

#### **CENUM** 2022 CENuM Workshop

# Simulation for Heavy loN Collision with **Heavy-quark and ONia** (SHINCHON)

Sanghoon Lim, Jeabeom Park, Junlee Kim Byungsik Hong, Eun-Joo Kim, MinJung Kweon, Yongsun Kim Su Houng Lee, Sungtae Cho, Juhee Hong

2022.09.03.

Jinjoo Seo Inha University



b

b



# **CENUM** 2022 CENuM Workshop + small collisions system! (SHINCHON)

# Simulation for Heavy loN Collision with **Heavy-quark and ONia**

Jinjoo Seo Inha University

Sanghoon Lim, Jeabeom Park, Junlee Kim Byungsik Hong, Eun-Joo Kim, MinJung Kweon, Yongsun Kim Su Houng Lee, Sungtae Cho, Juhee Hong

2022.09.03.



b

#### Heavy Quarkonia in heavy-ion collisions

rkonia: Bound states of heavy quark and its anti-quark erful tool to study thermal properties of QGP











#### Heavy Quarkonia in heavy-ion collisions

rkonia: Bound states of heavy quark and its anti-quark erful tool to study thermal properties of QGP **Uncorrelated** (off-diagonal) **Gluo-dissociation** 









- Heavy quarkonia: Bound states of heavy quark and its anti-quark
  - Powerful tool to study thermal properties of QGP
  - Different binding energies will be modified differently
  - Different dynamics for charmonia and bottomonia



**03 SEP 2022** 

#### Heavy Quarkonia in heavy-ion collisions



### Heavy Quarkonia in small collisions system

- QGP-like behavior in smaller collision systems!
- Cold Nuclear Matter effects(CNM) on heavy quarkonia
  - PDFs Modification, energy loss or nucleus absorption, and interactions with comoving particles









Simulation for Heavy IoN Collisionwith Heavy-quark and ONia (SHINCHON) framework









- Geometry generator: **MC Glauber** framework
  - Collision system: p+Pb, p+O, O+O at  $\sqrt{s_{NN}} = 8$  TeV
  - Nucleon-nucleon inelastic cross section: 72 mb
  - Gaussian of width for energy deposition of nucleon: 0.4 fm



03 SEP 2022





- Hydrodynamic simulation: SONIC framework
  - $\eta/s = 0.08 \& \zeta/s = 0$
- The deposited energy distributions are scaled based on the charged particle multiplicity at mid-rapidity in p+Pb collisions at  $\sqrt{s_{NN}} = 8.16$  TeV
  - Assumption: The scale factor does not change much in the collision systems with a similar number of participants



03 SEP 2022

**MC Glaube** ledium respon SONIC

![](_page_8_Figure_10.jpeg)

9

![](_page_9_Figure_2.jpeg)

![](_page_9_Figure_3.jpeg)

![](_page_9_Figure_4.jpeg)

**03 SEP 2022** 

![](_page_9_Picture_7.jpeg)

- Medium response on Upsilon: Gluo-dissociation + Inelastic Parton scattering
  - Only dissociation effect is considered
- Survival fraction of Upsilons for certain time step( $\Delta t$ ):
- Tsallis fit to  $p_T$  distribution fo  $\Upsilon(1S)$  in Pb+Pb  $\sqrt{s_{NN}} = 5.02$  TeV

![](_page_10_Figure_5.jpeg)

**03 SEP 2022** 

$$\frac{N(t + \Delta t, p_T)}{N(t, p_T)} = e^{-\int_t^{t + \Delta t} dt' \Gamma_{diss}(t', p_T)}$$

![](_page_10_Figure_9.jpeg)

$$\frac{\partial}{\partial \mathbf{x}} f_{\gamma}(t, \mathbf{x}, \mathbf{q}) = -\frac{\Gamma_{\text{diss}}^{\text{gluo+inel}}(t, \mathbf{x}, \mathbf{q})}{\Gamma_{\text{diss}}} f_{\gamma}(t, \mathbf{x}, \mathbf{q}) + \frac{\Gamma_{\text{reg}}^{\text{gluo+inel}}(t, \mathbf{x}, \mathbf{q})}{\Gamma_{\text{reg}}} f_{b}(t, \mathbf{x}, \mathbf{q}) f_{b}(t, \mathbf{x}, \mathbf{q}) + \frac{\Gamma_{\text{reg}}^{\text{gluo+inel}}(t, \mathbf{x}, \mathbf{q})}{\Gamma_{\text{diss}}} f_{b}(t, \mathbf{x}, \mathbf{q}) + \frac{\Gamma_{\text{gluo}}^{\text{gluo}+\text{gluo}}(t, \mathbf{x}, \mathbf{q})}{\Gamma_{\text{gluo}}(t, \mathbf{x}, \mathbf{q})} + \frac{\Gamma_{\text{gluo}}^{\text{gluo}+\text{gluo}}(t, \mathbf{x}, \mathbf{q})}{\Gamma_{\text{gluo}}(t, \mathbf{x},$$

Regeneration effect expected to be negligible in small system

![](_page_10_Picture_13.jpeg)

![](_page_10_Picture_14.jpeg)

![](_page_10_Picture_15.jpeg)

- Medium response on Upsilon: Gluo-dissociation + Inelastic Parton scattering
  - Only dissociation effect is considered
- Survival fraction of Upsilons for certain time step( $\Delta t$ )
- Tsallis fit to  $p_T$  distribution fo  $\Upsilon(1S)$  in Pb+Pb  $\sqrt{s_{NN}} = 5$

![](_page_11_Figure_5.jpeg)

**03 SEP 2022** 

$$\frac{N(t + \Delta t, p_T)}{N(t, p_T)} = e^{-\int_t^{t + \Delta t} dt' \Gamma_{diss}(t', p_T)}$$
  
5.02 TeV

![](_page_11_Figure_9.jpeg)

![](_page_11_Picture_14.jpeg)

- Feed-down contribution for  $\Upsilon(nS)$ :  $R_n(p_T) = \Sigma R_i(p_T) F_Q^{Q_i}(p_T)$ 
  - $R_n$ : weighted averaged value for Y(nS)
  - $R_i$ : certain state value for Y(nS)
  - $F_{O_n}^{Q_i}(p_T)$ : feed-down fraction
  - Assumption:  $R_{\Upsilon(2S)} \simeq R_{\chi(1P)}$  and  $R_{\Upsilon(3S)} \simeq R_{\chi(2P)} \simeq R_{\chi(3P)}$

![](_page_12_Figure_6.jpeg)

**03 SEP 2022** 

![](_page_12_Figure_8.jpeg)

![](_page_12_Figure_9.jpeg)

![](_page_12_Picture_12.jpeg)

# **SHINCHON** results in heavy-ion collisions

#### Framework demonstration in Pb+Pb

- $R_{AA}$ :  $\Upsilon(1S)$  shows consistency with the measurement.
- $V_2$  of  $\Upsilon(1S)$ : consist with measurements ( $\simeq 0$ ).

![](_page_13_Figure_4.jpeg)

**03 SEP 2022** 

• Y(2S) and Y(3S) show inconsistency in central collisions due to the exception of regeneration.

Jinjoo Seo

![](_page_13_Picture_9.jpeg)

14

- Nuclear modification factor

  - Gradual suppresion with increasing event multiplicity for all three  $\Upsilon(nS)$  in p+Pb, p+O, and O+O • Suppression: Y(1S) < Y(2S) < Y(3S) towards higher dN<sub>ch</sub>/dη
    - less suppression of  $\Upsilon(3S)$  in low multiplicity events: Delayed formation time

![](_page_14_Figure_5.jpeg)

03 SEP 2022

![](_page_14_Picture_8.jpeg)

![](_page_14_Figure_9.jpeg)

- Nuclear modification factor

![](_page_15_Figure_5.jpeg)

03 SEP 2022

![](_page_15_Picture_8.jpeg)

- Nuclear modification factor
  - Suppression:

03 SEP 2022

- Low multiplicity:  $p+Pb \simeq p+O > O+O (dN_{ch}/d\eta < 25)$ ,
- High multiplicity: p+Pb > O+O
  - System size: O+O > p+Pb > p+O, Energy density: p+Pb > O+O

![](_page_16_Figure_6.jpeg)

![](_page_16_Figure_9.jpeg)

![](_page_16_Picture_11.jpeg)

![](_page_16_Picture_12.jpeg)

- Nuclear modification factor
  - At the low  $p_T$ :  $R_{AA}(Y(1S)) > R_{AA}(Y(2S)) > R_{AA}(Y(3S))$
  - At the high  $p_T$ : late formation time of  $\Upsilon(3S)$ 
    - Effective interaction time: **p+Pb < O+O** due to the smaller initial medium size.

![](_page_17_Figure_5.jpeg)

![](_page_17_Picture_11.jpeg)

- Nuclear modification factor
  - **SHINCHON**: p+Pb collisions at  $\sqrt{s_{NN}} = 8$  TeV
  - **CMS**: p+Pb collisions at  $\sqrt{s_{NN}} = 5.02$  TeV
    - The average multiplicity at 8TeV is about 15% higher than that at 5.02 TeV
  - Good agreement with data for Y(1S)
  - Deviations for Y(2S) and Y(3S)
    - **Higher multiplicity** can affect the modification of  $\Upsilon$  at the low  $p_{T}$  region.
    - Extending the Y formation time towards higher  $p_{\rm T}$  induces a rapid increase of R<sub>pA</sub>.

![](_page_18_Figure_11.jpeg)

![](_page_18_Picture_13.jpeg)

#### Elliptic flow

- $v_2 < 0.01$  in the overall  $p_T$  region and very similar among the p+Pb, p+O and O+O.
- The weak  $p_T$  dependence indicates that  $v_2$  is not affected by the elongation of the formation time.

![](_page_19_Figure_4.jpeg)

03 SEP 2022

mong the p+Pb, p+O and O+O. fected by the elongation of the formation time.

![](_page_19_Figure_8.jpeg)

![](_page_19_Picture_9.jpeg)

#### Elliptic flow

- $v_2 < 0.01$  in the overall  $p_T$  region and very similar among the p+Pb, p+O and O+O.
- The weak  $p_T$  dependence indicates that  $v_2$  is not affected by the elongation of the formation time.
- $v_2$  in high-multiplicity events >  $v_2$  in MB events (very slightly high)
  - In higher multiplicity events, the low  $p_T \Upsilon(nS)$  traverses very slowly.
    - ➡ Not escape the medium before the chemical freeze-out temperature.

![](_page_20_Figure_7.jpeg)

03 SEP 2022

![](_page_20_Figure_10.jpeg)

![](_page_20_Picture_11.jpeg)

- SHINCHON has been developed based on the theoretical calculation of the thermal with of Y(nS) and the publicly available codes to describe the initial condition and evolution of heavy-ion collisions.
- $R_{pA,AA}(\Upsilon(1S)) > R_{pA,AA}(\Upsilon(2S)) > R_{pA,AA}(\Upsilon(3S))$ 
  - less suppression of  $\Upsilon(3S)$  in low multiplicity events
    - Due to the late formation time of  $\Upsilon(3S)$
  - Modification in high multiplicity: O+O < p+Pb
    - Due to the energy density
- $V_2$  of Y(nS) < 0.01 for all three systems, even in high multiplicity events.
- SHINCHON can provide valuable information on sources of nuclear effects on bottomonia production in small systems upcoming LHC Run.

#### Summary

#### Paper in preparation

Model study on  $\Upsilon(nS)$  modification in small collision systems

J.J. Seo,<sup>1</sup> J.L. Kim,<sup>2</sup> S.H. Lim,<sup>3</sup> and J.B. Park<sup>4</sup> <sup>1</sup>Inha University, Incheon 22212, South Korea <sup>2</sup> Jeonbuk National University, Jeonju 54896, South Korea <sup>3</sup>Pusan National University, Busan, 46241, South Korea <sup>4</sup>Korea University, Seoul 02841, South Korea (Dated: August 30, 2022)

Heavy quarkonia production has been studied extensively in relativistic heavy-ion collision experiments to understand the properties of the Quark-Gluon Plasma. Experimental results on the yield modification in heavy-ion collisions relative to p+p collisions can be described by several models considering dissociation and regeneration effects. A yield modification beyond initial-state effects has also been observed in small collision systems such as p+Au and p+Pb collisions. Still, it is not yet concluded that there is a hot medium effect. A model study in various small collision systems such as p+p, p+Pb, p+O, and O+O collisions will help quantitatively understand nuclear effects on the  $\Upsilon(nS)$  production. A theoretical calculation considering the gluo-dissociation and inelastic parton scattering and their inverse reaction reasonably describe the suppression of  $\Upsilon(1S)$  in Pb+Pb collisions. Based on this calculation, a Monte Carlo simulation is developed to more realistically incorporate the medium produced in heavy-ion collisions with event-by-event initial collision geometry and hydrodynamic evolution. We extend this framework to small systems to study the medium effects. In this work, we quantify the nuclear modification factor of  $\Upsilon(nS)$  as a function of charged particle multiplicity  $(dN_{ch}/d\eta)$  and transverse momentum. We also calculate the elliptic flow of  $\Upsilon(nS)$  in small collision systems.

#### I. INTRODUCTION

9 Quarkonia have been long considered as golden probes <sup>10</sup> to study the strongly interacting matter consisting of n deconfined quarks and gluons, the quark-gluon plasma <sup>12</sup> (QGP), produced in high-energy heavy-ion collisions [1– <sup>13</sup> 5]. Quarkonium states are produced at the early stages <sup>14</sup> of the collision via hard parton scatterings, thus experi-<sup>48</sup> become the subject that is sensitive to understanding the <sup>15</sup> encing the full space-time evolution of the medium. Also,  $_{16}\,$  their spectral functions are modified due to color screen-  $^{50}\,$ <sup>17</sup> ing [4, 5] and interactions with medium constituents such <sup>51</sup> as gluo-dissociation or landau damping [6–8]. Conse- <sup>52</sup> proton-lead (p+Pb), proton-oxygen (p+O), and oxygen-<sup>19</sup> quently, the quarkonium yields are expected to be sup-<sup>53</sup> oxygen (O+O) collisions. Theoretical calculations for pressed in heavy ion collisions with respect to expecta- 34 dissociation of  $\Upsilon(nS)$  [39] are incorporated with the <sup>21</sup> tions from proton-proton (p+p) data, following the order <sup>35</sup> SONIC framework [40] to describe the time evolution of <sup>22</sup> of their binding energies. On the other hand, the yields <sup>23</sup> of quarkonia can be enhanced in the presence of the QGP <sup>57</sup> in potential non-relativistic QCD (pNRQCD) limits, and <sup>24</sup> by recombination processes of uncorrelated as well as cor-<sup>58</sup> coupled into the Boltzmann equation. The thermal width <sup>25</sup> related quarks [9–12].

<sup>26</sup> The modification of the quarkonium yields have been 27 studied by various experiments at RHIC and LHC using 28 the nuclear modification factor quantified as the yield ratio in nucleus-nucleus collisions (A+A) to that in p+p second-order Fourier coefficient  $(v_2)$  of the azimuthal dis-<sup>30</sup> collisions [13–20]. One of the most remarkable signatures <sup>31</sup> is the ordered suppression of  $\Upsilon(1S)$ ,  $\Upsilon(2S)$ , and  $\Upsilon(3S)$ <sup>31</sup> is the ordered suppression of received in LHC [16, <sup>66</sup> consions. For the demonstrated suppression and compare 33 18–20].

<sup>34</sup> To better understand the in-medium effects of quarko-

- $_{35}$  nia in A+A collisions in a sophisticated way, it is im-36 portant to study the "cold nuclear matter" (CNM) ef-
- 37 fects which are typically probed using proton-nucleus
- $_{38}$  (p+A) collisions. Modification of parton distribution
- <sup>39</sup> functions in the nucleus [21], energy loss [22] or nucleus
- 40 absorption [23, 24], and interactions with comoving par-

41 ticles [25–27] are examples of CNM effects. On the other <sup>42</sup> hand, various experiment collaborations have reported <sup>43</sup> capital results, suggesting a QGP-like behavior of the 44 created medium also in smaller collision systems, such as  $_{\rm 45}\,$  the observation of long-range collective azimuthal corre-<sup>46</sup> lations in high multiplicity regions [28–38]. Therefore, sophisticated phenomenological studies in such interactions <sup>49</sup> quarkonium production in small collision systems.

In this paper, we report a detailed study of the inmedium effects for  $\Upsilon(1S)$ ,  $\Upsilon(2S)$ , and  $\Upsilon(3S)$  mesons in 56 the medium. The dissociation component is constraint <sup>59</sup> is calculated based on hard thermal loop (HTL) pertur-60 bation theory using the Bethe-Salpeter amplitude, while <sup>61</sup> the recombination part is treated as the inverse reac-62 tions of gluo-dissociation and inelastic parton scatter-<sup>63</sup> ing. We report the nuclear modification factors and the tribution of  $\Upsilon(nS)$  mesons in p+Pb, p+O, and O+O 66 collisions. For the demonstration of the framework, we <sup>68</sup> them with the experimental results.

![](_page_21_Picture_30.jpeg)

![](_page_21_Picture_33.jpeg)

![](_page_22_Picture_0.jpeg)

# BACK UP

![](_page_22_Picture_2.jpeg)

- System size: O+O > p+Pb > p+O,
- Energy density: p+Pb  $\approx$  p+O > O+O

![](_page_23_Figure_4.jpeg)

Jinjoo Seo

![](_page_23_Picture_6.jpeg)

24