Development of AT-TPC for observation of (α ,p) scattering

Geunwoo Kim

Department of Physics and Astronomy, Sejong University

2022 CENuM Workshop 2- 3 Sep. 2022

Active Target Time Projection Chamber

- Time Projection Chamber (TPC) is a type of gas chamber to track particles
- The "active target" means that drift gas is used for target as well
- The active volume can be extended to the entire volume including the collisional vertex

This will allow new studies using the AT-TPC as the main component to measure a scattering of alpha particles and heavy ions, in particular, associated with the formation of alpha cluster resonance.

We propose this for low energy LAMPS experiment at RAON

The main parts of the prototype ATTPC

Field cage

A

Pad Plane

Rectangle pads
 Ver 1: 2.625 x 12.0 mm², 0.5 mm, 256ch
 Ver 2: 1.900 x 11.9 mm², 0.1 mm, 256ch

Field cage

- Cathode
- Field-Cage frame
- Copper wires (φ = 0.1 mm)
 Ver 1: 49 single wire, 3 mm
 Ver 2: 24 double wire, 6 mm

GEM

- Triple GEM
- GEM to GEM spacing : 2 mm
- Active area : 100 x 100 mm²

GET (General Electronics for TPC)

ZAP board

To protect AGET chip in AsAd board

AsAD

- AGET support for Analog to Digital
- 4 AGET (256 ch) in 1 AsAd
- 12 bit ADC (up to 100 MHz rate)

rCobo (reduced Collection Board)

- Digital data from AsAd
- Zero suppression
- Network transfer to PC
- 4 AsAd controlled by 1 CoBo

Geunwoo Kim | 2022 CENuM Workshop | 2-3 Sep. 2022

Schematic diagram of the prototype ATTPC

Geunwoo Kim | 2022 CENuM Workshop | 2-3 Sep. 2022

Cosmic muon test setup

Trigger system for cosmic muon test

Event display of cosmic muon track

A typical cosmic muon track

Trigger rate ~ 3.5 /min

Cosmic muon: Drift speed

Drift speed (exp.) \sim 5.25 cm/ μ s

Drift speed (sim.) \sim 5.5 cm/ μ s

Cosmic muon test: Spatial resolution

Spatial Resolution (ver. 1)

Spatial Resolution (ver. 2)

Cosmic muon: Cluster Charge (dE/dx)

4095 (= 240 fC)

Source test: Gain & Energy Resolution (ver. 1)

V_{GEM} = 310 V

Gain (Energy Reso.(FWHM) = ~28%)

- Fe 55 source
- Decay Energy of X-ray: 5.9 keV

TexAT_v2 test: ${}^{14}O(\alpha, p){}^{17}F$ measurement

- TexAT is an Active Target TPC in Texas A&M University
- TexAT can handle $\sim 5 \times 10^5$ pps
- ${}^{14}O(\alpha, p){}^{17}F$ is the trigger reaction of an X-ray burst
- ${}^{14}O(\alpha, p){}^{17}F$ will be measured at CRIB

Plan

- In Feb. 2023, Quasi-free scattering experiment in HIMAC
- Develop ATTPC(>= 1024ch, gas pressure 0.1~2.0 atm) using 20 x 20 cm² GEM
- In 2023-24, we plan to measure a ${}^{17}F(\alpha, p){}^{22}Ne$ or another (α, p) reaction for new ATTPC test in CRIB or Texas A&M...

Geunwoo Kim | 2022 CENuM Workshop | 2-3 Sep. 2022