Direct measurement of Gluon Saturation with UPC

Yongsun Kim
Sept 2, 2022
CeNUM workshop

CENUM for the CMS heavy-ion program	재범빅
$09.55-10 \cdot 20$	

Inha University

Break: Break (br)

Inha University
Remarks on the recent UPC and heavy quark results in CMS Prof. 용선 김
Inha University 11:00-11:25

Study of upsilon(1S) flow in pPb collision system with the CMS detector	기수 0 /
Inha University	$11: 25-11: 50$
Measurement of excited state Upsilons in PbPb collision with CMS	수환 0 /
Inha University	$11: 50-12: 15$

Cross section of $P_{c}(4312)$ in EIC

Cross section of $P_{C}(4312)$ in EIC

	e	p	${ }^{3} \mathrm{He}^{2+}$	${ }^{197} \mathbf{A u}^{79+}$
Energy, GeV	15.9	250	167	100
CM energy, GeV		122.5	81.7	63.2
Bunch frequency, MHz	9.4	9.4	9.4	9.4
Bunch intensity (nucleons), $10{ }^{11}$	0.33	0.3	0.6	0.6
Bunch charge, nC	5.3	4.8	6.4	3.9
Beam current, mA	50	42	55	33
Hadron rms norm. emittance, $\mu \mathrm{m}$		0.27	0.20	0.20
Electron rms norm. emittance, $\mu \mathrm{m}$		31.6	34.7	57.9
Beta*, cm (both planes)	5	5	5	5
Hadron beam-beam parameter		0.015	0.014	0.008
Electron beam disruption		2.8	5.2	1.9
Space charge parameter		0.006	0.016	0.016
rms bunch length, cm	0.4	5	5	5
Polarization. \%	80	70	70	none
Peak luminosity, $10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$		1.5	2.8	1.7

Peak lumi updated to $10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}=>10 \mathrm{fb}^{-1}$ per month is

Cross section of $P_{c}(4312)$ in EIC

Electron energy $=16 \mathrm{GeV}$
Proton energy $=250 \mathrm{GeV}$

TABLE II. Expected number of $P_{c}(4312)$ produced at the EIC with $10 \mathrm{fb}^{-1}$.

J^{P} of P_{c}	$\frac{1}{2}^{+}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{+}$	$\frac{3}{2}^{-}$
Yield	5.09×10^{6}	1.01×10^{6}	4.51×10^{8}	7.46×10^{7}

Cross section of $P_{c}(4312)$ in EIC

- BSA says the spin
- angular correlation says the parity

Total number of $\mathrm{P}_{\mathrm{c}}(4312)$

than for the negative parity. With one month of operation at the EIC in its nominal condition, millions of $P_{c}(4312)$'s are expected to be measured via $p+e^{+}+e^{-}$ channel. This calculation can be generalized for other

TABLE II. Expected number of $P_{c}(4312)$ produced at the EIC with $10 \mathrm{fb}^{-1}$.

J^{P} of P_{c}	$\frac{1}{2}^{+}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{+}$	$\frac{3}{2}^{-}$
Yield	5.09×10^{6}	1.01×10^{6}	4.51×10^{8}	7.46×10^{7}

parity. With one month of operation at the EIC in its nominal condition, an experimentally measurable number of $P_{c}(4312)$'s are expected to be produced via the $p+e^{+}+e^{-}$channel. This calculation can be generalized

TABLE II. Expected number of $P_{c}(4312)$ produced at the EIC with $10 \mathrm{fb}^{-1}$.

J^{P} of P_{c}	$\frac{1}{2}^{+}$	$\frac{1-}{2}$	$\frac{3}{2}+$	$\frac{3-}{2}$
Yield	5.67×10^{3}	1.13×10^{3}	4.32×10^{4}	7.15×10^{3}

Equivalent Photon Approximation

Zweck der vorliegenden Arbeit ist, die Analogie zwischen diesen beiden Klassen von Erscheinungen zu präzisieren und die Erscheinungen bei dem Stoße quantitativ aus der Lichtabsorption abzuleiten.

Wenn ein elektrisch geladenes Teilchen in der Nähe eines Punktes vorüberfliegt, entsteht in diesem Punkte ein veränderliches elektrisches Feld. Wenn wir nun dieses Feld durch ein Fouriersches Integral in harmonische Komponenten zerlegen, so sehen wir, daß es gleich den Felde ist, das in dem Punkte sein würde, wenn es mit Licht von einer passenden kontinnierlichen Frequenzenverteilung belichtet würde. Denken

Nuovo Cim.,2:143-158, 1925 (arXiv:hep-th/0205086 in English)

- Trajectory of fast moving charged particle is equivalent to a flux of photons (Fermi, 1924)
- Later, this method was extended to relativistic regime by Weizsacker[1] and Williams[2]
- At LHC photon energy can reach to 80 GeV , and at RHIC 3 GeV
- We can practice high energy $\gamma+$ (p or A) and $\gamma+\gamma$ collisions by triggering non-hadronic collisions

Vector meson production in UPC

Ultra Peripheral Collision (UPC)

- quasi-elastic and diffractive collision
- No energy deposit in forward calorimeters
- Occasionally neutrons are emitted from excited ions

Ultra peripheral collision

Ultra peripheral collision

- $y=\ln \left(\frac{2 \omega}{M_{J / \psi}}\right)$
- y is the rapidity of the J / ψ
- ω is the photon energy
- $x=\left(\frac{M_{J / \psi}}{\sqrt{s_{N N}}}\right) e^{\mp y}$
- Bjorken-x
- $W_{\gamma P b}^{2}=M_{J / \psi}^{2} / x$
- Centre-of-mass energy of the photon-target system

Ultra peripheral collision

- $y=\ln \left(\frac{2 \omega}{M_{J / \psi}}\right)$
- y is the rapidity of the J / ψ
- ω is the photon energy
- $x=\left(\frac{M_{J / \psi}}{\sqrt{s_{N N}}}\right) e^{\mp y}$
- Bjorken-x
- $W_{\gamma P b}^{2}=M_{J / \psi}^{2} / x$
- Centre-of-mass energy of the photon-target system

$3.1 / 2760 * e^{-0}=0.001$

Ultra peripheral collision

$$
\begin{aligned}
& x=\frac{m}{\sqrt{s_{N N}}} e^{+y} \\
& w=\frac{m}{2} e^{-y}
\end{aligned}
$$

- High x in target

$$
\left(\begin{array}{ll}
x=\frac{m}{\sqrt{s_{N N}}} e^{-y} & \begin{array}{ll}
m \\
w=\frac{m}{2} e^{+y} & \\
& \text { • Low photon energy } \\
& \text { • High } \mathrm{x} \text { in target }
\end{array}
\end{array}\right.
$$

Ultra peripheral collision

$$
\begin{aligned}
& x=\frac{m}{\sqrt{s_{N N}}} e^{+y} \\
& w=\frac{m}{2} e^{-y}
\end{aligned}
$$

- High x in target

$$
\begin{aligned}
& x=\frac{m}{\sqrt{s_{N N}}} e^{-y} \\
& w=\frac{m}{2} e^{+y}
\end{aligned}
$$

- High x in target

Clever idea by Rice group

A novel solution: Neutron tagging

- Proposed by V. Guzey, M. Strikman, and M. Zhalov https://arxiv.org/abs/1312.6486
- High photon flux \rightarrow Additional ion excitation \rightarrow Emitting Neutrons
- 0n0n: No neutron on both ZDC
- OnXn: At least one neutron on one ZDC
- XnXn: At least one neutron on both ZDC

$$
y=\ln \left(\frac{2 \omega}{M_{J / \psi}}\right)
$$

Cross section as a function of the J / ψ rapidity y at $ل_{\mathrm{SN}} \mathrm{NN}=$ 5.02 TeV : areas show the uncertainties. The dashed curves labeled "one side" show the contribution of the first term. https://journals.aps.org/prc/abstract/10.1103/PhysRevC. 93.055206

Impact parameters of photo-interaction

- Giant dipole resonance knocks out neutrons
- Measured by Zero Degree Calorimeters

UPC depending on Impact parameter

UPC depending on Impact parameter

intact
after collision

UPC depending on Impact parameter

Dimuon acoplanarity in UPC by Rice group

- Photo-produced dimuon pairs had acoplanarity depending on the impact parameter
- Theory compatible with data when the b-dependnt photon p_{T} is considered [arXiv.2006.07365]

Clever idea by Rice group

Solving high energy contribution

Preliminary result

Preliminary result

Take home message

- Let's keep finding new observables!
- Surprise might be right under our nose.
- backup

Validation of Photon flux

- Is our understanding of QED in UPC perfect?

Vector meson in $\gamma+\mathbf{p}(\mathbf{P b})$

- $\quad \rho(770), \mathrm{J} / \psi, \psi(2 S), \mathrm{Y}(\mathrm{nS}), \phi$
- Test for pQCD and nuclear structure

Cross section of $\gamma \gamma \rightarrow \mu \mu(e e)$ in PbPb UPC

- Cross section is proportional to the incoming photon flux
- Thus useful for calibration of photon flux
- SuperChic and STARLIGHT calculate inclusive cross section within uncertainties

