# Ultrarelativistic Heavy-Ion Physics and the Quark-Gluon Plasma

Part 4

- Quarkonium
- Small systems
- Future

High Energy Nuclear Physics School for Young Physicists 2022 **QGP** Part 4





### Quarkonium: charmonium and bottomonium

Inha University 2022 - QPG Part 4



Y. Pachmayer (Heidelberg University)



### What is quarkonium?

- Quarkonium is a bound state of q and  $\overline{q}$ 
  - According to the quantum numbers, several quarkonium states exists

Charmonium family ( $c\overline{c}$ )



Inha University 2022 - QPG Part 4



Bottomonium family  $(b\overline{b})$ 



Y. Pachmayer (Heidelberg University)



## Discovery of the $J/\psi$

- Discovered 1974 simultaneously
  - J: S. Ting in p+A (BNL)
    - Phys. Rev. Lett. 33, 1404 1406 (1974)
  - $\Psi$ : B. Richter in e+e- (SLAC)
    - Phys. Rev. Lett. 33, 1406 1408 (1974)
  - Nobel Prize 1976
- Bound state of charm and anti-charm
  - New flavour quantum number: small width of the resonance
  - Charm is heavy ( $m_c \sim 1300 \text{ MeV}$ )  $\rightarrow \text{can}$ be treated non-relativistically
  - In analogy to positronium, energy levels can be calculated and compared with experiment





• At T = 0, the binding of the q and  $\overline{q}$  quarks can be expressed using the Cornell potential:

## $V(r) = -\frac{4}{3} \frac{\alpha_s}{r} + kr$ string tension $k \approx 1$ GeV/fm



Confinement term







- What happens to a  $q\overline{q}$  pair placed in the QGP?
  - The QGP consists of deconfined colour charges
    - The binding of a  $q\overline{q}$  pair is subject to the effects of colour screening
  - The "confinement" contribution disappears
  - Simple parameterisation of the screened potential ("Debye screening"):

$$V(r, T) = -\frac{\alpha}{r}e^{-\mu r} + \sigma r \frac{1 - e^{-\mu r}}{\mu r}$$



screening radius depends on temperature:

$$r_D = 1/\mu$$
 Debye mass  $\mu = \mu(T) \propto g(T)T$ 



### Debye screening

The screening radius  $r_D$  (i.e. the maximum distance which allows the formation of a bound  $q\overline{q}$  pair) decreases with the temperature T



At a given *T*:

if resonance radius  $< r_D$  $\rightarrow$  resonance can be formed

if resonance radius >  $r_{\rm D}$  $\rightarrow$  no resonance can be formed

Y. Pachmayer (Heidelberg University)

## Results on Debye screening from lattice QCD

Heavy quark potential for different temperatures from lattice QCD





#### Charmonium suppression

| 和研究書室     | PHIS. LEII. 5, in press                                                         |  |
|-----------|---------------------------------------------------------------------------------|--|
| $\leq$    | BROOKHAVEN NATIONAL LABORATORY                                                  |  |
| June 1986 | 6 BNL-3834                                                                      |  |
| J,        | $/\psi$ SUPPRESSION BY QUARK-GLUON PLASMA                                       |  |
|           | FORMATION                                                                       |  |
|           |                                                                                 |  |
|           | T. Matsui                                                                       |  |
|           | Center for Theoretical Physics                                                  |  |
|           | Laboratory for Nuclear Science<br>Messachweatte Institute of Technology         |  |
|           | Cambridge, MA 02139, USA                                                        |  |
|           |                                                                                 |  |
|           | and                                                                             |  |
|           | H. Satz                                                                         |  |
|           | Fakultät für Physik                                                             |  |
|           | Universität Bielefeld, D-48 Bielefeld, F.R. Germany                             |  |
|           | and<br>Physics Department                                                       |  |
|           | Brookhaven National Laboratory, Upton, NY 11973, USA                            |  |
|           |                                                                                 |  |
|           |                                                                                 |  |
|           | ABSTRACT                                                                        |  |
|           | If high energy heavy ion collisions lead to the formation of a hot quark-       |  |
| gh        | uon plasma, then colour screening prevents $c\bar{c}$ binding in the deconfined |  |
| in        | terior of the interaction region. To study this effect, we compare the          |  |
| te        | mperature dependence of the screening radius, as obtained from lattice          |  |
| 0         | CD, with the $J/\psi$ radius calculated in charmonium models. The feasibil-     |  |

unambiguous signature of quark-gluon plasma formation.

#### Phys. Lett. B 178 (1986)

#### Inha University 2022 - QPG Part 4

is is the idea behind the suggestion (by Matsui and Satz) of the as a signature of QGP formation (1986) Potential between two heavy quarks is modified in the QGP, preventing initially produced charm and anticharm quarks to form a  $J/\Psi$ 

 $\rightarrow$  J/ $\psi$  suppression is a QGP signal









## Sequential melting

- The quarkonium states can be characterised by

| <ul> <li>The quarkon</li> <li>the binding</li> <li>the radius</li> </ul>       | ium state<br>g energy $\Delta$               | s can be $a E = 2(M_L)$                | characteri $p_{0,B} - m_i$ ) | ised by         |         |               |                   |                  | $T/T_c$ 1                       | /(r) [fm-1]<br>((15)                                                                       |
|--------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|------------------------------|-----------------|---------|---------------|-------------------|------------------|---------------------------------|--------------------------------------------------------------------------------------------|
| <ul> <li>→ More bound</li> <li>→ Debye scree</li> <li>occur at diff</li> </ul> | d states ha<br>ening cond<br>ferent <i>T</i> | ave smalled dition $r_{q\overline{q}}$ | er size<br>> $r_D$ will      |                 |         | ψ(25          | xc                | J/ψ              | - 2<br>1.2<br>≤T <sub>c</sub> 2 | <sub>χь</sub> (1P)<br>J/ψ(1S) Υ΄(<br>( <sub>b</sub> '(2P) Υ΄'(3<br>( <sub>c</sub> (1P) Ψ΄( |
| State                                                                          | $J/\psi$                                     | Χc                                     | $\psi'$                      | γ               | χb      | $\Upsilon'$   | $\chi_b'$         | $\gamma''$       |                                 |                                                                                            |
| Mass (GeV)                                                                     | 3.10                                         | 3.53                                   | 3.68                         | 9.46            | 9.99    | 10.02         | 10.36             | 10.36            |                                 |                                                                                            |
| $\Delta E$ (GeV)                                                               | 0.64                                         | 0.20                                   | 0.05                         | 1.10            | 0.67    | 0.54          | 0.31              | 0.20             |                                 |                                                                                            |
| Radius (fm)                                                                    | 0.25                                         | 0.36                                   | 0.45                         | 0.14            | 0.22    | 0.28          | 0.34              | 0.39             |                                 |                                                                                            |
| Quarkonium di                                                                  | ssociation                                   | sta                                    | te I/1                       | $v(1S) = v_{c}$ | (1P) 1b | $(2S) \gamma$ | $(1S) = \gamma_1$ | $(1P) \gamma(2)$ | S) $v_{\rm b}(2P)$              | $\Upsilon(3S)$                                                                             |

temperatures  $T_d$ 

| state     | $J/\psi(1S)$ | χ <sub>c</sub> (1P) | $\psi'(2S)$ | <b>Υ</b> (1S) | $\chi_b(1P)$ | Υ(2S) | $\chi_b(2P)$ | Υ(3S |
|-----------|--------------|---------------------|-------------|---------------|--------------|-------|--------------|------|
| $T_d/T_c$ | 2.10         | 1.16                | 1.12        | > 4.0         | 1.76         | 1.60  | 1.19         | 1.17 |

Inha University 2022 - QPG Part 4







## Quarkonium Production

- Quarkonium production can proceed
  - Directly in the interaction of the initial partons
  - Via the decay of heavier hadrons (feed-down)
- For  $J/\psi$  (LHC energies) the contributing mechanisms are
  - Direct production
  - Feed-down from higher charmonium states
    - ~ 8% from **ψ**(2S), ~25% from **χ**<sub>c</sub>
  - B decay
    - contribution is  $p_T$  dependent ~10% at *p*<sub>T</sub> ~1.5 GeV/*c*

Inha University 2022 - QPG Part 4



Prompt

Displaced







### Production of Charmonia in Hadronic Collisions

- Most important Feynman diagram: gluon fusion
- Charm and beauty quarks are produced in early hard scattering processes
  - Formation time
  - non-relativistic; pQCD

 $\tau_{c\bar{c}} = 1/2m_c = 0.05 \text{fm}$ 

- Formation of quarkonia requires transition to a color singlet state
  - Still only moderately successful
  - Not pure pQCD anymore, some modelling required
    - **CEM Color Evaporation Model**
    - CSM Color Singlet Model
    - Color Octet Model
  - Colour neutralisation time with lowest p
    - Compare to QGP lifetime
      - $\rightarrow$  No J/ $\psi$  suppression at high  $p_T$  ?

 $\tau_8 = 1/$ 





| $\sqrt{2m_c\Lambda_{qcd}}$ |
|----------------------------|
|----------------------------|

|      | crossing time<br>2 <i>R</i> /γc | QGP<br>life time | Freeze<br>time |
|------|---------------------------------|------------------|----------------|
| SPS  | 1.5 fm/c                        | < 2 fm/c         | 10 fm/         |
| RHIC | 0.13 fm/c                       | 2-4 fm/c         | 20-30          |
| LHC  | 0.006 fm/ <i>c</i>              | > 10 fm/c        | 30-40          |

#### Y. Pachmayer (Heidelberg University)

e-out fm/c fm/c



#### Quarkonium decays

#### J/ $\psi$ (quarkonium) can be studied through its decays: (B.R. ~6%) $J/\psi \rightarrow \mu^+\mu^ J/\psi \rightarrow e^+e^-$

#### cc MESONS

 $J/\psi(1S)$ 

 $I^{G}(J^{PC}) = 0^{-}(1^{--})$ 

Mass  $m = 3096.916 \pm 0.011$  MeV Full width  $\Gamma = 92.9 \pm 2.8$  keV (S = 1.1)  $\Gamma_{e\,e} = 5.55 \pm 0.14 \pm 0.02$  keV

| J/\u03c6(15) DECAY MODES             | Fraction $(\Gamma_j/\Gamma)$ | Scale factor/<br>Confidence level | р<br>(MeV/c) |
|--------------------------------------|------------------------------|-----------------------------------|--------------|
| hadrons                              | (87.7 ±0.5                   | )%                                | _            |
| virtual $\gamma \rightarrow hadrons$ | (13.50 ±0.30                 | ) %                               | -            |
| ggg                                  | (64.1 ±1.0                   | )%                                | -            |
| γgg                                  | (8.8 ±0.5                    | )%                                | -            |
| e+e-                                 | $(5.94 \pm 0.06)$            | )%                                | 1548         |
| $\mu^{+}\mu^{-}$                     | ( 5.93 ±0.06                 | )%                                | 1545         |

 $I^{G}(J^{PC}) = 0^{-}(1^{-})$ 

Mass  $m = 3686.09 \pm 0.04$  MeV (S = 1.6) Full width  $\Gamma = 304 \pm 9$  keV  $\Gamma_{ee} = 2.35 \pm 0.04$  keV

| ψ(25) DECAY MODES                    | Fraction $(\Gamma_i/\Gamma)$    | Scale factor/<br>Confidence level | p<br>(MeV/c) |
|--------------------------------------|---------------------------------|-----------------------------------|--------------|
| hadrons                              | (97.85±0.13) %                  |                                   | _            |
| virtual $\gamma \rightarrow hadrons$ | ( 1.73±0.14) %                  | S=1.5                             | _            |
| ggg                                  | (10.6 ±1.6 )%                   |                                   | _            |
| γgg                                  | ( 1.02±0.29) %                  |                                   | -            |
| light hadrons                        | (15.4 ±1.5 )%                   |                                   | -            |
| e+e-                                 | $(7.72\pm0.17)\times10$         | 0-3                               | 1843         |
| $\mu^{+}\mu^{-}$                     | ( 7.7 ±0.8 )×10                 | 0-3                               | 1840         |
| $\tau^+\tau^-$                       | $(3.0 \pm 0.4) \times 10^{-10}$ | 0-3                               | 490          |

#### **bb** MESONS

| T(15) |
|-------|
|-------|

 $I^{G}(J^{PC}) = 0^{-}(1^{--})$ 

 $\begin{array}{ll} {\sf Mass} \ m = 9460.30 \pm 0.26 \ {\sf MeV} & ({\sf S} = 3.3) \\ {\sf Full} \ {\sf width} \ {\sf \Gamma} = 54.02 \pm 1.25 \ {\sf keV} \\ {\sf \Gamma}_{ee} = 1.340 \pm 0.018 \ {\sf keV} \end{array}$ 

| T(15) DECAY MODES             | Fraction $(\Gamma_j/\Gamma)$ | Confidence level | р<br>(MeV/c) |
|-------------------------------|------------------------------|------------------|--------------|
| $\tau^+\tau^-$                | ( 2.60±0.10) %               |                  | 4384         |
| e <sup>+</sup> e <sup>-</sup> | ( 2.48±0.07) %               |                  | 4730         |
| $\mu^{+}\mu^{-}$              | ( 2.48±0.05) %               |                  | 4729         |

T(25)

$$I^{G}(J^{PC}) = 0^{-}(1^{--})$$

Mass  $m = 10.02326 \pm 0.00031$  GeV Full width  $\Gamma = 31.98 \pm 2.63$  keV  $\Gamma_{ee} = 0.612 \pm 0.011$  keV

| T(25) DECAY MODES        | Fraction $(\Gamma_i/\Gamma)$ | Scale factor/<br>Confidence level | р<br>(MeV/c) |
|--------------------------|------------------------------|-----------------------------------|--------------|
| $\Upsilon(1S)\pi^+\pi^-$ | (18.1 ± 0.4 )%               |                                   | 475          |
| $T(1S)\pi^{0}\pi^{0}$    | (8.6 ± 0.4 )%                |                                   | 480          |
| $\tau^+\tau^-$           | ( 2.00± 0.21) %              |                                   | 4686         |
| $\mu^{+}\mu^{-}$         | ( 1.93± 0.17) %              | S=2.2                             | 5011         |
| e+e-                     | $(1.91\pm 0.16)\%$           |                                   | 5012         |

Т(3*S*)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass  $m = 10.3552 \pm 0.0005$  GeV Full width  $\Gamma = 20.32 \pm 1.85$  keV

 $\Gamma_{ee} = 0.443 \pm 0.008 \text{ keV}$ 

| T(35) DECAY MODES             | Fraction $(\Gamma_I/\Gamma)$ | Scale factor/<br>Confidence level | р<br>(MeV/c) |
|-------------------------------|------------------------------|-----------------------------------|--------------|
| T(25) anything                | (10.6 ±0.8 )%                |                                   | 296          |
| $\tau^+\tau^-$                | ( 2.29±0.30) %               |                                   | 4863         |
| $\mu^{+}_{-}\mu^{-}_{-}$      | ( 2.18±0.21) %               | S=2.1                             | 5177         |
| e <sup>+</sup> e <sup>-</sup> | seen                         |                                   | 5178         |





# $J/\psi$ suppression at the CERN SPS and at RHIC

- Same suppression at midrapidity at the CERN SPS and at RHIC, in spite of larger energy density at RHIC
- RHIC: suppression large at forward rapidity, in spite of larger energy density at midrapidity
- Not easy to explain in pure dissociation picture



# $J/\psi$ suppression at the CERN SPS and at RHIC

- Same suppression at midrapidity at the CERN SPS and at RHIC, in spite of larger energy density at RHIC
- RHIC: suppression large at forward rapidity, in spite of larger energy density at midrapidity
- Not easy to explain in pure dissociation picture





## New idea - (re)combination



- QGP screens all charmonia, but charmonium production takes place at the phase boundary
  - → Enhanced production at high energy → Signal for deconfinement

Y. Pachmayer (Heidelberg University)

Braun-Munzinger, Stachel, PLB 490 (2000) 196; NPA 789 (2006) 334, PLB 652 (2007) 259

 $N_{J/\psi} \sim \left(N_{c\bar{c}}^{dir}\right)^2$ 







# LHC Prediction Statistical Model



- Total charm cross section crucial reference
- - More tightly bound, less beauty pairs produced initially, less recombination

Braun-Munzinger, Stachel, PLB 490 (2000) 196; NPA 789 (2006) 334, PLB 652 (2007) 259

If regeneration takes place it will be even larger at LHC -> J/ $\psi$  enhancement becomes a signature for the QGP

Bottomonium states become the new tool for studying medium effects on bound quarkonium states







### ALICE, focus on low-pt $J/\psi$



Muon analysis:

- fit to the invariant mass spectra
- signal extraction by integrating the Crystal Ball line shape



 $J/\psi \rightarrow e^+ + e^-$ 

**Electron analysis:** 

- Background subtracted with event mixing
  - Signal extraction by counting

#### Y. Pachmayer (Heidelberg University)

### Quarkonia: J/w



L.Grandchamp and R.Rapp, PLB523(2001)60

Inha University 2022 - QPG Part 4



#### Quarkonia: $J/\psi$ and $\psi(2S)$



- Quarkonium production mechanism
  - Suppression due to colour screening
  - Production via (re)generation during QGP phase/at hadronisation

T. Matsui and H. Satz, PLB178(1986)416, P. Braun-Munzinger and J. Stachel, PLB490(2000)196, L.Grandchamp and R.Rapp, PLB523(2001)60

Inha University 2022 - QPG Part 4





#### Quarkonia: $J/\psi$ flow



- Quarkonium production mechanism
  - Suppression due to colour screening
  - Production via (re)generation during QGP phase/at hadronisation

T. Matsui and H. Satz, PLB178(1986)416, P. Braun-Munzinger and J. Stachel, PLB490(2000)196, L.Grandchamp and R.Rapp, PLB523(2001)60

Inha University 2022 - QPG Part 4

 $\rightarrow J/\psi$  flow consistent with zero at RHIC

![](_page_20_Picture_10.jpeg)

![](_page_20_Picture_11.jpeg)

#### Quarkonia: $J/\psi$ flow

![](_page_21_Figure_1.jpeg)

- Quarkonium production mechanism
  - Suppression due to colour screening
  - Production via (re)generation during QGP phase/at hadronisation

T. Matsui and H. Satz, PLB178(1986)416, P. Braun-Munzinger and J. Stachel, PLB490(2000)196, L.Grandchamp and R.Rapp, PLB523(2001)60

Inha University 2022 - QPG Part 4

 $\rightarrow J/W$  flow consistent with zero at RHIC

- $\rightarrow J/\psi$  flows at LHC  $\rightarrow$  Signature of deconfinement

#### Y. Pachmayer (Heidelberg University)

![](_page_21_Picture_12.jpeg)

#### 00 4 5.1 200

PLB807(2020)135595 ATL

![](_page_21_Picture_15.jpeg)

### Quarkonia: Bottomonium Family

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_6.jpeg)

![](_page_22_Picture_8.jpeg)

![](_page_22_Figure_9.jpeg)

![](_page_22_Picture_10.jpeg)

### Summary: Quarkonium

- $J/\psi$  suppression proposed in 1986 as "unambiguous" QPG signal
- Two main mechanisms at play
  - Suppression in a deconfined medium
  - Re-generation (for charmonium only!) at high  $\sqrt{s}$ can qualitatively explain the main features of the results
- Crucial input needed: Total charm cross section
- Does the melting scenario hold for Y production at the LHC?
  - Can yields of Y states serve as a QGP thermometer?

![](_page_23_Picture_14.jpeg)

![](_page_23_Picture_15.jpeg)

![](_page_24_Picture_0.jpeg)

Run number: 529397 First TF orbit: 5589120 Date: Fri Nov 18 16:57:27 2022 Detectors: ITS,TPC,TRD,TOF,PHS,EMC,MFT,MCH,MID

![](_page_24_Picture_2.jpeg)

### Small systems

• What about high-multiplicity pp and p-Pb collisions?

![](_page_25_Picture_6.jpeg)

### Particle chemistry across system size

- Enhancement increases with strangeness content
- Smooth evolution of particle chemistry from small to large systems as function of charged particle multiplicity
  - $\rightarrow$  common origin in all systems?
  - increasing strangeness production with increasing multiplicity until saturation (grand-canonical plateau) is reached  $\rightarrow$  lifting of strangeness suppression in pp collisions

![](_page_26_Figure_8.jpeg)

![](_page_26_Picture_10.jpeg)

#### Collective effects Elliptic flow

![](_page_27_Figure_1.jpeg)

Inha University 2022 - QPG Part 4

![](_page_27_Picture_9.jpeg)

![](_page_27_Picture_10.jpeg)

# Parton Energy Loss: $R_{AA}$

![](_page_28_Figure_1.jpeg)

Inha University 2022 - QPG Part 4

$$R_{\rm AA} = \frac{1}{\langle N_{\rm coll} \rangle} \frac{dN^{\rm AA}/dp_{\rm T}}{dN^{\rm pp}/dp_{\rm T}}$$

![](_page_28_Picture_7.jpeg)

![](_page_28_Figure_8.jpeg)

## Final Remarks

- QGP formation in heavy-ion collisions considered to by established
  - Hydro models with strongly-coupled thermalised partonic phase (i.e., a QGP phase) nicely describe a wealth of data
  - High- $p_T$  suppression, hints for mass dependent in-medium energy loss, ...
  - Clear signs of deconfinement (quarkonium states)
- Next steps
  - Characterise the medium in more detail
  - In particular: Establish connections between observables and quantities calculated from first QCD principle (example: q-hat from lattice QCD)
  - Establish QCD phase diagram
  - Establish/disprove QGP formation in small systems (high-multiplicity pp and p=Pb collisions)
- Connect to other physical systems (e.g. ultra-cold atoms) to better understand universal aspects of the underlying physics
- Stay tuned ...

![](_page_29_Picture_19.jpeg)

![](_page_29_Picture_20.jpeg)

## Future of Heavy-Ion Physics

- Wealth of beautiful new results from heavy-ion experiments
- European strategy  $\rightarrow$  encouraging the heavy-ion programme at CERN in HL-LHC era
- New era for ultra-relativistic heavy-ion physics  $\rightarrow$  improving precision/reach for rare probes
  - LHC Run 3 and 4
    - LHC upgrades (ALICE, ATLAS, CMS, LHCb)
    - Collider and fixed-target program at CERN
  - sPHENIX and STAR at RHIC (incl. Beam Energy Scan, fixed target)
- LHC Run 5 and beyond
  - A next-generation LHC heavy-ion experiment: ALICE 3
  - LHCb Upgrade II
- High net-baryon number density frontier facilities coming up at lower center-of-mass energies: NICA, FAIR, ...
- Electron-ion collisions at the EIC
  - nPDF, diffraction, saturation, ...

![](_page_30_Figure_19.jpeg)

![](_page_30_Picture_21.jpeg)

![](_page_30_Figure_22.jpeg)

| 9-02 | 21    |   |     |
|------|-------|---|-----|
|      | Ì     | - | 120 |
| - 1  | T     | - | 100 |
|      | I     | - | 80  |
|      | -     | - | 60  |
|      | L.L.L | - | 40  |
| <30% | IIII  | - | 20  |
|      | _     |   |     |

## Backup slides

Inha University 2022 - QPG Part 4

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_5.jpeg)

![](_page_31_Picture_6.jpeg)

#### Interaction range and $J/\psi$ radius in the medium vs temperature

![](_page_32_Figure_1.jpeg)

- $J/\Psi$  radius becomes larger with increasing T
- No bound state anymore for  $T \gtrsim 2 T_c$

![](_page_32_Picture_6.jpeg)

![](_page_32_Picture_7.jpeg)

### Results from LHC

![](_page_33_Figure_1.jpeg)

- Expect smaller suppression for low- $p_T$  J/ $\psi$  observed!
- was obtained

The trend is different wrt the one observed at lower energies, where an increase of the  $< p_T >$  with centrality

![](_page_33_Picture_8.jpeg)

![](_page_33_Picture_9.jpeg)