

Measurement of excited state Y in **PbPb collision with CMS**

Soohwan Lee

Soohwan Lee Korea University

CENuM Workshop 2022

Bottomonia are good probes to study the QGP

Produced mostly from initial hard scattering

Sensitive to in-medium effects

Analysis report, introduction

- Limited statistics in previous measurements
 - No Y(3S) visible in 2015 \downarrow
 - A nice opportunity to search for Y(3S) with CMS 2018 PbPb data ($\times 4.3$ lumi.)

Update of sequential suppression data

- Signal(dimuon from Y(nS)) enhancement with MVA selection(BDT) for PbPb data
 - Signal(MC) and background (side band data) classification
 - Pointing angle α
 - Distance to closest approach (DCA)
 - Vertex related information

Analysis Method

Yield extracted with fitting on the BDT selected di-muon

Y(nS) signal extraction

Soohwan Lee

Updated R_{AA} (N_{part})

Improved Y(2S) measurement! Clear sequential suppression $R_{AA}(1S) > R_{AA}(2S) > R_{AA}(3S)$

\diamondSequential suppression in measured p_T range Slight increase of $\mathbf{R}_{AA}(\mathbf{Y}(3S))$ vs. p_T R_{AA} is lower for Y(3S) than Y(2S) in all intervals

Suppression in pPb?

- Suppression also seen in backward rapidity (Pb going side)
- Explainable with comover interaction in low $p_{\rm T}$?

more central region

Double ratio of Y(3S) / Y(2S)

 $\mathbf{V}(3S)$ more suppressed than $\mathbf{Y}(2S)$ in all p_{T} ranges No clear p_T dependance of double ratio Y(3S) / Y(2S)

Open quantum system + potential NRQCD

- Dissociation & regeneration
- No CNM effects
- Similar R_{AA} for the excited states
- Feed down contributions included

Discrepancy of excited states in midperipheral collisions \diamond Overestimates \mathbf{R}_{AA} Y(3S) vs p_T

12

Soohwan Lee

R_{AA}**Comparison with theory (2)**

Predicts larger Y(3S) suppression than data
Oiscrepancy at high p_T

13

Kinetic rate equation

- In medium binding energy with T-matrix calculation
- Regeneration of excited states
- Feed down contributions considered

R_{AA} Comparison with theory (3)

 R_{AA} description of the two excited states quite well in most kinematic ranges

Difference is seen in the most central collision

& Y(1S) high p_T

Regeneration dominant in excited states

R_{AA} Comparison with theory (4)

Comover interaction model + nCTEQ15

&Lower R_{AA} for Y(3S) than data towards central collisions

Ş

Some mismatches between data and theories

Double ratio comparison with theories

Soohwan Lee

Models expect different rate of suppression between the excited states!

16

