WHAN-KI KIM (05-IV-71, UNIVERSE)

Direct measurement of Gluon Saturation with UPC

Yongsun Kim Sept 2, 2022 CeNUM workshop

Elliptic and triangular flow of charmonium states in heavy ion collisions	Prof. Sungtae Cho
Inha University	09:30 - 09:55
CENuM for the CMS heavy-ion program	재범 빅
Inha University	09:55 - 10:20
Simulation for Heavy IoN Collision with Heavy-quark and ONia	Jinjoo Seo 🥝
Inha University	10:20 - 10:45
Break: Break (br)	
Inha University	10:45 - 11:00
Inha University Remarks on the recent UPC and heavy quark results in CMS	10:45 - 11:00 Prof. 용선 김
Inha University Remarks on the recent UPC and heavy quark results in CMS Inha University	10:45 - 11:00 <i>Prof. 용선 김</i> 11:00 - 11:25
Inha University Remarks on the recent UPC and heavy quark results in CMS Inha University Study of upsilon(1S) flow in pPb collision system with the CMS detector	10:45 - 11:00 Prof. 용선 김 11:00 - 11:25 기수 이
Inha University Remarks on the recent UPC and heavy quark results in CMS Inha University Study of upsilon(1S) flow in pPb collision system with the CMS detector Inha University	10:45 - 11:00 <i>Prof. 용선 김</i> 11:00 - 11:25 <i>기수 이</i> 11:25 - 11:50
Inha University Remarks on the recent UPC and heavy quark results in CMS Inha University Study of upsilon(1S) flow in pPb collision system with the CMS detector Inha University Measurement of excited state Upsilons in PbPb collision with CMS	10:45 - 11:00 <i>Prof. 용선 김</i> 11:00 - 11:25 <i>기수 이</i> 11:25 - 11:50 <i>수환 이</i>

Cross section of Pc(4312) in EIC

Cross section of P_c(4312) in EIC

	е	р	³ He ²⁺	¹⁹⁷ Au ⁷⁹⁺
Energy, GeV	15.9	250	167	100
CM energy, GeV		122.5	81.7	63.2
Bunch frequency, MHz	9.4	9.4	9.4	9.4
Bunch intensity (nucleons), 10 ¹¹	0.33	0.3	0.6	0.6
Bunch charge, nC	5.3	4.8	6.4	3.9
Beam current, mA	50	42	55	33
Hadron rms norm. emittance, µm		0.27	0.20	0.20
Electron rms norm. emittance, µm		31.6	34.7	57.9
Beta*, cm (both planes)	5	5	5	5
Hadron beam-beam parameter		0.015	0.014	0.008
Electron beam disruption		2.8	5.2	1.9
Space charge parameter		0.006	0.016	0.016
rms bunch length, cm	0.4	5	5	5
Polarization. %	80	70	70	none
Peak luminosity, 10 ³³ cm ⁻² s ⁻¹		1.5	2.8	1.7

Peak lumi updated to 10^{34} cm⁻²s⁻¹ => 10 fb⁻¹ per month is

Cross section of P_c(4312) in EIC

TABLE II. Expected number of $P_c(4312)$ produced at the EIC with 10 fb^{-1} .

J^P of P_c	$\frac{1}{2}^+$	$\frac{1}{2}^{-}$	$\frac{3}{2}^+$	$\frac{3}{2}$
Yield	5.09×10^{6}	1.01×10^{6}	4.51×10^{8}	7.46×10^{7}

Cross section of P_c(4312) in EIC

- BSA says the spin
- angular correlation says the parity

E

Total number of $P_{\text{Electron}(k)}$ (4312) lectron(k')

 J/ψ

Equivalent Photon Approximation

Zweck der vorliegenden Arbeit ist, die Analogie zwischen diesen beiden Klassen von Erscheinungen zu präzisieren und die Erscheinungen bei dem Stoße quantitativ aus der Lichtabsorption abzuleiten.

Wenn ein elektrisch geladenes Teilchen in der Nähe eines Punktes vorüberfliegt, entsteht in diesem Punkte ein veränderliches elektrisches Feld. Wenn wir nun dieses Feld durch ein Fouriersches Integral in harmonische Komponenten zerlegen, so sehen wir, daß es gleich dem Felde ist, das in dem Punkte sein würde, wenn es mit Licht von einer passenden kontinuierlichen Frequenzenverteilung belichtet würde. Denken

Nuovo Cim.,2:143-158,1925 (arXiv:hep-th/0205086 in English)

- Trajectory of fast moving charged particle is equivalent
- Later, this method was extended to relativistic regime l
- At LHC photon energy can reach to 80 GeV, and at RHI
- We can practice high energy γ + (p or A) and γ + γ collis

[1] Z. Phys. 88, 612 (1934)
[2] Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 13, 4 (1935)

maximum energy *E*_{γ,max}~γ(ħc/R)

typical p⊤ (& virtuality) *р*т_{тах} ~ *ħ*с/R

Vector meson production in UPC

Ultra Peripheral Collision (UPC)

- quasi-elastic and diffractive collision
- No energy deposit in forward calorimeters
- Occasionally neutrons are emitted from excited ions

b > 2R

• Bjorken-x

3.1/2760 *e⁻⁰ = 0.001

 10^{-1}

CMS ALICE

EPS09

HKN07

nDS

Х

From SINam's note 14

Clever idea by Rice group

A novel solution: Neutron tagging

- Proposed by V. Guzey, M. Strikman, and M. Zhalov https://arxiv.org/abs/1312.6486
- High photon flux \rightarrow Additional ion excitation \rightarrow Emitting Neutrons
 - 0n0n: No neutron on both ZDC
 - 0nXn: At least one neutron on one ZDC
 - XnXn: At least one neutron on both ZDC

Cross section as a function of the J/ ψ rapidity y at $\sqrt{sNN} = 5.02$ TeV: areas show the uncertainties. The dashed curves labeled "one side" show the contribution of the first term. https://journals.aps.org/prc/abstract/10.1103/PhysRevC.93.055206

Impact parameters of photo-inter

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 MeV

Fig. 1. Partial photoneutron cross sections $\sigma_{\gamma,n}$, $\sigma_{\gamma,2n}$, $\sigma_{\gamma,3n}$, and $\sigma_{\gamma,4n}$ of ²⁰⁸Pb. We also show the descending part of the unique Lorentz line giving the best fit to the experimental $\sigma_{\gamma,\tau}(E)$ curve.

UPC depending on Impact parameter

UPC depending on Impact parameter

UPC depending on Impact parameter

Dimuon acoplanarity in UPC by Rice group

- The produced dimuon pairs had acoplanarity depending on the impact parameter
- $\widehat{T}_{13}^{\text{B}}$ compatible with data when the b-dependent photon p_T is considered [arXiv.2006.07365] $|y_{\mu\mu}| < 2.4$ $p_T^{\mu} > 3.5 \text{ GeV}, \text{ } \text{m}^{\mu}\text{I} < 2.4$

Clever idea by Rice group

Solving high energy contribution

Preliminary result

- Let's keep finding new observables!
- Surprise might be right under our nose.

backup

Validation of Photon flux

• Is our understanding of QED in UPC perfect?

Vector meson in $\gamma + p(Pb)$

- ho(770), J/ ψ , ψ (2S), Υ (nS), ϕ
- Test for pQCD and nuclear structure

Cross section of $\gamma\gamma \rightarrow \mu\mu(ee)$ **in PbPb UPC**

- Cross section is proportional to the incoming photon flux
- Thus useful for calibration of photon flux
- SuperChic and STARLIGHT calculate inclusive cross section within uncertainties