A New pK^- Peak Structure at $\Lambda\eta$ Threshold and J-PARC E72

CENUM Workshop September 2nd, 2022

Seongbae Yang Korea University

Contents

- 1. J-PARC E72: "Search for a narrow Λ^* resonance through $p(K^-, \Lambda)\eta$ reaction"
 - Motivation: Evidence of a new Λ^* resonance
 - Experimental method
 - Current status
- 2. Line-shape analysis for a narrow pK^- peak structure near $\Lambda \eta$ threshold
 - Two models: Breit-Wigner and Flatté functions
 - pK^- mass distribution
 - Fit results
- 3. Summary

• Differential cross sections of $K^-p \rightarrow \eta \Lambda$, Crystal Ball group

Quadratic shapes from $\sqrt{s} = 1669$ to $1677 \text{ MeV}/c^2$ \rightarrow A narrow resonance (~1.670 GeV/c²) with **J** = **3**/**2**

- Partial wave analyzes of the $Kp \rightarrow \eta \Lambda$ data sample
- → Kamano et al. $J^p = 3/2^+$ (P₀₃), M = 1671 MeV/c², Γ = 10 MeV/c² PRC 92, 025205
- → Liu & Xie. $J^p = 3/2^-$ (D₀₃), M = 1668.5 MeV/ c^2 , Γ = 1.5 MeV/ c^2 PRC 85, 038201
- → Both results indicate that there is a narrow Λ^* with 3/2 spin near $\eta \Lambda$ mass threshold.

• $M(pK^{-})$ Distribution of $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ decays

• Λ^* and Σ^* have wider widths near the ~1665 MeV/ c^2 region on the PDG.

Baryon	Mass (MeV/c ²)	Width (MeV/c ²)	
Λ(1670)	1660-1680	25-50	
Σ(1660)	1630-1690	90 40-200	
Σ(1670)	1665-1685	40-80	
Λ(1690)	1685-1695 50-70		

 \rightarrow The narrow peak is distinguished from known baryons due to its narrow width.

What is it?

The new Λ^* search at J-PARC (J-PARC E72).

- We aim to observe the Λ* at the first time and measure its properties including the spin and the parity.
- $K^-p \rightarrow \eta \Lambda$ reaction with 730 MeV/*c* K^- beam and hypTPC having a large acceptance.

- J-PARC K1.8BR beamline: 700~800 MeV/c K^- beam with ~30 k/spill
- Hyperon spectrometer: Large acceptance with HypTPC

- A new TPC for hadron experiments at J-PARC
- High resolution and large acceptance
- Good performance in previous experiment (J-PARC E42)

Trigger

- Trigger type
- Trigger A: Two or more hits of THD.
- Trigger B: At least one hit of THD with large energy deposit (>4 MeV).
- Both A & B: K^- beam trigger by beamline spectrometer' and KVF veto.
- Expected trigger rate (50 kW beam)
- All kaon reactions at Target: 140 /spill
- At other materials: 200 /spill
- K⁻ beam decay: 240 /spill
- Total: ~600 /spill

Expected Spectrometer Performance

*with worse analysis level

- Resolution
- Momentum of π^- : 2.2% @full range
- Momentum of p: 3.8% @full range
- Invariant mass of Λ : 1.6 MeV/ c^2
- Missing mass of η : 1.3 MeV/ c^2
- Acceptance
- (Trigger A||B)&' Λ reconstruction': 83%

Expected Yield

*Using realistic parameters (50 kW beam and Φ54 mm target).

- Parameters
- Branching fraction of $\Lambda \rightarrow p\pi^-$: 0.64 K^- beam hit target: 15 k/spill
- Protons in target: $2.1 \times 10^{23} \times 0.9$ /cm²
- Cross-section: Crystal-ball experiment data
- Acceptance: ~83% Overall eff.: 0.8

- The 'Stage-2' approved.
- A new LH2 target with a larger diameter. Φ 54 mm $\rightarrow \Phi$ 80 mm
- New trigger counters with MPPC.
- All spectrometers will be ready in 2022.

Prototype of BAC

Prototype of KVC

Two approaches to explain the peaking structure.

- (a) Breit-Wigner function: a new resonance
- (b) Flatté function: a visible cusp enhanced by $\Lambda(1670)$ pole

Breit-Wigner function: a resonance peak of unstable particles.

Figure 3.10 Plot of the Breit–Wigner formula (3.26).

B.R. Martin, Nuclear and Particle Physics An Introduction, Wiley (2009) Flatté Function: a peaking structure at a threshold ex) a threshold cusp

$$f_{el} = -\frac{1}{2q} \frac{\Gamma_P}{E - E_{BW} + i\frac{\Gamma_P}{2} + i\bar{g}_K\frac{k}{2}}$$

$$k = \sqrt{m_K(\sqrt{s} - 2m_k)}$$
*k is imaginary when $m < 2m_K$

V. Baru et al., Eur. Phys. J. A 23, 523 (2005)

- Narrow pentaquarks states near meson-baryon thresholds
 - New analysis with 246 k $\Lambda_b^0 \rightarrow J/\psi K^- p$ decays
- Three narrow peak structures observed near meson-baryon thresholds
 - \rightarrow molecular states of baryon-meson
 - → triangle-diagram process (?)

• Breit-Wigner and Flatté functions for x(3872) at $M(J/\psi \pi^+\pi^-)$

LHCb, PRD 102, 092005 (2020)

• Efficiency correction on scatter plot due to non-uniform density.

\rightarrow Bin-by-bin correction

• Non- Λ_c^+ Background Subtraction:

We subtract the events in the sidebands from the signal region.

 Generic MC test for the efficiency correction and background subtraction.

 \rightarrow Successfully reproduced.

BW fit results

: non-relativistic BW function (signal) + 5^{th} polynomial functions (background)

Mass (MeV/ c^2)	Width (MeV)	χ ² /ndf	
1662.4±0.3	1662.4±0.3 23.5±1.6		

Non-relativistic Flatté function,

$$\frac{dN}{dm} \propto \left|f(m)\right|^2 = \left|\frac{1}{m - m_f + \frac{i}{2}\left(\Gamma' + \bar{g}_{\Lambda\eta}k\right)}\right|^2$$

where m_f : Flatté mass

Γ': a sum of partial widths other than $\Lambda \eta$ decay $\bar{g}_{\Lambda \eta}$: coupling constant of $\Lambda \eta$ channel $k: \sqrt{2\mu_{\Lambda \eta}(m - m_{\Lambda} - m_{\eta})}, *k$ is imaginary when $m < m_{\Lambda} + m_{\eta}$

- Flatté fit results
- : The scaling behavior of parameters $\rightarrow m_f$ fixed.

Interference with other amplitudes:

a constant can be coherently added, $\frac{dN}{dm} \propto |f(m) + re^{i\theta}|^2$, to represent interference with other amplitudes.

Flatté fit results with the interference term,

- BW fit results with the interference term

Mass (MeV/ c^2)	Width (MeV)	χ ² /ndf	
1665.4±0.5	23.8±1.2	1.27 (308/242)	

- The peak structure is significantly favored to a threshold cusp by 7σ than a hadron resonance.
- Significant interference with other amplitudes is seen.
- In Flatté fit results, the mass and width of $\Lambda(1670)$ are consistent with the recent measurement

Channel	Mass (MeV/ c^2)	Width (MeV)	
$\Lambda_c^+ \to \eta \Lambda \pi^+$	1674.3±0.8±4.9	36.1±2.4±4.8	
$\Lambda_c^+ \to p K^- \pi^+$	1674.4 (fixed)	$50.3 \pm 2.9^{+4.2}_{-4.0}$	

Summary

• Evidence of a new exotic hadron is seen in Belle and Crystal Ball results.

A*: M = ~1665 MeV/ c^2 , J = 3/2, and Γ = ~10 MeV

- J-PARC E72: Search for the Λ^* through $p(K^-, \Lambda)\eta$ reaction.
- A new target and trigger counters are being developed.
- All detectors will be ready in 2022.
- Line-shape analysis for the new pK^- peak structure near $\Lambda\eta$ threshold.
- Two assumptions: a new hadron resonance and a threshold cusp.
- The peak structure is significantly favored to a threshold cusp by 7σ than a hadron resonance.
- It is the first case to identify a threshold cusp by a spectrum shape.

*Backup Slides

НурТРС

- Time projection chamber
- → Developed for hadron experiments, H-dibaryon search (E42) and baryon spectroscopy (E45) at J-PARC
- \rightarrow The JAEA hadron group is one of main collaborators of these experiments.
- \rightarrow Construction already completed.
- \rightarrow Large acceptance ~4 π
- \rightarrow Position resolution < 300 μm

How to Determine Spin and Parity

Angular distribution

→ When J = 3/2 or high, $\cos^2\theta$ term is appeared. Other cases, constant or $\cos\theta$ distribution.

 \rightarrow However, we cannot distinguish $3/2^+$ and $3/2^-$.

• We can determine the parity from Λ polarization distribution.

→ P wave $(3/2^+)$ and D wave $(3/2^-)$ can be distinguished by the Λ polarization distribution.

H-dibaryon Search (E42) and Baryon Spectroscopy (E45)

These two experiments are being prepared by the JAEA hadron group as a series of experiments using the HypTPC. Both experiments will extend our knowledge of hadron structure and provide a key information for nonperturbative QCD calculation.

• The E42 is a search for H-dibaryon consisting of *uuddss* quarks. It will provide a crucial information to determine whether the H-dibaryon exists or not.

■ The E45 is a baryon spectroscopy with $(\pi, 2\pi)$ reaction (J-PARC E45). Precise experimental data of high mass baryons will be taken and we also expect to observe new nucleon resonances.

H-dibaryon production process, 1.8 GeV/*c* K beam

 N^* production process, 1.8 GeV/c π beam

\rightarrow Target locates at FF.

Trigger

-2 types of trigger (A||B) will be used.

-Type A: nhToF>1 && DEF && KVC

-Type B: nhToF>0 (at 0-6 and 30-31 segments) and Edep > 4 MeV && DEF && $\overline{\rm KVC}$

p from Lambda pi- from Lambda beam pi- from beam decay mu- from beam decay

Beam Profile

-Real K beam data in K1.8BR FF z-position

Field Optimization

-Center of beam momentum: 730 MeV/c

Beam Momentum Calibration

- The same way as the Crystal-ball analysis, $\sigma \approx P_{\eta}^{CM}$.
- Calibration runs, beam energy scanning, can determine the absolute momentum.
- beam momentum: 685, 705, 725, 745, and 765 MeV/*c* (covers 670~780 MeV/*c* range).
- half day for each momenta.
- $\pm 1 \text{ MeV}/c$ level calibration is possible.

- Events/Beam distribution after an acceptance correction
- Fitting function: $par_1 \times p^*$, $p^* = f(p_{beam} + par_2)$ is η momentum in C.M.

Systematic uncertainties

Source	$\Gamma' ~({\rm MeV})$	$\bar{g}_{\Lambda\eta} \; (\times 10^{-3})$	$\Gamma_{\rm tot}~({\rm MeV})$
Bin size	± 0.0	± 3	± 0.3
Detector resolution	+0.3, -0.4	+7, -6	± 0.2
Absolute mass scale	± 0.8	+5, -6	± 1.3
Fit range	+1.1	-36	+0.8, -2.4
Efficiency correction	± 0.6	± 8	± 0.2
PDF model	+3.5, -1.9	+9, -29	+3.4, -2.1
θ	± 3.3	± 59	± 2.0
Total	+5.0, -3.9	+61, -75	+4.2, -4.0

TABLE I. Systematic uncertainties in Γ' , $\bar{g}_{\Lambda\eta}$, and Γ_{tot} from Flatté fit for the pK^- peak structure.