FAZIA type Si-Csl detector R&D status

MinJung Kweon^I

Byungsik Hong², Jonghan Park¹², Jeonghyeok Park², Kiyoung Kim¹, Jiyoung Kim² ¹Inha University, ²Korea University 2022. 9. 3, CENuM workshop

FAZIA type Si-CsI detector development status; ONLY talk about detector R&D

Korea in FAZIA: Brief history

Before 2019

- The Korean group (part of LAMPS Collaboration) was designing the Si-Csl telescope detector for the low-energy (a few tens MeV per nucleon) nuclear collision experiments at RAON.
- The International Advisory Committee of RAON reviewed the status of the detector development and suggested us to collaborate with FAZIA in Europe, because it had been operating the most advanced Si-Csl detector system for nuclear physics.
- Therefore, to join the Collaboration, we started the discussion with some FAZIA members in several Conferences & meetings

In 2019

- visited GANIL in May 2019 and participated in the E789 experiment.
- **Collaboration**.

Addendum of MOU for FAZIA, adding Korea with CENuM (Center for Extreme Nuclear Matters directed by B. Hong) the national representative, was signed by CENuM (Korea), INFN (Italy), CNRS/IN2P3 (France), GANIL (France), COPIN (Poland), UHU (Spain) on November 6, 2020.

Then, MOU in 2020

MinJung Kweon, Inha University

Description of prof. Hong

Even before officially joining the FAZIA Collaboration, a group of interested Korean researchers

Three professors (B. Hong @ Korea Univ., M. Kweon @ Inha Univ., I. Hahn @ Ewha Womans Univ.) attended the FAZIA Workshop at GANIL in September and presented the application to join the

The FAZIA telescope

Identification threshold $\sim 50 \ \mu m$ penetration

MinJung Kweon, Inha University

ΔE-E method

MinJung Kweon, Inha University

The FAZIA-INDRA in vacuum chamber

MinJung Kweon, Inha University

PID performance

MinJung Kweon, Inha University

The FAZIA-type detector development for RAON

- Joined FAZIA detector upgrade project in 2019
 - Development of 750 µm thickness chips
 - New FEE board R&D and prototype production including test
- R&D for RAON: targeting producing one FAZIA-type block • Development of 1 mm & 150 µm thickness chips
 - New FEE board R&D
 - Production of supporting structures with the help of FAZIA team

1st visit in May/2019

 Several Korean researchers from Ewha, Inha and Korea university visited FAZIA experiment (during beam time). at the end of May, and discussed where we can contribute as (potential) new collaborators

- Korean group starts to investigate
 - If there is a factory in Korea providing thin & ultra high purity Si sensors
 - * if there is a company in Korea to produce the electronics for FAZIA-

INDRA detector upgrade (similar/cheaper and smaller board)

Korean participating Institutes: Inha, Korea, Ewha university supported by CENuM

Si chip development

- 750 µm thickness chip
 - \circ wafer investigation: 750 µm wafer was supplied from Korea
 - chip processing was done in Germany and tested by FAZIA Ο

	-		_	-		-		-
quartetto	batch	wafer	pad	rev curr. @340V	internal reference	date of test	bias voltage	rev cu Flore
				CIS	(neglect)			
7501	401778	7	6	13,5	Î ÎII	7-1-2021	300	12
7501	401778	7	8	0	II	7-1-2021	300	10
7501	401778	7	5	10,5	IV	7-1-2021	300	10
7501	401778	7	5	10,5	IV	7-1-2021	330	1
7501	401778	7	7	13,4	I	7-1-2021	300	200

- Assembled by the Italian (INFN @ Florence) group & included for the beam test during E818 Exp.
- 1 mm thickness chip (1st trial) 0
 - Chips produced by Pohang Nanofab. & tested in our lab.
- 150 µm thickness chip 0
 - produced & tested

MinJung Kweon, Inha University

kenkage rureakage 750 un vo. 1 mn

- 1 mm chips were tested (0 \sim 200 V) Ο
 - \circ 750 µm nominal chip: < 25 nA leakage current up to 200 V
 - 1 mm nominal chip: 0.1 mA ~ 1 mA between 50 V ~ 200 V 0
 - Doesn't satisfy the qualification

_		_
	'	
/		
	·····	
	·····	
~		
0	,	
~	. Г\.	/1
	• I V	/

150 µm chip produced :), Jan/2022

300 µm wafer was thinned into 150 µm after the fabrication 0

Design and construction of the new thick Si detectors

- Chip production with Pohang Nanofab was not successful. Ο
- National Nanofab Center (NNFC) 나노종합기술원 in 대전 Ο
 - Help out chip design by....
 - Chip fabrication with 8 inch wafer (same qualification as the previous production): planned Ο
- Fabrication with ETRI (6 inch wafer) Ο
 - Chip design has been done
 - Flow chart has been prepared 0
 - Run sheet is on progress Ο
 - Expect to start fabrication on September Ο

Chip border

In the pads used so fai this is an additional AI strip 95micron wide

Chip design & TCAD simulation (Synopsys)

Structure, dimensions

MinJung Kweon, Inha University

Current density distribution from 2D simulation

Doping profile.... & ion-implantation energy, dose, incident angles

Leakage current simulation based on the final design

MinJung Kweon, Inha University

Reverse bias voltage

Doping profile based on TCAD process simulation

Simulated with specific energy, dose, activation condition

Phosphorus

PIN sensor fabrication

Flow charts prepared

Run sheet for the fabrication is under preparation. Hope the production done until the end of October.

MinJung Kweon, Inha University

Mask designed

Building blocks including Q

Supporting structures

FAZI Ο as po For t 0 them Wire Ο

com

• CsI+diode for the 1st block will be also supported by FAZIA

MinJung Kweon, Inha University

structures as much

ure, plan to produce ged considering cost l is done by the

Quartetto produced by WEMSPACK (chip mounting & wire-bonding)

2nd trial – nicely done!

Test setup prepared at Korea

Two prototype boards were produced by NOTICE

- Out of dated digital parts \rightarrow replaced
- New FPGA chips → new VHDL software developed (quite some work!!!)

 Tested at GANIL; seems there is no major issue, need minor debugging on (likely) firmware

Discussion ongoing for the next version of the board with one FPGA chip & reduced board size (together with NOTICE)

Alpha source test setup

Construct lab. test system for Si chip characterization

Special boards with preAmp ONLY were produced for the source test.

Outlook

- Target to produce the 1st block within 2 years (?)
- Plan to prepare several blocks (at least 4 blocks) but it depends on funding, need further 0 internal discussions

at GANIL & other accelerator facilities.

FIG. 1. Schematic polar representation of the apparatus geometry. The beam axis passes through the symmetry center. View from the target.

FAZIA will use the detector blocks constructed in Korea in the commissioning phase of RAON. Later, FAZIA can also use the Korean blocks for the RIB experiments not only at RAON but also

Something with one block? FAZIA commissioning: stable ⁸⁴Kr beam

FAZIA commissioning phase at LNS Catania 2013-2018

MinJung Kweon, Inha University

Example!

MinJung Kweon, Inha University

Beam & detector used for FAZIA commissioning

FAZIA commissioning phase at LNS Catania 2013-2018

FAZIA May 2013	1 st physics
1 block + telescopini	priyelee
84Kr at 35A MeV	
FAZIA December 2014	
2 blocks horizontal plane 10 UTs	9 72 1
⁸⁴ Kr + ⁵⁸ Ni, ⁹³ Nb & ¹¹²⁻¹²⁴ Sn at 24.75 A MeV	The second second
ISOFAZIA June 2015	
4 blocks horizontal plane 25 UTs	
40 Ar at 35 A MeV & 80 Kr + $^{40-48}$ Ca at 35 A MeV	
FAZIASYM December 2015	
4 blocks wall configuration	
⁴⁰⁻⁴⁸ Ca + ⁴⁰⁻⁴⁸ Ca at 35 A MeV	
FAZIACOR March 2017	
4 blocks wall configuration	
²⁰ Ne & ³² S + ¹² C at 25 & 50 A MeV	
FAZIAPRE test October 2017 experiments in Fe	bruary & May 2018
4 blocks wall configuration, plus 2 lateral blocks	
⁴⁰⁻⁴⁸ Ca + ¹² C at 25 & 40 A MeV + few runs with ²	⁷ AI & ⁴⁰ Ca
FAZIAZERO July 2018	
4 blocks wall configuration, plus 1 lateral bloc 8	one at 0°
¹² C + ¹² C & (CH ₂)n at 62 & 80 A MeV	

MinJung Kweon, Inha University

Courtesy of Nicolas Le Neindre, LPC CAEN

nysics oriented experiment

