Perceptron

hyejin.park@inha.ac.kr

Machine learning

From Wikipedia, the free encyclopedia

For the journal, see Machine Learning (journal)
"Statistical learning" redirects here. For statistical learning in linguistics, see statistical learning in language acquisition.

Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn',

 that is, methods that leverage data to improve performance on some set of tasks. ${ }^{[1]}$ It is seen as a part of artificial intelligence. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. ${ }^{[2]}$ Machine learning algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech recognition, agriculture, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks. ${ }^{[3][4]}$ A subset of machine learning is closely related to computational statistics, which focuses on making predictions using computers, but not all machine learning is statistical learning. The study of mathematical optimization delivers methods, theory and application domains to the field of machine learning. Data mining is a related field of study, focusing on exploratory data analysis through unsupervised learning. ${ }^{[6][7]}$ Some implementations of machine learning use data and neural networks in a way that mimics the working of a biological brain. ${ }^{[8][9]}$ In its application across business problems, machine learning is also referred to as predictive analytics.

Machine learning

From Wikipedia, the free encyclopedia

For the journal, see Machine Learning (journal),

"답을 찾아가는 방법"

"Statistical learning" redirects here. For statistical learni "Developing methods" in language acquisition.

Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn',

 that is, methods that leverage data to improve performance on some set of tasks. ${ }^{[1]}$ It is seen as a part of artificial intelligence. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. ${ }^{[2]}$ Machine learning algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech recognition, agriculture, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks. ${ }^{[3][4]}$ A subset of machine learning is closely related to computational statistics, which focuses on making predictions using computers, but not all machine learning is statistical learning. The study of mathematical optimization delivers methods, theory and application domains to the field of machine learning. Data mining is a related field of study, focusing on exploratory data analysis through unsupervised learning. ${ }^{[6][7]}$ Some implementations of machine learning use data and neural networks in a way that mimics the working of a biological brain. ${ }^{[8][9]}$ In its application across business problems, machine learning is also referred to as predictive analytics.

Supervised learning
Data with tag

Supervised learning
Data with tag

	inputs Temper ature	Wind $(\mathrm{m} / \mathrm{s})$	Rain (mm)	Play tennis
Mon.	28	1	1	Yes
Tue.	23	2	5	No
Wed.	22	8	0	No
Thur.	21	3	0	Yes
	22	1	0	$?$

Unsupervised learning

Data without tag

Supervised learning

Data with tag

	inputs Temper ature	Wind $(\mathrm{m} / \mathrm{s})$	Rain (mm)	Play tennis
Mon.	28	1	1	Yes
Tue.	23	2	5	No
Wed.	22	8	0	No
Thur.	21	3	0	Yes
	22	1	0	$?$

Unsupervised learning

Data without tag

Classification problem

Here is a tennis record of someone. Can you guess this person will play the tennis today?

	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Wind $(\mathrm{m} / \mathrm{s})$	Rain (mm)	Play tennis
Mon.	28	1	1	Yes
Tue.	23	2	5	No
Wed.	22	8	0	No
Thur.	21	3	0	Yes
	22	1	$?$	

Classification problem

Here is a tennis record of someone. Can you guess this person will play the tennis today?

	inputs			output
	Temperature (${ }^{\circ} \mathrm{C}$)	Wind (m/s)	Rain (mm)	Play tennis
Mon.	28	1	1	Yes
Tue.	23	2	5	No
Wed.	22	8	0	No
Thur.	21	3	0	Yes
	22	1	0	?

Classification problem

Here is a tennis record of someone. Can you guess this person will play the tennis today?
Training set
$\left.\left.\begin{array}{|c|c|c|c|c|}\hline & \begin{array}{c}\text { Tempera } \\ \text { ture } \\ \text { (} C)\end{array}\end{array}\right) \begin{array}{c}\text { Wind } \\ (\mathrm{m} / \mathrm{s})\end{array}\right)$

$$
\begin{aligned}
& \text { Data set: } D_{i}=\left(x_{i}, y_{i}\right) \\
& x_{1}=(28,1,1), y_{1}=1 \\
& x_{2}=(23,2,5), y_{2}=0 \\
& x_{3}=(22,8,0), y_{3}=0 \\
& x_{4}=(21,3,0), y_{4}=1
\end{aligned}
$$

Classification problem

Here is a tennis record of someone. Can you guess this person will play the tennis today?
Training set

	Tennera		$\substack{\text { Rain } \\(m m)}$	${ }_{\substack{\text { Pay } \\ \text { tenis }}}$
Mon.	28	1	1	Yes
Tue.	23	2	5	No
Wed.	22	8	0	No
Thur.	21	3	0	Yes
	22	1	0	?

$$
\begin{aligned}
& \text { Data set: } D_{i}=\left(x_{i}, y_{i}\right) \\
& x_{1}=(28,1,1), y_{1}=1 \\
& x_{2}=(23,2,5), y_{2}=0 \\
& x_{3}=(22,8,0), y_{3}=0 \\
& x_{4}=(21,3,0), y_{4}=1
\end{aligned}
$$

Classification problem

Here is a tennis record of someone. Can you guess this person will play the tennis today?
Training set

	Tempera ture tc)	Wind $(\mathrm{m} / \mathrm{s})$	Rain (mm)	Play tennis
Mon.	28	1	1	Yes
Tue.	23	2	5	No
Wed.	22	8	0	No
Thur.	21	3	0	Yes
	22	1	0	$?$

Data set: $D_{i}=\left(x_{i}, y_{i}\right)$
$x_{1}=(28,1,1), y_{1}=1$
$x_{2}=(23,2,5), y_{2}=0$
$x_{3}=(22,8,0), y_{3}=0$
$x_{4}=(21,3,0), y_{4}=1$

Classification problem

Play the tennis, $y=1$
Do not play the tennis, $y=0$

Classification problem

Play the tennis, $y=1$
Do not play the tennis, $y=0$

Classification problem

Play the tennis, $y=1$
Do not play the tennis, $y=0$

Linear Classification

wind $f(\mathbf{x})=\sum w_{l} x_{l}+w_{0}$

Linear Classification

Linear Classification

Linear Classification

Activation function

$$
\begin{aligned}
h(\mathbf{x})= & \begin{cases}1 & \text { for } \mathbf{w}^{T} \mathbf{x}>0 \\
0 & \text { otherwise }\end{cases} \\
& \xrightarrow{1} \left\lvert\, \begin{array}{l}
h(\mathbf{x}) \\
\end{array}(\mathbf{x})\right.
\end{aligned}
$$

Activation function decides the outcome based on $\mathbf{w}^{T} \mathbf{x}$.

Linear Classification

wind

$$
\begin{array}{r}
f(\mathbf{x})=\sum w_{l} x_{l}+w_{0} \\
=\mathbf{w}^{T} \mathbf{x}
\end{array}
$$

Activation function

$$
h(\mathbf{x})= \begin{cases}1 & \text { for } \mathbf{w}^{T} \mathbf{x}>0 \\ 0 & \text { otherwise }\end{cases}
$$

Activation function decides the outcome based on $\mathbf{w}^{T} \mathbf{x}$.

Linear Classification

wind

Linear Classification

wind

Linear Classification

$$
\begin{array}{ll}
\text { Difference } & h\left(\mathbf{x}_{i}\right)-y_{i} \\
\text { Error } & E=\sum_{i}\left(h\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
\end{array}
$$

Linear Classification

Difference $\quad h\left(\mathbf{x}_{i}\right)-y_{i}$
Error $\quad E=\sum_{i}\left(h\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}$
\Rightarrow Gradient descent method!

Gradient descent method (경사하강법)

Starting from an initial parameter set $\left\{a_{i}\right\}$, we can update $a_{i}^{\prime}=a_{i}+\Delta a_{i}$ to reduce the error E.

Gradient descent method (경사하강법)

Starting from an initial parameter set $\left\{a_{i}\right\}$, we can update $a_{i}^{\prime}=a_{i}+\Delta a_{i}$ to reduce the error E.

Gradient descent method (경사하강법)

Starting from an initial parameter set $\left\{a_{i}\right\}$, we can update $a_{i}^{\prime}=a_{i}+\Delta a_{i}$ to reduce the error E.

$$
d E=E(\vec{a}+\Delta \vec{a})-E(\vec{a})=\nabla E \cdot \Delta \vec{a}
$$

So if we update \vec{a} to a direction of $(-\nabla E)$, the error will be reduced.

$$
a_{i} \rightarrow a_{i}-c \frac{\partial E}{\partial a_{i}}
$$

Gradient descent method (경사하강법)

Starting from an initial parameter set $\left\{a_{i}\right\}$, we can update $a_{i}^{\prime}=a_{i}+\Delta a_{i}$ to reduce the error E.

Linear Classification

wind

$$
\begin{array}{r}
f(\mathbf{x})=\sum w_{l} x_{l}+w_{0} \\
=\mathbf{w}^{T} \mathbf{x}
\end{array}
$$

Activation function

$$
h(\mathbf{x})= \begin{cases}1 & \text { for } \mathbf{w}^{T} \mathbf{x}>0 \\ 0 & \text { otherwise }\end{cases}
$$

Activation function decides the outcome based on $\mathbf{w}^{T} \mathbf{x}$.

Schematic figure for McCluch-Pitts model

A model that mimics a nerve cell that collects input information from multiple nerve cells and determines whether or not to fire.
dendrites

시냅스 앞 신경세포

Perceptron

We can imagine two parts of the perceptron: input nodes and output nodes

Perceptron

We can imagine two parts of the perceptron: input nodes and output nodes Perceptron algorithm is just a mapping from input signals to output signals

Perceptron

Two-layer system: input and output layers
We can choose the number of nodes in each layer (free parameters)

Perceptron

Two-layer system: input and output layers
We can choose the number of nodes in each layer (free parameters)

Perceptron

Weight $w_{i j}$ is multiplied to the input signal x_{j} to the output node i

Perceptron

Weight $w_{i j}$ is multiplied to the input signal x_{j} to the output node i

Perceptron learning

We have right answers \vec{a}. So, we will update the parameter set to have less error.

$$
\begin{array}{cl}
\text { Difference } & \vec{e}=\vec{a}-\vec{y} \\
\text { Error } & E=\vec{e} \cdot \vec{e}=\sum_{i}\left(\vec{a}_{i}-\vec{y}_{i}\right)^{2}
\end{array}
$$

Since \vec{y} depends on $w_{i j}$ set and bias b_{i}, those parameters are updated by reducing the total error.

Perceptron learning

We have right answers \vec{a}. So, we will update the parameter set to have less error.

$$
\begin{array}{cl}
\text { Difference } & \vec{e}=\vec{a}-\vec{y} \\
\text { Error } & E=\vec{e} \cdot \vec{e}=\sum_{i}\left(\vec{a}_{i}-\vec{y}_{i}\right)^{2}
\end{array}
$$

Since \vec{y} depends on $w_{i j}$ set and bias b_{i}, those parameters are updated by reducing the total error.

> We will use gradient descent method

$$
W_{i j} \rightarrow W_{i j}-c \frac{\partial E}{\partial W_{i j}}, b_{i} \rightarrow b_{i}-c \frac{\partial E}{\partial b_{i}}
$$

Perceptron learning

Heaviside step function has zero differential value, so it is better to use sigmoid function. It is because (1) the output value is bounded from 0 to 1 and (2) differentiation is well defined.

$$
h(v)=\frac{1}{1+e^{-v}}
$$

Using chain rule and $\frac{\partial h(v)}{\partial v}=h(v)[1-h(v)]$

$$
\begin{aligned}
W_{i j} & \rightarrow W_{i j}+c e_{i} y_{i}\left(1-y_{i}\right) x_{j} \\
b_{i} & \rightarrow b_{i}+c e_{i} y_{i}\left(1-y_{i}\right)
\end{aligned}
$$

Example - AND operator

AND operator

input 1	input 2	output
TRUE	TRUE	TRUE
TRUE	FALSE	FALSE
FALSE	TRUE	FALSE
FALSE	FALSE	FALSE

Example - AND operator

AND operator

input 1	input 2	output
TRUE	TRUE	TRUE
TRUE	FALSE	FALSE
FALSE	TRUE	FALSE
FALSE	FALSE	FALSE

input 2

Example - AND operator

Let's find w_{11}, w_{12}, b

$$
\begin{aligned}
& v=w_{11} x_{1}+w_{12} x_{2}+b \\
& y=h\left(w_{11} x_{1}+w_{12} x_{2}+b\right)
\end{aligned}
$$

Example - AND operator

Let's find w_{11}, w_{12}, b

$$
\begin{aligned}
W_{1 j} & \rightarrow W_{1 j}+\operatorname{cey}(1-y) x_{j} \\
b & \rightarrow b+\operatorname{cey}(1-y)
\end{aligned}
$$

Example - AND operator

Final line

Let's try to make a code for XOR operators

XOR operator

input 1	input 2	output
TRUE	TRUE	FALSE
TRUE	FALSE	TRUE
FALSE	TRUE	TRUE
FALSE	FALSE	FALSE

Let's try to make a code for XOR operators

XOR operator

input 1	input 2	output
TRUE	TRUE	FALSE
TRUE	FALSE	TRUE
FALSE	TRUE	TRUE
FALSE	FALSE	FALSE

Let's try to make a code for XOR operators

XOR operator

input 1	input 2	output
TRUE	TRUE	FALSE
TRUE	FALSE	TRUE
FALSE	TRUE	TRUE
FALSE	FALSE	FALSE

Let's try to make a code for XOR operators

XOR operator
input 1 input 2 output TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE

Let's try to make a code for XOR operators

XOR operator
input 1 input 2 output TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE

Let's try to make a code for XOR operators

Then, how to overcome?

XOR operator

input 1	input 2	output
TRUE	TRUE	FALSE
TRUE	FALSE	TRUE
FALSE	TRUE	TRUE
FALSE	FALSE	FALSE

Perceptron with a hidden layer

Make the system nonlinear \Rightarrow adding a hidden layer!
\# of nodes in a hidden layer and \# of hidden layers are the free parameters.

Perceptron with a hidden layer

Make the system nonlinear \Rightarrow adding a hidden layer!
\# of nodes in a hidden layer and \# of hidden layers are the free parameters.

Perceptron with a hidden layer

Make the system nonlinear \Rightarrow adding a hidden layer!
\# of nodes in a hidden layer and \# of hidden layers are the free parameters.

Example - XOR operator

0 [11] 0 [[0.03600886]]
1 [1 0] 1 [[0.95303802]]
2 [0 1] 1 [[0.96323028]]
3 [0 0] 0 [[0.04028346]]

Example - XOR operator

Summary

Classification (or pattern recognization) is finding a function!

Summary

Classification (or pattern recognization) is finding a function!

output

Perceptron is one of the models to find such mapping.

Appendix

Example - AND operator

```
import numpy as np, matplotlib.pyplot as plt
N = 4 # N = number of training data
Nep = 1000 # number of epoch
c = 0.5 # learning rate
def h(x):
    return 1.0/(1.0 + np.exp(-x))
x_train = np.array( [[1,1], [1,0], [0,1], [0,0]] ) # training set
a_train = np.array( [1, 0, 0 ,0]) # solution
e = np.zeros(4)
W = np.random.random( (1, 2) ) # random weight
b = np.random.rand()
```


Example - AND operator

for ep in range(Nep):
for n in range(N):
$\mathrm{x}=\mathrm{x}$ _train $[\mathrm{n}]$
a = a_train[n]
$\mathrm{v}=\mathrm{np} \cdot \operatorname{sum}\left(\mathrm{W}^{*} \mathrm{x}\right)+\mathrm{b}$
$y=h(v)$
$e=a-y$
$W=W+c * e * y^{*}(1-y) * x$
$b=b+c * e * y *(1-y)$
if (ep \% $100==0)$:
xarr.append(ep)
yarr.append(e*e)

```
for }n\mathrm{ in range(N):
    v = np.sum(W*x_train[n]) + b
    y = h(v)
    print(x_train[n], a_train[n], y)
print(W/W[0,0], b/W[0,0])
plt.plot(xarr,yarr, 'o')
plt.xlabel("epoch #")
plt.ylabel("Error")
plt.show()
[[1. 1.14430635]] 0.819390771984584
[1 1] 1 0.9033107055678224
[1 0] 0 0.08031337785347427
[0 1] 0 0.08059139391472323
[0 0] 0 0.0008186790293276247
[[1. 1.0008049]] -1.5221991020149175
```


Example - XOR operator

$\mathrm{N}=4$ \# number of traning set Nep $=4000$ \# number of epoch alpha $=0.5$ \# learning rate
$\operatorname{def} h(x):$
return $1.0 /(1.0+n p . \exp (-x))$
x_train = np.array([[1,1], [1,0], [0,1], [0,0]]) \# training set d_train = np.array([0, 1, 1 ,0]) \# right answer
$\mathrm{W}=$ np.random.random $(2,2)$) \# random weights
$b=n p . r a n d o m . r a n d o m(~(2,1))$
$\mathrm{V}=\mathrm{np}$. random.random($(1,2)$) \# random weights $\mathrm{c}=\mathrm{np}$. random. rand ()


```
xarr = []; yarr = []
```

for ep in range(Nep):
sume $=0$
for n in range(N$)$:
x = np.reshape(x_train[n], $(2,1)$
$\mathrm{d}=\mathrm{d} \operatorname{train}[\mathrm{n}]$
$\mathrm{v}=\mathrm{wex}+\mathrm{b} ; \mathrm{y}=\mathrm{h}(\mathrm{v})$
$\mathrm{s}=\mathrm{V@} \mathrm{y}+\mathrm{c} ; \mathrm{z}=\mathrm{h}(\mathrm{s})$
$e=d-z$
sume += np.ndarray.item(e*e)
delta $=\mathbf{z}^{*}(1-z) * e$
e1 = V.T @ delta
epsil $=y *(1-y) * e l$
V += alpha*delta*y.T; c += alpha*delta
W += alpha*epsil*x.T; b += alpha*epsil
if (ep \% $100==0$):
xarr.append(ep); yarr.append(sume)

```
0 [1 1] O [[0.03600886]]
    1 [1 0] 1 [[0.95303802]]
    [0 0] 0 [[0.04028346]]
    *)
```


Example - XOR operator

$\mathrm{N}=4$ \# number of traning set Nep $=4000$ \# number of epoch alpha $=0.5$ \# learning rate
def $h(x)$

$$
\text { return } 1.0 /(1.0+n p . \exp (-x))
$$

x_train = np.array([[1, 1], [1,0], [0,1], [0,0]]) \# training set d_train = np.array([0, 1, 1 ,0]) \# right answer
$\mathrm{W}=$ np.random.random $(2,2)$) \# random weights
$b=n p . r a n d o m . r a n d o m(~(2,1))$
$\mathrm{v}=\mathrm{np}$. random.random((1, 2)) \# random weights $\mathrm{c}=\mathrm{np}$. random.rand()
xarr = []; yarr = []
for ep in range(Nep):
sume $=0$
for n in range(N$)$:
$x=n p . r e s h a p e\left(x _t r a i n[n],(2,1)\right)$
$\mathrm{d}=\mathrm{d}$ _train $[\mathrm{n}]$
$\mathrm{v}=\mathrm{wex}+\mathrm{b} ; \mathrm{y}=\mathrm{h}(\mathrm{v})$
$\mathbf{s}=\mathrm{V@} \mathrm{y}+\mathrm{c} ; \mathrm{z}=\mathrm{h}(\mathrm{s})$
$e=d-z$
sume += np.ndarray.item(e*e)
delta $=z^{*}(1-z) * e$
e1 = V.T ${ }^{\text {A }}$ delta
epsil $=\mathrm{y} *(1-\mathrm{y}) * e 1$
v += alpha*delta*y.T; c += alpha*delta
W += alpha*epsil*x.T; b += alpha*epsil
if (ep \% $100==0$):
xarr.append (ep); yarr.append (sume)

Did you listen to Chang Kiha's new songs? It's amazing. You should listen to them.

Oh! Really? I will listen to them. All the songs which you recommended were awesome.

Did you listen to Chang Kiha's new songs?
It's amazing. You should listen to them.

I don't buy it. To me, his song sounds weird.

They have similar taste.

If you know two customers have similar taste, you could recommend some items based on their shopping patterns (which items the customers buy).

If you know two customers have similar taste, you could recommend some items based on their shopping patterns (which items the customers buy).

If you know two customers have similar taste, you could recommend some items based on their shopping patterns (which items the customers buy).

If you know two customers have similar taste, you could recommend some items based on their shopping patterns (which items the customers buy).

Clustering

Cluster: Group of the similar objects
Good clustering?
\Rightarrow High Intra-cluster similarity
\Rightarrow Low Inter-cluster similarity

Example

Clustering

Cluster: Group of the similar objects
Good clustering?
\Rightarrow High Intra-cluster similarity
\Rightarrow Low Inter-cluster similarity

Example

Clustering

Cluster: Group of the similar objects
Good clustering?
\Rightarrow High Intra-cluster similarity
\Rightarrow Low Inter-cluster similarity

Example

Intuitively, we can assign the clusters.
However, what is the systematic way to do clustering?
$\Rightarrow K$ means clustering

K means clustering

We will use Euclidean distance to mention something is similar or not. If two points are close, they are similar.

Algorithm

1. Choose K the number of clusters.
2. Randomly choose K samples (data points) for the initial cluster centroids.
3. For all data points, assign the cluster based on the distance between data point and the cluster centroid; the point belongs to the closest cluster centroid.
4. Recalculate the cluster centered based on allocation.
5. Repeat 3-4 until the clusters do not change.

K means clustering

https://towardsdatascience.com/machine-learning-algorithms-part-9-k-means-example-in-python-f2ad05ed5203

1. Choose K the number of clusters (let's say 2 in this example).

K means clustering

https://towardsdatascience.com/machine-learning-algorithms-part-9-k-means-example-in-python-f2ad05ed5203
2. Randomly choose K samples (data points) for the initial cluster centroids.

K means clustering

https://towardsdatascience.com/machine-learning-algorithms-part-9-k-means-example-in-python-f2ad05ed5203
3. For all data points, assign the cluster based on the distance between data point and the cluster centroid; the point belongs to the closest cluster centroid.

K means clustering

4. Recalculate the cluster centered based on allocation.

K means clustering

https://towardsdatascience.com/machine-learning-algorithms-part-9-k-means-example-in-python-f2ad05ed5203
5. Repeat 3-4 until the clusters do not change.

Initial condition dependency

Kmeans++

The way of selecting an initial centroid set

When the randomly selected initial centroids are close each other, K means clustering usually unstable. To overcome this issue, we could use Keans++ method that chooses initial centroids as far as possible.

Algorithm

1. Choose the first centroid at random.
2. Calculate the distances from points to the centroid.
3. Depending on distance, choose the next centroid as
$p_{i}=\frac{\text { distance between } i \text {-th data point and the centroid, } d_{i}}{\sum_{i} d_{i}}$
4. Repeat 2-3 until K centroids are selected.

How to decide K

How to decide K

Elbow method
Minimizing the error within clusters, $E=\sum_{j=1}^{K} \sum_{i \in c_{j}} d\left(x_{i}, c_{j}\right)^{2}$

How to decide K

Elbow method
Minimizing the error within clusters, $E=\sum_{j=1}^{K} \sum_{i \in c_{j}} d\left(x_{i}, c_{j}\right)^{2}$

How to decide K

Elbow method

Minimizing the error within clusters, $E=\sum_{j=1}^{K} \sum_{i \in c_{j}} d\left(x_{i}, c_{j}\right)^{2}$

How to decide K

Elbow method

Minimizing the error within clusters, $E=\sum_{j=1}^{K} \sum_{i \in c_{j}} d\left(x_{i}, c_{j}\right)^{2}$

How to decide K

Elbow method
Minimizing the error within clusters, $E=\sum_{j=1}^{K} \sum_{i \in c_{j}} d\left(x_{i}, c_{j}\right)^{2}$

Limitation

[https://ratsgo.github.io/machine\ learning/2017/04/19/KC/]

- Different data volume for each cluster
- Different data density for each cluster
- Nonconvex shapes of the data
k means clustering results

[cf] Convex and Nonconvex

Convex

any lines connecting two points are in a set.

Nonconvex

there is a line (or lines) connecting two points are not in a set.


```
#array for cluster idx of each data point
```

```
cluster = np.zeros(Npoints)
```

cluster = np.zeros(Npoints)
\#step1: choose the number of clusters
\#step1: choose the number of clusters
K = 3
K = 3
\#step2: randomly select K samples among data
\#step2: randomly select K samples among data
centroids = data[np.random.randint(Npoints, size=K)]
centroids = data[np.random.randint(Npoints, size=K)]
flag = 1
flag = 1
while(flag):
while(flag):
\#step3: calculate the distance between and alocate the cluster idx for data points
\#step3: calculate the distance between and alocate the cluster idx for data points
ex = cluster.copy()
ex = cluster.copy()
for i in range(Npoints):
for i in range(Npoints):
dist = distances(data[i], K, centroids) \#calculate distance
dist = distances(data[i], K, centroids) \#calculate distance
idx = np.argmin(dist) \#find the minimum
idx = np.argmin(dist) \#find the minimum
cluster[i] = idx \#allocate the cluster
cluster[i] = idx \#allocate the cluster
\#step4: recalculate the centroids
\#step4: recalculate the centroids
for i in range(K):
for i in range(K):
centroids[i] = data[np.where(cluster==i)].mean(axis=0)
centroids[i] = data[np.where(cluster==i)].mean(axis=0)
\#step5: termination condition
\#step5: termination condition
if np.array_equal(ex, cluster):
if np.array_equal(ex, cluster):
flag = 0

```
        flag = 0
```


References

- https://www.youtube.com/watch?v=4b5d3muPQmA
- https://todayisbetterthanyesterday.tistory.com/58
- https://towardsdatascience.com/machine-learning-algorithms-part-9-k-means-example-in-python-f2ad05ed5203
- https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/

