.


Figure 3.10 Plot of the Breit-Wigner formula (3.26).
B.R. Martin, Nuclear and Particle Physics An Introduction, Wiley (2009)

- Flatté Function: a peaking structure at a threshold ex) a threshold cusp

$$
\begin{aligned}
& f_{\mathrm{el}}=-\frac{1}{2 q} \frac{\Gamma_{P}}{E-E_{\mathrm{BW}}+i \frac{\Gamma_{P}}{2}+i \bar{g}_{K} \frac{k}{2}} \\
& k=\sqrt{m_{K}\left(\sqrt{s}-2 m_{k}\right)} \\
& * k \text { is imaginary when } m<2 m_{K}
\end{aligned}
$$

V. Baru et al., Eur. Phys. J. A 23, 523 (2005)



- Narrow pentaquarks states near meson-baryon thresholds
- New analysis with $246 \mathrm{k} \Lambda_{b}^{0} \rightarrow J / \psi K^{-} p$ decays

- Three narrow peak structures observed near meson-baryon thresholds
$\rightarrow$ molecular states of baryon-meson
$\rightarrow$ triangle-diagram process (?)

- Breit-Wigner and Flatté functions for $x(3872)$ at $M\left(J / \psi \pi^{+} \pi^{-}\right)$


LHCb, PRD 102, 092005 (2020)

- Efficiency correction on scatter plot due to non-uniform density.


$\rightarrow$ Bin-by-bin correction
- Non- $\Lambda_{c}^{+}$Background Subtraction:

We subtract the events in the sidebands from the signal region.


- Generic MC test for the efficiency correction and background subtraction.


$\rightarrow$ Successfully reproduced.
- BW fit results
: non-relativistic BW function (signal) $+5^{\text {th }}$ polynomial functions (background)


| Mass $\left(\mathbf{M e V} / \boldsymbol{c}^{\mathbf{2}}\right)$ | Width $(\mathbf{M e V})$ | $\boldsymbol{\chi}^{\mathbf{2}} / \boldsymbol{n d \boldsymbol { f }}$ |
| :---: | :---: | :---: |
| $1662.4 \pm 0.3$ | $23.5 \pm 1.6$ | $1.35(328 / 242)$ |

- Non-relativistic Flatté function,

$$
\frac{d N}{d m} \propto|f(m)|^{2}=\left|\frac{1}{m-m_{f}+\frac{i}{2}\left(\Gamma^{\prime}+\bar{g}_{\Lambda \eta} k\right)}\right|^{2}
$$

where $\quad m_{f}$ : Flatté mass
$\Gamma^{\prime}$ : a sum of partial widths other than $\Lambda \eta$ decay
$\bar{g}_{\Lambda \eta}$ : coupling constant of $\Lambda \eta$ channel
$k: \sqrt{2 \mu_{\Lambda \eta}\left(m-m_{\Lambda}-m_{\eta}\right)}, * k$ is imaginary when $m<m_{\Lambda}+m_{\eta}$

- Flatté fit results
: The scaling behavior of parameters $\rightarrow m_{f}$ fixed.


- Interference with other amplitudes:
a constant can be coherently added, $\frac{d N}{d m} \propto\left|f(m)+r e^{i \theta}\right|^{2}$, to represent interference with other amplitudes.

- Flatté fit results with the interference term,

$$
{ }^{*} m_{f}=1674.4 \mathrm{MeV} / c^{2} \text { and } \theta=\pi \text { fixed. }
$$




| $\left.\boldsymbol{m}_{\boldsymbol{f}} \mathbf{( M e V} / \boldsymbol{c}^{\mathbf{2}}\right)$ | $\boldsymbol{\Gamma}^{\mathbf{\prime}}(\mathbf{M e V})$ | $\overline{\boldsymbol{g}}_{\boldsymbol{\Lambda} \boldsymbol{\eta}}$ | $\chi^{\mathbf{2}} / \mathbf{n d f}$ |
| :---: | :---: | :---: | :---: |
| 1674.4 (fixed) | $27.2 \pm 1.9$ | $0.258 \pm 0.023$ | $1.06(257 / 243)$ |

- BW fit results with the interference term


| Mass $\left(\mathbf{M e V} / \boldsymbol{c}^{\mathbf{2}}\right)$ | Width $(\mathbf{M e V})$ | $\boldsymbol{\chi}^{\mathbf{2}} / \boldsymbol{n d f}$ |
| :---: | :---: | :---: |
| $1665.4 \pm 0.5$ | $23.8 \pm 1.2$ | $1.27(308 / 242)$ |

- The peak structure is significantly favored to a threshold cusp by $7 \sigma$ than a hadron resonance.
- Significant interference with other amplitudes is seen.
- In Flatté fit results, the mass and width of $\Lambda(1670)$ are consistent with the recent measurement

| Channel | Mass (MeV/ $\boldsymbol{c}^{\mathbf{2}}$ ) | Width (MeV) |
| :---: | :---: | :---: |
| $\Lambda_{c}^{+} \rightarrow \eta \Lambda \pi^{+}$ | $1674.3 \pm 0.8 \pm 4.9$ | $36.1 \pm 2.4 \pm 4.8$ |
| $\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$ | 1674.4 (fixed) | $50.3 \pm 2.9_{-4.0}^{+4.2}$ |



Belle, PRD 103, 052005 (2021)

## Summary

- Evidence of a new exotic hadron is seen in Belle and Crystal Ball results.

$$
\wedge *: M=\sim 1665 \mathrm{MeV} / c^{2}, \mathrm{~J}=3 / 2 \text {, and } \Gamma=\sim 10 \mathrm{MeV}
$$

- J-PARC E72: Search for the $\Lambda^{*}$ through $p\left(K^{-}, \Lambda\right) \eta$ reaction.
- A new target and trigger counters are being developed.
- All detectors will be ready in 2022.
- Line-shape analysis for the new $p K^{-}$peak structure near $\Lambda \eta$ threshold.
- Two assumptions: a new hadron resonance and a threshold cusp.
- The peak structure is significantly favored to a threshold cusp by $7 \sigma$ than a hadron resonance.
- It is the first case to identify a threshold cusp by a spectrum shape.


## *Backup Slides

## HypTPC

■ Time projection chamber
$\rightarrow$ Developed for hadron experiments, H-dibaryon search (E42) and baryon spectroscopy (E45) at J-PARC
$\rightarrow$ The JAEA hadron group is one of main collaborators of these experiments.
$\rightarrow$ Construction already completed.


## How to Determine Spin and Parity

- Angular distribution
$\rightarrow$ When $J=3 / 2$ or high, $\cos ^{2} \theta$ term is appeared. Other cases, constant or $\cos \theta$ distribution.
$\rightarrow$ However, we cannot distinguish $3 / 2^{+}$and $3 / 2^{-}$.
■ We can determine the parity from $\Lambda$ polarization distribution.
$\rightarrow \mathrm{P}$ wave $\left(3 / 2^{+}\right)$and D wave $\left(3 / 2^{-}\right)$can be distinguished by the $\Lambda$ polarization distribution.




## H-dibaryon Search (E42) and Baryon Spectroscopy (E45)

■ These two experiments are being prepared by the JAEA hadron group as a series of experiments using the HypTPC. Both experiments will extend our knowledge of hadron structure and provide a key information for nonperturbative QCD calculation.
■ The E42 is a search for $H$-dibaryon consisting of uuddss quarks. It will provide a crucial information to determine whether the $H$-dibaryon exists or not.

- The E45 is a baryon spectroscopy with $(\pi, 2 \pi)$ reaction (J-PARC E45). Precise experimental data of high mass baryons will be taken and we also expect to observe new nucleon resonances.

$N^{*}$ production process, $1.8 \mathrm{GeV} / c$ $\pi$ beam
H-dibaryon production process, $1.8 \mathrm{GeV} / \mathrm{c}$ K beam

$\rightarrow$ Target locates at FF.


## Trigger

-2 types of trigger $(A \| B)$ will be used.
-Type A: nhToF>1 \&\& DEF \&\& KVC
-Type B : nhToF>0 (at 0-6 and 30-31 segments) and Edep $>4 \mathrm{MeV} \& \&$ DEF $\& \& \overline{\mathrm{KVC}}$
p from Lambda pi- from Lambda beam
pi- from beam decay mu- from beam decay


Deposit Energy at upstream ToF
p from Lambda pi- from Lambda beam pi- from beam decay mu- from beam decay


## Beam Profile

-Real K beam data in K1.8BR FF z-position


## Field Optimization

-Center of beam momentum: $730 \mathrm{MeV} / \mathrm{c}$


## Beam Momentum Calibration

- The same way as the Crystal-ball analysis, $\sigma \approx P_{\eta}^{C M}$.
- Calibration runs, beam energy scanning, can determine the absolute momentum.
- beam momentum: 685, 705, 725, 745, and $765 \mathrm{MeV} / \mathrm{c}$ (covers $670 \sim 780 \mathrm{MeV} / \mathrm{c}$ range).
- half day for each momenta.
- $\pm 1 \mathrm{MeV} / \mathrm{c}$ level calibration is possible.
- Events/Beam distribution after an acceptance correction
- Fitting function: $\operatorname{par}_{1} \times p^{*}, p^{*}=f\left(p_{\text {beam }}+p a r_{2}\right)$ is $\eta$ momentum in C.M.



## - Systematic uncertainties

TABLE I. Systematic uncertainties in $\Gamma^{\prime}, \bar{g}_{\Lambda \eta}$, and $\Gamma_{\text {tot }}$ from Flatté fit for the $p K^{-}$peak structure.

| Source | $\Gamma^{\prime}(\mathrm{MeV})$ | $\bar{g}_{A \eta}\left(\times 10^{-3}\right)$ | $\Gamma_{\text {tot }}(\mathrm{MeV})$ |
| :--- | :---: | :---: | :---: |
| Bin size | $\pm 0.0$ | $\pm 3$ | $\pm 0.3$ |
| Detector resolution | $+0.3,-0.4$ | $+7,-6$ | $\pm 0.2$ |
| Absolute mass scale | $\pm 0.8$ | $+5,-6$ | $\pm 1.3$ |
| Fit range | +1.1 | -36 | $+0.8,-2.4$ |
| Efficiency correction | $\pm 0.6$ | $\pm 8$ | $\pm 0.2$ |
| PDF model | $+3.5,-1.9$ | $+9,-29$ | $+3.4,-2.1$ |
| $\theta$ | $\pm 3.3$ | $\pm 59$ | $\pm 2.0$ |
| Total | $+5.0,-3.9$ | $+61,-75$ | $+4.2,-4.0$ |

