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“답을 찾아가는 방법” 
“Developing methods”
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Classification problem
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Di = (xi, yi)
x1 = (28,1,1), y1 = 1
x2 = (23,2,5), y2 = 0
x3 = (22,8,0), y3 = 0
x4 = (21,3,0), y4 = 1

Here is a tennis record of someone. Can you guess this person will play the tennis today?
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Classification problem

inputs 

xi

output 

yi

f(x; {wl})

Tempera
ture (℃)

Wind  
(m/s)

Rain 
(mm)

Play 
tennis

Mon. 28 1 1 Yes

Tue. 23 2 5 No

Wed. 22 8 0 No

Thur. 21 3 0 Yes

22 1 0 ?

Training set

Data set:  

 

 

 

Di = (xi, yi)
x1 = (28,1,1), y1 = 1
x2 = (23,2,5), y2 = 0
x3 = (22,8,0), y3 = 0
x4 = (21,3,0), y4 = 1

Using training set, obtain {wl}

Here is a tennis record of someone. Can you guess this person will play the tennis today?



Classification problem

Play the tennis, y = 1

Do not play the tennis, y = 0
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Classification problem

Play the tennis, y = 1

Do not play the tennis, y = 0

rain

wind

f(x)

E =
N

∑
n=1

[yn − h(xn)]2

f(x) = 0

f(x) > 0

f(x) < 0
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Linear Classification

rain

wind

{w}

{w′￼}

We want to find the parameter set  to minimize the error.{w*}

h(xi) − yiDifference

Error E = ∑
i

(h(xi) − yi)2

⇨ Gradient descent method!
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Gradient descent method (경사하강법)

Starting from an initial parameter set , we can update  to reduce the error .{ai} a′￼i = ai + Δai E
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#

!" !" + Δ!"	

# !"
# !" + Δ!"

'# = # !" + Δ!" − # !"

We want to update  such that .ai dE < 0

dE = E( ⃗a + Δ ⃗a ) − E( ⃗a ) = ∇E ⋅ Δ ⃗a

So if we update  to a direction of , ⃗a ( − ∇E)

the error will be reduced. 

ai → ai − c
∂E
∂ai

Machine learns themselves what 
parameters should they have to get 
the small error according to the 
given algorithm. So, we call it 

learning and call  learning rate.c



Linear Classification

rain

wind

f(x) = ∑ wlxl + w0

= wTx

Activation function decides 

the outcome based on .wTx

h (x) = {1 for wTx > 0
0 otherwise
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h(x)
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Activation function
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Schematic figure for McCluch-Pitts model

A model that mimics a nerve cell that collects input information from multiple nerve 
cells and determines whether or not to fire.[17. 퍼셉트론]
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Perceptron algorithm is just a mapping from input signals to output signals

Perceptron



Two-layer system: input and output layers

Perceptron

We can choose the number of nodes in each layer (free parameters)
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Weight  is multiplied to the input signal  to the output node wij xj i
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Weight  is multiplied to the input signal  to the output node wij xj i

input layer output layer



Perceptron learning

We have right answers . So, we will update the parameter set to have less error.⃗a

⃗e = ⃗a − ⃗yDifference

Error E = ⃗e ⋅ ⃗e = ∑
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( ⃗a i − ⃗y i)2

Since  depends on  set and bias , those parameters are updated by reducing the total error.⃗y wij bi



Perceptron learning

We have right answers . So, we will update the parameter set to have less error.⃗a

⃗e = ⃗a − ⃗yDifference

Error E = ⃗e ⋅ ⃗e = ∑
i

( ⃗a i − ⃗y i)2

Since  depends on  set and bias , those parameters are updated by reducing the total error.⃗y wij bi

We will use gradient descent method  

,  Wij → Wij − c
∂E

∂Wij
bi → bi − c

∂E
∂bi



Perceptron learning

Heaviside step function has zero differential value, so it is better to use sigmoid function. It is because 
(1) the output value is bounded from 0 to 1 and (2) differentiation is well defined. 

h(v) =
1

1 + e−v

Wij → Wij + ceiyi(1 − yi)xj

bi → bi + ceiyi(1 − yi)

Using chain rule and 
∂h(v)

∂v
= h(v)[1 − h(v)]



Example - AND operator

AND operator

input 1 input 2 output

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE



Example - AND operator

AND operator

input 1 input 2 output

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE input 1

input 2

true

false



Example - AND operator

v = w11x1 + w12x2 + b

y = h (w11x1 + w12x2 + b)

y

x1

x2

x1

x2

v

w11

w12

Let’s find w11, w12, b



Example - AND operator

v = w11x1 + w12x2 + b

y = h (w11x1 + w12x2 + b)

y

x1

x2

x1

x2

v

w11

w12

Let’s find w11, w12, b

W1j → W1j + cey(1 − y)xj

b → b + cey(1 − y)



Example - AND operator

Final line

Random initial line



Let’s try to make a code for XOR operators

XOR operator

input 1 input 2 output

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE



Let’s try to make a code for XOR operators

XOR operator

input 1 input 2 output

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE



Let’s try to make a code for XOR operators

input 1

input 2
XOR operator

input 1 input 2 output

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE



Let’s try to make a code for XOR operators

input 1

input 2

There is no way to draw a line to separate them!

XOR operator

input 1 input 2 output

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE



Let’s try to make a code for XOR operators

input 1

input 2

There is no way to draw a line to separate them!

XOR operator

input 1 input 2 output

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE



Let’s try to make a code for XOR operators

input 1

input 2

There is no way to draw a line to separate them!

Then, how to overcome?
XOR operator

input 1 input 2 output

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE



Perceptron with a hidden layer
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Make the system nonlinear ⇨ adding a hidden layer!  
# of nodes in a hidden layer and # of hidden layers are the free parameters.
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Make the system nonlinear ⇨ adding a hidden layer!  
# of nodes in a hidden layer and # of hidden layers are the free parameters.
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wijxj + bi

yi = h(vi)

si = ∑
j

vijyj + ci

zi = h(si)

[https://nnfs.io/mvp/]
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Perceptron with a hidden layer
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Wij → Wij + αyi(1 − yi)xj(VT)i

bi → bi + αyi(1 − yi)(VT)i

Vij → Vij + αeizi(1 − zi)yj

ci → ci + αeizi(1 − zi)

⃗x ⃗y ⃗zyi = h ∑
j

wijxj+bi zi = h ∑
j

vijyj+ci

Make the system nonlinear ⇨ adding a hidden layer! 

# of nodes in a hidden layer and # of hidden layers are the free parameters.
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Summary

w22

y1x1

x2

x1

x2

v1

w12 w21

v2

v11

v12y2

s z

Perceptron is one of the models to 
find such mapping.

inputs 

xi

output 

yi

y(x; {wi})

Using training set, obtain {wi}

Classification (or pattern recognization)  
is finding a function!
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Did you listen to Chang Kiha’s new songs? 

It’s amazing. You should listen to them.

Oh! Really? I will listen to them. All the songs 
which you recommended were awesome.



Did you listen to Chang Kiha’s new songs? 

It’s amazing. You should listen to them.

I don’t buy it. To me, his song sounds weird. 



They have similar taste.
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If you know two customers have similar taste, you could recommend some items based on their 
shopping patterns (which items the customers buy).
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customer1

customer2

If you know two customers have similar taste, you could recommend some items based on their 
shopping patterns (which items the customers buy).

10 20 8 1 21

12 15 12 2

never buy yet!
you could 

recommend this 
item to the 
customer2

How do you know which one is close to another? 

Clustering problem!
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Cluster: Group of the similar objects
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Clustering

Good clustering? 

⇨ High Intra-cluster similarity

⇨ Low Inter-cluster similarity

Cluster: Group of the similar objects

Example

Intuitively, we can assign the clusters. 

However, what is the systematic way to do clustering?


⇨ K means clustering 



K means clustering

1. Choose  the number of clusters.

2. Randomly choose  samples (data points) for the initial cluster centroids.

3. For all data points, assign the cluster based on the distance between data point 

and the cluster centroid; the point belongs to the closest cluster centroid.

4. Recalculate the cluster centered based on allocation.

5. Repeat 3-4 until the clusters do not change.

K
K

We will use Euclidean distance to mention something is similar or not.

If two points are close, they are similar.

Algorithm



K means clustering

1. Choose  the number of clusters (let’s say 2 in this example).K

https://towardsdatascience.com/machine-learning-algorithms-part-9-k-
means-example-in-python-f2ad05ed5203



K means clustering

2. Randomly choose  samples (data points) for the initial cluster centroids.K

https://towardsdatascience.com/machine-learning-algorithms-part-9-k-
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K means clustering

3. For all data points, assign the cluster based on the distance between data point 
and the cluster centroid; the point belongs to the closest cluster centroid.

https://towardsdatascience.com/machine-learning-algorithms-part-9-k-
means-example-in-python-f2ad05ed5203



K means clustering

4. Recalculate the cluster centered based on allocation.

https://towardsdatascience.com/machine-learning-algorithms-part-9-k-
means-example-in-python-f2ad05ed5203



K means clustering

5. Repeat 3-4 until the clusters do not change.

https://towardsdatascience.com/machine-learning-algorithms-part-9-k-
means-example-in-python-f2ad05ed5203



Initial condition dependency 

A randomly generated data set
K means clustering results strongly 

depends on initial centroids.



Kmeans++ 

When the randomly selected initial centroids are close each other,  K means clustering 
usually unstable. To overcome this issue, we could use Keans++ method that chooses initial 
centroids as far as possible.

[https://itstory1592.tistory.com/19]

1. Choose the first centroid at random.

2. Calculate the distances from points to the centroid.

3. Depending on distance, choose the next centroid as 




4. Repeat 2-3 until  centroids are selected.

pi =
distance between i-th data point and the centroid, di

∑i di

K

The way of selecting an initial centroid set

Algorithm

https://itstory1592.tistory.com/19


How to decide K

K = 1 K = 2 K = 3

K = 4 K = 5 K = 6
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Elbow method

Minimizing the error within clusters, E =
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How to decide K

Minimizing the error within clusters, E =
K

∑
j=1

∑
i∈cj

d(xi, cj)2

If the decrease of  is not significant, we can stop to increase .

Note that it is the minimum point but still meaningful.

E K

Elbow method



Limitation
True clusters k means clustering results

• Different data volume for each cluster

• Different data density for each cluster

• Nonconvex shapes of the data

[https://ratsgo.github.io/machine%20learning/2017/04/19/KC/]

https://ratsgo.github.io/machine%20learning/2017/04/19/KC/


[cf] Convex and Nonconvex https://www.youtube.com/watch?v=hrSdndm4EPA

any lines connecting two 
points are in a set.

Convex Nonconvex
there is a line (or lines) connecting 
two points are not in a set.



Code
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