

CENuM for the CMS heavy-ion program

— JaeBeom Park (Korea University) —

10:00	Elliptic and triangular flow of charmonium states in heavy ion collisions	Prof. Sungtae Cho
	Inha University	09:30 - 09:55
	CENuM for the CMS heavy-ion program	재범 빅
	Inha University	09:55 - 10:20
	Simulation for Heavy IoN Collision with Heavy-quark and ONia	Jinjoo Seo
	Inha University	10:20 - 10:45

11:00	Remarks on the recent UPC and heavy quark results in CMS	Prof. 용선 김
	Inha University	11:00 - 11:25
	Study of upsilon(1S) flow in pPb collision system with the CMS detector	기수 이
	Inha University	11:25 - 11:50
	Measurement of excited state Upsilons in PbPb collision with CMS	수환 이
12:00	Inha University	11:50 - 12:15

All results here!

CENuM in CMS

• <u>Korea University</u>

- Team Leader : Byungsik Hong
- Post-Doc : Seyoung Han, Jaebeom Park
- PhD candidates : Kisoo Lee, Soohwan Lee, Junseok Lee (New)

• <u>Sejong University</u>

- Team Leader : Yongsun Kim
- PhD candidates : Yechan Cheon, Jeongho Kim (New)

Contribution in CMS

- <u>PAG/POG Leadership</u>
 - <u>HIN PAG convener</u> : Yongsun (2020. 09 present)
 - <u>Dilepton PinG leader</u> : JaeBeom (2020. 09 present)
 - -> following new leader : Soohwan Lee (2years)
 - <u>E/gamma miniPOG leader</u> : Seyoung (2020. 11 present)
- Service work / run-preparation related tasks (Soohwan, Kisoo, Junseok, ...)
 - Muon T&P at low- p_T for 2018 PbPb
 - miniAOD 2018 PbPb : electrons, centrality calibrations/filters
 - Run3 MB trigger : ZDC online info, MC production & ZDC neutron number effect
 - Run3 ECAL : Threshold for ZS & SR for L1 trigger
 - 2018 PbPb photon identification using TMVA
 - HLT Run3 studies for muons & electrons & photons
 - Run3 dilepton trigger team

Recent results of CENuM CMS

- <u>Y(1S) elliptic flow (v_2) in pPb 8.16 TeV</u>
 - First measurement in small systems!
 - Investigation of Y(1S)-h correlation
 - Reported at Quark Matter 2022 (April)
- J/ψ and $\psi(2S)$ flow (v₂,v₃) in PbPb 5.02 TeV
 - First measurement of $\psi(2S)$ in PbPb!
 - Investigation of charmonium azimuthal correlation in QGP
 - Reported at Quark Matter 2022 (April)

• Observation of Y(3S) in PbPb 5.02 TeV

- Observation of Y(3S) in PbPb!
- Y sequential suppression study
- Reported at Quark Matter 2022 (April)
- Y(nS) modification factors in pPb 5.02 TeV
 - All Y(nS) states identified in pPb for the first time!
 - Y sequential suppression study
 - Accepted in PLB

Screening : Beginning of the journey

Volume 178, number 4

PHYSICS LETTERS B

J/ ψ SUPPRESSION BY QUARK-GLUON PLASMA FORMATION \star

T. MATSUI Center for Theoretical Physics, Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

and

H. SATZ

Fakultät für Physik, Universität Bielefeld, D-4800 Bielefeld, Fed. Rep. Germany and Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

Received 17 July 1986

If high energy heavy ion collisions lead to the formation of a hot quark-gluon plasma, then colour screening prevents $c\bar{c}$ binding in the deconfined interior of the interaction region. To study this effect, the temperature dependence of the screening radius, as obtained from lattice QCD, is compared with the J/ ψ radius calculated in charmonium models. The feasibility to detect this effect clearly in the dilepton mass spectrum is examined. It is concluded that J/ ψ suppression in nuclear collisions should provide an unambiguous signature of quark-gluon plasma formation.

Quiz (2) : how many citations? ① 500-1000 ② 1000-2000 ③ 2000-3000 ④ 3000-4000

Screening : Beginning of the journey

Volume 178, number 4

PHYSICS LETTERS B

9 October 1986

Vacuum

Quiz (2) : how many citations? ① 500-1000 ② 1000-2000 ③ 2000-3000 🐱 3000-4000

 $T \ll T_{c}$ $T \ll T_{c}$

T. Matsui, H. Satz [PLB 178 (1986) 416] S. Digal, P. Petreczky, H. Satz [PRD 64 (2001) 094015]

Sequential melting by color screening

Quarkonia as thermometer of QGP

Various in-medium effects

Suppression

- Debye screening
 - -> static color screening ReV_s(r,T)
- Gluo-dissociation / Landau-damping
 -> dynamical screening ImV_s(r,T)

Recombination (Regeneration)

- Uncorrelated (off-diagonal) recombination
- Correlated (diagonal) recombination

Initial/Final state effects of nucleus

- nPDF, CGC, coherent energy loss (initial/final)
- co-mover breakup, nuclear absorption

[<u>IJMP E 24 (2015) 1530008</u>]

Uncorrelated Correlated

Some interesting remarks

• Do quarkonia suffer only suppression and/or recombination at high- p_T ?

Are the 'measured' quarkonium states coming from initial heavy quark pair?

When are quarkonia formed inside medium?

Charmonia in AA

- Sequential suppression : ψ (2S) more suppressed than J/ ψ
- Increasing trend at low- p_{T} : described by theory calculation including recombination

J/ψ in jets in PbPb

[PLB 805 (2020) 135434]

- Less suppression for isolated J/ ψ
 - : difference ~x5 (although large unc.)

J/ψ in jets in PbPb

- J/ ψ production by parton shower : when does this happens?
 - \rightarrow High-p_T J/ ψ v₂ implies jet-quenching effects?

No QGP effect for J/ψ itself? (extreme case)

• NO J/ ψ dissociation needed —> suppressed only by jet-quenching

- Inclusive-jet vs gamma-jet sampling
 —> Color charge dependence?
 - -> Quantifying jet-quenching contribution
- - Large b-fraction at high-p_T
 - : Separation of prompt component
 - -> flavor dependence comes for free

Quarkonium feed-down

- Significant contributions from feed-down! —> Crucial on data interpretation
- Advantage of ψ (2S) : almost free from feed-down effects!

Quarkonium feed-down

• Caveat for Y(2S) and Y(3S) : Still large! Decreasing towards low- p_T ?

Quarkonium formation time

Quantum coherence

[PLB 805 (2020) 135434] [PRL 118 (2017) 192001]

- Quarkonium formation time delayed above dissociation temperature?
- Temperature environment hot enough to modify quarkonium formation time scales?
- Even in pp : high-p_T J/ ψ produced at later stages by parton shower

Quarkonium state in medium

[M. Strickland SQM 2021] **Open quantum system (OQS) approach**

Medium = light quarks and gluons that comprise the QGP

Can treat heavy quarkonium states propagating through QGP using an open quantum system approach

$$H_{
m tot} = H_{
m probe} \otimes I_{
m medium} + rac{I_{
m probe} \otimes H_{
m medium}}{H_{
m medium}} + rac{H_{
m int}}{H_{
m int}}$$

[P. Gossiaux SQM 2022]

regime	SU3 ?	Dissipation ?	3D / 1D	Num method	year	remark	ref
	No	No	1D	Stoch potential	2018		Kajimotoet al. , Phys. Rev. D 97, 014003 (2018), 1705.03365
	Yes	No	3D	Stoch potential	2020	Small dipole	R. Sharma et al Phys. Rev. D 101, 074004 (2020), 1912.07036
	Yes	No	3D	Stoch potential	2021		Y. Akamatsu, M. Asakawa, S. Kajimoto (2021), 2108.06921
	No	Yes	1D	Quantum state diffusion	2020		T. Miura, Y. Akamatsu et al, Phys. Rev. D 101, 034011 (2020), 1908.06293
	Yes 🗸	Yes 🧹	1D	Quantum state diffusion	2021		Akamatsu & Miura, EPJ Web Conf. 258 (2022) 01006, 2111.15402
	No	Yes	1D	Direct resolution	2021		O. Ålund, Y. Akamatsu et al, Comput. Phys. 425, 109917 (2021), 2004.04406
	Yes 🧹	Yes 🧹	1D	Direct resolution	2022		S Delorme et al, https://inspirehep.ne /literature/ 2026925
pNRQCD (i)	Yes	No	1D+	Direct resolution	2017	S and P waves	N. Brambilla et al, Phys. Rev. D96, 034021 (2017), 1612.07248
(i) Et (ii)	Yes	No	1D+	Direct resolution	2017	S and P waves	N. Brambilla et al, Phys. Rev. D 97, 074009 (2018), 1711.04515
(i)	Yes	No	Yes	Quantum jump	2021	See SQM 2021	N. Brambilla et al., JHEP 05, 136 (2021), 2012.01240 & Phys.Rev.D 104 (2021) 9, 094049, 2107.06222
(i)	Yes 🗸	Yes 🗸	Yes 🗸	Quantum jump	2022		N. Brambilla et al. 2205.10289
(iii)	Yes 🧹	Yes 🗸	Yes 🧹	Boltzmann (?)	2019		Yao & Mehen, Phys.Rev.D 99 (2019) 9 096028, 1811.07027
NRQCD & « pNRQCD »	Yes	Yes	1D	Quantum state diffusion	2022		Miura et al. http://arxiv.org/abs/2205.15551v1
Other	No	Yes	1D	Stochastic Langevin Eq.	2016	Quadratic W	Katz and Gossiaux

• OQS to get rid of formation time?

- However OQS deviates for Y(3S) RAA ...

- Stronger suppression of excited states at <u>backward rapidity</u> & <u>low-p</u>
- Similarity between charmonia and bottomonia?

Bottomonia in pPb vs model

• nPDF + comover breakup explains additional suppression of excited states?

Comover vs transport in pA

Comover Interaction Model

• Survival probability of quarkonium interacting w comovers

$$\tau \frac{\mathrm{d}\rho^{\psi}}{\mathrm{d}\tau} (b, s, y) = -\sigma^{co-\psi} \rho^{co}(b, s, y) \rho^{\psi}(b, s, y)$$
$$S_{\psi}^{co}(b, s, y) = \exp\left\{-\sigma^{co-\psi} \rho^{co}(b, s, y) \ln\left[\frac{\rho^{co}(b, s, y)}{\rho_{pp}(y)}\right]\right\}$$

Depends on
 1) quarkonium dissociation rate -> matched to data
 2) comover density -> determined with N_{coll} & dN_{ch}/dη

Transport Model

• Thermal rate equation of quarkonium yields

$$\frac{\mathrm{d}N_{\Psi}(\tau)}{\mathrm{d}\tau} = -\left(\Gamma_{\Psi}(T(\tau))\right) \left[N_{\Psi}(\tau) - N_{\Psi}^{\mathrm{eq}}(T(\tau))\right]$$

$$N_{\Psi}^{\mathrm{eq}}(T) = V_{\mathrm{FB}}\gamma_{c}^{2}d_{\Psi}\int \frac{d^{3}p}{(2\pi)^{3}}f_{\Psi}^{\mathrm{eq}}(E_{p};T)$$
Dissociation rate depending on T (E. density)

- Medium evolution matched to $dN_{ch}/d\eta$
- Comover breakup model `actual' treatment similar to transport calculations?
- How much of modifications in pA to be considered in AA interpretation?

Multiplicity dependence

- Clear dependence on the choice of rapidity overlap b/w J/ ψ & N_{ch}
- Discrepancy removed by excluding $J/\psi \rightarrow \mu^+\mu^-$ in track count
 - Indication of important role of MPI?

Y vs multiplicity

Great contribution of CENuM in HIN CMS

☑Significant amount of analysis published + leading role in the CMS heavy ion the group

✓Looking forward for Run3 data + unique measurements

back-up

Charmonia in pPb @ LHC

Inclusive J/ψ (ALICE) *pPb* 8.16 TeV pT < 20 GeV
Prompt J/ψ (LHCb) *pPb* 8.16 TeV pT < 14 GeV
Prompt J/ψ (ATLAS) *pPb* 5.02 TeV 8 < pT < 40 GeV
Prompt J/ψ (CMS) *pPb* 5.02 TeV 10 < pT < 30 GeV
Prompt J/ψ (CMS) *pPb* 5.02 TeV 6.5 < pT < 10 GeV
Prompt ψ(2S) (CMS) *pPb* 5.02 TeV 10 < pT < 30 GeV
Prompt ψ(2S) (CMS) *pPb* 5.02 TeV 6.5 < pT < 10 GeV
Prompt ψ(2S) (CMS) *pPb* 5.02 TeV 6.5 < pT < 10 GeV
Prompt ψ(2S) (CMS) *pPb* 5.02 TeV 6.5 < pT < 10 GeV
Prompt ψ(2S) (CMS) *pPb* 5.02 TeV 6.5 < pT < 10 GeV
Prompt ψ(2S) (CMS) *pPb* 5.02 TeV 4 < pT < 10 GeV
Inclusive ψ(2S) (ALICE) *pPb* 8.16 TeV pT < 12 GeV

- EPJC 78 (2018) 171 (
 PLB 774 (2017) 159 (
 JHEP 03 (2016) 133 (
 JHEP 07 (2020) 237 (
- EPJC 77 (2017) 269 🗘
- PLB 790 (2019) 509 []
- ▶ JHEP 07 (2018) 160 🗘

- Overall 'decreasing trend' towards forward rapidity —> nPDF based predictions
- Suppression for $\psi(2S)$: additional final state effects comover breakup? dissociation?

Charmonia in pA RHIC vs LHC

- Similar trend for both J/ ψ & ψ (2S) at RHIC and LHC
 - Similar `amount' of initial/final effects?

J/ψ in pA RHIC vs LHC

• Different event-activity dependence for charm & bottom

J/ψ in pPb vs model

- J/ ψ modification well explained by nPDF / CGC predictions
- Negligible contributions from final state effects (comover or hot nuclear matter)

Charmonia in pA vs model

- Attempts to describe ψ (2S) suppression with comover breakup & QGP-like HNM effects
 - Tension b/w model & data in both RHIC and LHC
 - Similar nuclear absorption for J/ ψ & ψ (2S) @ RHIC —> already hot in pAu 200 GeV?

Bottomonia in pPb vs model

• Y(1S) R_{pPb} data in agreement with nPDF calculations

X. Bai, Tue 09:00

X. Bai, Tue 09:00

• $R_{AA}(J/\psi)$ RHIC > $R_{AA}(J/\psi)$ LHC at <u>high-p</u> : Stronger suppression at LHC (higher temperature)

- $R_{AA}(J/\psi)$ RHIC > $R_{AA}(J/\psi)$ LHC at <u>high-p</u>_T : Stronger suppression at LHC (higher temperature)
- Enhancement at low- p_T in LHC energies : Sign of recombination (abundant charm cross section)

- $R_{AA}(J/\psi)$ RHIC > $R_{AA}(J/\psi)$ LHC at <u>high-p</u> : Stronger suppression at LHC (higher temperature)
- Enhancement at <u>low-p_T</u> in LHC energies : Sign of recombination (abundant charm cross section)
- $v_2(J/\psi)$ LHC $\geq v_2(J/\psi)$ RHIC at low-p_T -> Precision need to be improved

- J/ ψ & ψ (2S) measurements in a wide p_T range at LHC
- Larger suppression for $\psi \text{(2S)}$ than J/ ψ
- Increasing trend at low- p_{T} : described by theory calculation including recombination

- J/ ψ & ψ (2S) measurements in a wide p_T range at LHC
- Larger suppression for ψ (2S) than J/ ψ
- prompt ψ (2S) v₂ \geq prompt J/ ψ v₂
 - Different amount of recombination? Path-length dependent dissociation? etc...

Charmonia in jets

• Significant contribution from (inside) jets for J/ ψ production!

[CMS pp 8 TeV PLB 804 (2020) 135409]

~85% of J/ ψ are produced within a jet (E_{J/ ψ} > 15 GeV, |y_{J/ ψ}| < 1, E_{jet} > 19 GeV, |n_{jet}| < 1)

Charmonia in jets

• Later production by parton shower

Charmonia in jets

[PLB 805 (2020) 135434] G. Bak, Tue 09:40

- Less suppression for isolated J/ ψ
 - : difference ~x5 (although large unc.)

• Less enhancement (or larger suppression) of J/ ψ towards forward rapidity

Charmonia in pPb

- Overall 'decreasing trend' towards forward rapidity
 —> Consistent with nPDF based predictions
- Suppression for $\psi(2S)$: final state effects from comover-breakup?

Charmonia in p(d)A

02 September 2022

Charmonia in p(d)A

Υ (3S)/ Υ (2S) double ratio & Υ recombination

[CMS-PAS-HIN-21-007]

- Double ratio of Y(3S) / Y(2S) as a discriminator for Upsilon in-medium effects?
- Significant contribution from recombination processes? Quite model-dependent...

Bc / X(3872)

