

Heavy quarks and quarkonia (Experiment)

Jinjoo Seo **Heidelberg University**

03. 05. 2023.

Up quark

Charm quark

Top quark

Down quark

O

Strange quark

Bottom quark

• $m_{\rm c} \sim 1.5 \,\,{\rm GeV}/c^2$

$m_{\rm b} \sim 5 ~{\rm GeV}/c^2$ -

• $m_{\rm c} \sim 1.5 \,\,{\rm GeV}/c^2$

$m_{\rm b} \sim 5 \ {\rm GeV}/c^2 \bullet$

• $m_{\rm c} \sim 1.5 ~{\rm GeV}/c^2$

c and b are effective probes of: Presence of deconfinement and QGP temperature The mechanisms of quark-medium interaction The strength of the collective expansion of the system The initial state and the magnetic field

$m_{\rm b} \sim 5 \ {\rm GeV}/c^2 \bullet$

Jinjoo Seo

Jinjoo Seo

Jinjoo Seo

Sensitivity to initial state and B

Interaction with QGP **Radiative energy loss Thermalization?**

03 MAR 2023

 $f_{x_1} \times f_{x_2} \otimes \frac{\mathrm{d}\sigma^{\mathrm{c},\mathrm{b}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{c},\mathrm{b}}} \otimes P_{\mathrm{c},\mathrm{b}\to\mathrm{c}'\mathrm{b}'} \otimes D_{\mathrm{c}'\mathrm{b}\to\mathrm{h}} = \frac{\mathrm{d}\sigma^{\mathrm{h}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{h}}}$

Jinjoo Seo

Sensitivity to initial state and B

Interaction with QGP **Radiative energy loss** Thermalization?

03 MAR 2023

Fragmentation Coalescence

Jinjoo Seo

 $f_{x_1} \times f_{x_2} \otimes \frac{\mathrm{d}\sigma^{\mathrm{c},\mathrm{b}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{c},\mathrm{b}}} \otimes P_{\mathrm{c},\mathrm{b}\to\mathrm{c}'\mathrm{b}'} \otimes D_{\mathrm{c}'\mathrm{b}\to\mathrm{h}} = \frac{\mathrm{d}\sigma^{\mathrm{h}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{h}}}$

Sensitivity to initial state and B

Interaction with QGP **Radiative energy loss Thermalization?**

03 MAR 2023

Fragmentation Coalescence

Interaction potential Rescattering

Jinjoo Seo

 $f_{x_1} \times f_{x_2} \otimes \frac{\mathrm{d}\sigma^{\mathrm{c},\mathrm{b}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{c},\mathrm{b}}} \otimes P_{\mathrm{c},\mathrm{b}\to\mathrm{c}'\mathrm{b}'} \otimes D_{\mathrm{c}'\mathrm{b}\to\mathrm{h}} = \frac{\mathrm{d}\sigma^{\mathrm{h}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{h}}}$

Heavy flavor hadron production

 $d\sigma^{c,b}$

dpc,b

Sensitivity to initial state and **B**

03 MAR 2023

B: induced by positive charged spectators $c,b \rightarrow c'b'$ E: induced by time differential B field

Charge dependent direct flow

- *V*₁
 - Interplay between the effects of the rapidly decreasing magnetic field and the initial tilt of the source
 - **HF > LF**
- Model & STAR measurements
 - Negative slope
- ALICE measurements
 - Positive slope

Jinjoo Seo

Charge dependent direct flow

- V_1 ullet
 - Interplay between the effects ulletof the rapidly decreasing magnetic field and the initial tilt of the source
 - HF > LF
- Model & STAR measurements
 - Negative slope
- ALICE measurements
 - Positive slope

• Larger B than the induced E at LHC?

03 MAR 2023

Jinjoo Seo

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

J/v polarization in Pb-Pb

- Significant non-zero polarization from central collisions down to 40-60% centrality
- Polarization is larger at low p_T than at high p_T
 - quarkonia with the nuclear matter

03 MAR 2023

• Theory calculations need to understand the behavior and give an additional handle on the coupling of

Polar angular distribution $\frac{\mathrm{dN}}{\mathrm{d}\mathrm{cos}\theta} \propto (1 + \frac{1}{3 + \lambda_{\theta}} \lambda_{\theta} \mathrm{cos}^2 \theta)$

Quarkonium: dissociation & regeneration Study of QGP temperature and deconfinement

 $P_{c,b\rightarrow c'b}$

Interaction with QGP **Radiative energy loss Thermalization?**

1.4 1.2 ° 0.8 **R**AA 0.6 0.4 0.2

boundino.github.io/hinHFplot

O3 MAR 2023

Low pT: Elastic collision with medium constituents High pt: Radiative energy loss (gluon emission)

Jinjoo Seo

UNIV	'ERSI1	ΓÄΤ
HEID	ELBE	RG

RAA Of Charmonium

- **R**_{AA}: ALICE(5.02 TeV) > STAR(200 GeV) > NA50(17 GeV)
- At low p_{T} region
 - Sizeable regeneration(recombination) described by theoretical calculations
 - TAMU: Transport model, SHM: Statistical hadronization model
 - Medium modification decreases from forward to central rapidity

03 MAR 2023

• Increase of regeneration with collision energy $((dN_{c\bar{c}}/dy)^2)$ increases by ~10⁶ from SPS to LHC)

RAA of charmonium

- Modification: $\psi(2S) > J/\psi$
- At low p_{T}
 - Sizeable regeneration(recombination)
- At high *p*_T
 - ALICE and CMS agree with each other
 - No clear *p*_T dependence on *R*_{AA}

RAA of bottomonium

- Gradual decrease towards central collisions •
- Sequential suppression: Ordering with binding energy (or radius of bound state)
- The regeneration(recombination) of correlated (diagonal) quarks is non-negligible
- $\Upsilon(nS)$: No significant p_T dependent

03 MAR 2023

Jinjoo Seo

UNIVERSITÄT **HEIDELBERG** ZUKUNFT SEIT 1386

CMS

RAA of bottomonium

- Gradual decrease towards central collisions •
- Sequential suppression: Ordering with binding energy (or radius of bound state)
- The regeneration(recombination) of correlated (diagonal) quarks is non-negligible
- $\Upsilon(nS)$: No significant p_T dependent

03 MAR 2023

Jinjoo Seo

UNIVERSITÄT **HEIDELBERG** ZUKUNFT SEIT 1386

CMS

RAA of bottomonium

- Gradual decrease towards central collisions •
- Sequential suppression: Ordering with binding energy (or radius of bound state)
- The regeneration(recombination) of correlated (diagonal) quarks is non-negligible
- $\Upsilon(nS)$: No significant p_T dependent

UNIVERSITÄT **HEIDELBERG** ZUKUNFT SEIT 1386

CMS

RAA of heavy-flavor hadrons

- R_{AA} hierarchy at intermediate p_T
 - π^{\pm} , h^{\pm} < prompt D, prompt J/ ψ < non-prompt J/ ψ , B⁺ < B_c⁺
 - Parton mass energy loss dependence

03 MAR 2023

Jinjoo Seo

UNIVERSITÄT **HEIDELBERG** ZUKUNFT SEIT 1386

V_2 of open and hidden HF hadrons

 Open HF hadrons • Low p_T : **0** < beauty v_2 < charm v_2 • High p_T : 0 < beauty $v_2 \sim \text{charm } v_2$

03 MAR 2023

Hidden HF hadrons

• $v_2(J/\psi) > 0$: Regeneration from flowing $c\bar{c}$ quarks • $V_2(\Upsilon(1S)) \sim 0$: Large $\Upsilon(1S)$ mass & small bb regeneration

V_2 of open and hidden HF hadrons

 Open HF hadrons • Low p_T : **0** < beauty v_2 < charm v_2 • High p_T : 0 < beauty $v_2 \sim \text{charm } v_2$

arXiv:22Smaller thermalization for beauty? 03 Mar Path-length dependence of energy loss?

Hidden HF hadrons

• $v_2(J/\psi) > 0$: Regeneration from flowing $c\bar{c}$ quarks • $V_2(\Upsilon(1S)) \sim 0$: Large $\Upsilon(1S)$ mass & small bb regeneration

Charm diffusion coefficient

Diffusion coefficient(D_s) is obtained considering the measurements used in transport models

03 MAR 2023

pradron production **Coalescence:** Combitaion of quarks close in phase space $\otimes P_{c,b\to c'b'} \otimes D_{c'b'\to h}$ Fragmentation Coalescence

Fragmentation: Break up of heavy-flavor quark as in e++e- collisions (also expected in pp collisions)

Jinjoo Seo

Meson-to-meson ratio in pp collisions

- Meson-to-meson ratios are independent of $p_{\rm T}$ and collision system
- Good agreement with theoretical calculations
 - assumed to be universal across collision systems

03 MAR 2023

• NLO pQCD calculation with fragmentation functions from measurements at e++e- and ep colliders,

Jinjoo Seo

UNIVERSITÄT HEIDELBERG SEIT 1386

Λ_{c}^{+}/D^{0} ratio in pp collisions

PYTHIA 8 with Color Reconnection (CR)

- Monash: Color reconnection between MPIs
- CR-BLC: Add Junction connection
- SHM + additional baryon states
 - Hadronization by statistical weights + strong feed-down
 - **PDG**: $5\Lambda_c$ (I=0), $3\Sigma_c$ (I=1), $8\Xi_c$ (I=1/2), $2\Omega_c$ (I=0)
 - **RQM**: Additional $18\Lambda_c$, $42\Sigma_c$, $62\Xi_c$, $34\Omega_c$

Catania model

- c hadronize via vacuum fragmentation + coalescence
- QCM (Quark (re-)Combination Model)
 - Recombination of c and comving light quarks

03 MAR 2023

Λ_{c}^{+}/D^{0} ratio in pp collisions

PYTHIA 8 with Color Reconnection (CR)

- Monash: Color reconnection between MPIs
- CR-BLC: Add Junction connection
- SHM + additional baryon states
 - Hadronization by statistical weights + strong feed-down
 - **PDG**: $5\Lambda_c$ (I=0), $3\Sigma_c$ (I=1), $8\Xi_c$ (I=1/2), $2\Omega_c$ (I=0)
 - **RQM**: Additional $18\Lambda_c$, $42\Sigma_c$, $62\Xi_c$, $34\Omega_c$

Catania model

- c hadronize via vacuum fragmentation + coalescence
- QCM (Quark (re-)Combination Model)
 - Recombination of c and comving light quarks

03 MAR 2023

Jinjoo Seo

 Universality of charm fragmentation is broken among different collision system

Σ^+/D^0 ratio in pp collisions

- Enhancement at low p_T w.r.t to e⁺e⁻, ep collisions Universality of charm fragmentation among different collision systems broken?
- Well described by SHM+RQM, Catania, and QCM
- The feed-down from $\Sigma_c^{0,++}$ partially explains the Λ_c^+/D^0 enhancement in pp collisions

03 MAR 2023

Monash: EPJC 74 (2014) 3024 CR-BLC: JHEP 08 (2015) 003 Catania: PLB 821 (2021) 136622) SHM: PLB 795 (2019) 117-121 RQM: PRD 84 (2011) 014025

Jinjoo Seo

- Enhancement at low p_T with respect to e⁺+e⁻, ep measurements.
- Most model calculations underestimate the measurements. • $\Xi_c^{0,+}/\Sigma_c^{0,++}$ in agreement with Monash tune.

03 MAR 2023

ep measurements. asurements

Jinjoo Seo

- Enhancement at low p_T with respect to e⁺+e⁻, ep measurements.
- Most model calculations underestimate the measurements. • $\Xi_c^{0,+}/\Sigma_c^{0,++}$ in agreement with Monash tune.

03 MAR 2023

03 MAR 2023

Ratio	ALICE (pp@13 TeV)	Belle $(e^+e^-@10)$
	$2 < p_{\rm T} < 12 \; {\rm GeV}/c$	visib
$\mathrm{BR}(\Omega^0_\mathrm{c} o \Omega^- \pi^+) imes \sigma(\Omega^0_\mathrm{c}) / \sigma(\Lambda^+_\mathrm{c})$	$(1.96 \pm 0.42 \pm 0.13) \times 10^{-3}$	$(9.70 \pm 1.27 \pm 0.00)$
${ m BR}(\Omega_{ m c}^0 o \Omega^- \pi^+) imes \sigma(\Omega_{ m c}^0) / \sigma(\Xi_{ m c}^0)$	$(3.99 \pm 0.96 \pm 0.96) \times 10^{-3}$	$(5.82 \pm 0.78 \pm 1)$
$BR(\Omega^{\scriptscriptstyle 0}_{\rm c}\to\Omega^-\pi^+)\times\sigma(\Omega^{\scriptscriptstyle 0}_{\rm c})/\sigma(\Xi^{\scriptscriptstyle 0}_{\rm c})$	$(3.99 \pm 0.96 \pm 0.96) \times 10^{-3}$	(5.82 ± 0.78)

- Push towards higher p_T of charm baryon-to-meson ratio from pp to p-Pb.
 - Radial flow? Coalescence effect?
- BR ~ 0.45% 1.1% $\rightarrow \Xi_c^0/D^0$ (LHCb) ~ 0.045 0.11
 - likely LHCb below ALICE, but also LHCb larger than e++e⁻ (~0.02)
- No multiplicity dependence in p-Pb (and Pb-Pb) over p_T in contrast to light-flavor hadrons.

03 MAR 2023

QCM: EPJC 77 (2017)163

Jinjoo Seo

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- Push towards higher p_T of charm baryon-to-meson ratio from pp to p-Pb.
 - Radial flow? Coalescence effect?
- BR ~ 0.45% 1.1% $\rightarrow \Xi_c^0/D^0$ (LHCb) ~ 0.045 0.11
 - likely LHCb below ALICE, but also LHCb larger than e++e⁻ (~0.02)
- No multiplicity dependence in p-Pb (and Pb-Pb) over p_T in contrast to light-flavor hadrons.

03 MAR 2023

QCM: EPJC 77 (2017)163

Jinjoo Seo

- Push towards higher p_T of charm baryon-to-meson ratio from pp to p-Pb.
 - Radial flow? Coalescence effect?
- BR ~ 0.45% 1.1% $\rightarrow \Xi_c^0/D^0$ (LHCb) ~ 0.045 0.11
 - likely LHCb below ALICE, but also LHCb larger than e++e⁻ (~0.02)
- No multiplicity dependence in p-Pb (and Pb-Pb) over p_T in contrast to light-flavor hadrons.

03 MAR 2023

QCM: EPJC 77 (2017)163

Jinjoo Seo

Charm fragmentation fraction

- pp and p-Pb results are compatible.
- Significant baryon enhancement with respect to e+e- and ep collisions.
 - The universality of charm fragmentation fractions is broken.
- Total charm cross section is $\sim 30\%$ higher than the previously published results.

EPJC 76 no.7, (2016) 397 EPJC 77 no.1, (2015) 19 EPJC 76 no.7, (2016) 397 ALI-PREL-541012

03 MAR 2023

Beauty hadron ratio in pp collisions

- No *p*_T dependence of the meson-to-meson ratios
- p_T dependence of the baryon-to-meson ratio, showing the enhancement at low p_T
- Multiplicity dependence of B_s^0/B^0 at low p_T , no dependence at intermediate-to-high p_T
 - low p_T : sizable coalesence, intermediate-to-high p_T : dominant vacuum fragmentation

03 MAR 2023

Jinjoo Seo

UNIVERSITÄT HEIDELBERG SEIT 1386

Beavy flavor hadrochemistry

- Abundant production of strange quarks in the QGP
 - - Enhanced charm(beauty?) strange hadron yield relative non-strange hadrons

03 MAR 2023

Coalescence of heavy quarks with strange quarks from the QGP affects the HF hadrochemistry

Jinjoo Seo

Heavy flavor hadron chambadron resonance Charm resonances are sensitive to the hadrons interaction What is the **rescattering** process in the heavy flavor sector?

Two-body interactions with charm Investigation of exotic bound states

 $J_{\chi_1} \times J_{\chi_2}$

03 MAR 2023

nteraction potential Rescattering

Hadron-gas phase ~ 10-15 fm/c

Jinjoo Seo

Beavy flavor hadronic resonance

- $D_{s1}^+ \times BR(D_{s1}^+ \to D^{*+}K_S^0)/D_s^+$: No multiplicity dependence in data and SHM and SHMc • $D_{s2}^{*+} \times BR(D_{s2}^{*+} \rightarrow D^+K_s^0)/D_s^+$
 - Hint of enhancement at low multiplicity might arise from hadronic rescattering •
 - Lifetime: $\tau(D_{s1}^+) \sim 219 \text{ fm/}c, \tau(D_{s2}^{*+}) \sim 11.61 \text{ fm/}c$

0.15 $\rho^{0/\pi}$ pp, $\sqrt{s} = 13$ TeV, |y| < 0.5ALICE 0.05 Data $(2 < p_{T} < 24 \text{ GeV}/c)$ **DD** (\sqrt{s}) ⊕ 2.76 TeV SHM M. He, R. Rapp $(p_{T} > 0)$ 0.4 ♦ 7 TeV SHMc GSI–Heidelberg ($p_{\tau} > 0$) K*⁰/K Pb–Pb ($\sqrt{s_{NN}}$) □ 2.76 TeV 5.02 TeV Almost same lifetime as D Λ^*/Λ 0.05 EPOS 3 0.2 0.15 фК 5 times less lifetime of D_{c1}^+ $\mathbf{O}_{\mathbf{n}}^{\mathbf{l}}$ 0.05 25 20 30 15 35 12 10 16 14 $\left< \mathrm{dN}_{\mathrm{ch}} / \mathrm{d\eta} \right>_{\eta \mathrm{l} < 0.5}$ $\left< {\rm d}N_{\rm ch}/{\rm d}\eta \right>^{1/3}$ arXiv:2211.04384

Exotic charm states

- $\chi_{c1}(3872)$ structure: a compact tetraquark? hadronic molecule? • $D^0 \bar{D}^{*0}$: nature of $\chi_{c1}(3872)$
 - Interaction between $D^0 \overline{D}^{*0}$ will offer an additional constraint for the structure of exotic charm states

03 MAR 2023

 $C(k^*) = \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$

Jinjoo Seo

Back up

Large magnetic field in HIC

03 MAR 2023

➡ Faraday effect Electric field induced by decreasing B

→ Hall effect Lorentz force induced by moving charges $\vec{F} = q \vec{v} \times \vec{B}$

- v_1 of charm hadrons (D⁰ mesons) is larger than that of lighter particles
- Opposite sign of v_1 for particles is shown with charm and anti-charm
- 3 orders of magnitude larger slopes w.r.t. charged hadrons

Jinjoo Seo

Charge dependent direct flow

- source affects the directed flow observable
- The results measured at RHIC and LHC energies show the opposite slope
- LHC shows a larger slope w.r.t. RHIC

03 MAR 2023

• Interplay between the effects of the rapidly decreasing magnetic field and the initial tilt of the

RAA of heavy-flavor hadrons

- $R_{AA}^{non-prompt\,D}/R_{AA}^{prompt\,D} = 1.7 \pm 0.18 \ (p_T > 5 \ \text{GeV/c})$
- LGR model shows a strong influence of dependence of parton energy loss and coalescence c mass in the calculation of the b energy loss ii) c mass in b coalescence iii) w/o shadowing effects for c and b iv) w/o quark coalescence in c and b hadronization

TAMU: PLB735 (2014) 445-450 CUJET: Chin. Phys. C 43 (2019) 044101 LGR: EPJC 80 (2020) 1113 MC@sHQ+EPOS2: PRC 89 (2014) 014905

Jinjoo Seo

Towards QGP temperature

- - temperature range probed by heavy-ion collisions

03 MAR 2023

• Two model calculations implement color screening in hydro medium with initial $T_0 \sim 550-650$ MeV • Additional input to hydrodynamic descriptions of low- p_T light flavor observables to constrain the

- R_{pPb} is described by QCM within uncertainties.
- Push towards higher p_T of Λ_c^+/D^0 and Ξ_c^0/D^0 from pp to p-Pb.
 - Radial flow? Coalesence effect?
- BR ~ 0.45% 1.1% $\rightarrow \Xi_c^0/D^0$ (LHCb) ~ 0.045 0.11
 - → likely LHCb below ALICE, but also LHCb larger than e++e-

Test probe for coalescence

03 MAR 2023

Test probe for coalescence

• Silicon layer inside the beam pipe allow for direct strangeness tracking in ALICE 3 • $\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+} \to (\Xi^{-} \pi^{+} \pi^{+}) \pi^{+}$ reconstruction is possible precisely

arXiv:2211.02491 ALICE 3 Study $L_{int} = 35 \text{ nb}^{-1}$ Pb-Pb $\sqrt{s_{NN}} = 5.5 \text{ TeV } 30-50\%$ $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+} \rightarrow \Xi^{-}\pi^{+}\pi^{+}\pi^{+}$, |y|<1.44 0.3 estimated v₂ 0.2 **0.1** 2211.0249° Significance 12 10 8 (GeV/*c*) 10 ⊨ Ξ_{cc}^{++} , BDT-optimised → Ξ⁺⁺ standard ALICE 3 Study Pb-Pb 0-10% PYTHIA Full acceptance over lnl<4.0 10⁻¹ Particle + antiparticle L_{int} = 35 nb⁻¹ 10 12 2 6 14 *p*_т (GeV/*c*)

- First First measurement of the prompt and non-prompt D*+ spin alignment at the LHC
 - ρ_{00} (prompt D*+) = 0.324 ± 0.004 (stat.) ± 0.008 (syst.)
 - Prompt D^{*+} compatible with no polarization
 - ρ_{00} (non-prompt D*) = 0.455 ± 0.022 (stat.) ± 0.035 (syst.)
 - Non-prompt $D_{*}\rho_{00} > 1/3$ due to the helicity conservation
 - $B(S=0) \rightarrow D^*+(S=1) + X$
- PYTHIA8 + EvtGen describes both the components
- Helicity conservation implemented in EvtGen
- Important baseline for A-A collisions
 - Disentangles medium-induced from genuine polarisation effects

Charm fragmentation fraction

Charm fragmentation fraction

 Assumption is needed due to lack of knowledge about production of $\Xi_c^{0,+}$ and Ω_c^0 $f(c \to \Xi_c^+)/f(c \to \Lambda_c^+)$ $= f(c \to \Xi_c^0) / f(c \to \Lambda_c^+)$ $= f(s \rightarrow \Xi^{-})/f(s \rightarrow \Lambda) = 0.066$ $\cdot f(c \to \Omega_c^0)/f(c \to \Lambda_c^+)$ $= f(s \rightarrow \Omega^{-})/f(s \rightarrow \Lambda) = 0.004$ $\cdot f(c \to \Omega_c^0)/f(c \to \Xi_c^0)$ $= f(s \rightarrow \Omega^{-})/f(s \rightarrow \Xi^{-}) = 0.062$

ALI-PUB-488607

03 MAR 2023

ALI-PUB-488612

03 MAR 2023

p_T distribution modification

- Λ_c^+/D^0 in pp at 5.02 TeV (ALICE vs CMS)
 - ALICE and CMS measurements are consistent
- Λ_c^+/D^0 in p-Pb at 5.02 TeV (ALICE vs LHCb)
 - Enhancement of the ratio at mid-rapidity with respect to forward and backward rapidity? •

Jinjoo Seo

UNIVERSITÄT HEIDELBERG 7UKUNFT SEIT 1386

Heavy flavor hadronic resonance

- No significant multiplicity dependence in charm meson sector.
- Strong multiplicity dependence observed in charm baryon sector in pp collisions.
 - Well described by color reconnection and SHM models
 - SHM: consider strong feed-down from the excited states

Jinjoo Seo

HF hadrons in hadronic phase

- Scattering length for I = 3/2 in agreement with models
- Scattering length for I = 1/2 significantly smaller than models
 - ullet

Same charge pair (I = 3/2 only)

 $k^* = 1/2 \left| p_{x_1}^* - p_{x_2}^* \right|$

03 MAR 2023

Indicate a small interaction of between charm mesons and light hardrons in the hadronic phase

Oposite charge pair (I = 3/2 (33%), I = 1/2 (66%))

Jinjoo Seo

Charm exotic states

- $\chi_{c1}(3872)$ breaking up in a higher multiplicity environment
- Possibility to constrain the interaction potential of charm exotic states and hyper nuclei

03 MAR 2023

• Distinct source size dependence of the correlation function in the presence of bound states.

Charm exotic states and hyper-nuclei

- Possibility to constrain the interaction potential of charm exotic states and hyper nuclei
 - Distinct source size dependence of the correlation function in the presence of bound states.
- Possibility of full decay reconstruction

03 MAR 2023

 $c_d \rightarrow dK^-\pi^+$

Correlation function

03 MAR 2023

Jinjoo Seo

Charm exotic states

- $\chi_{c1}(3872)$ structure as a compact tetraquark
- Possibility to constrain the interaction potential of charm exotic states

03 MAR 2023

• Distinct source size dependence of the correlation function in the presence of bound states