Photoproduction of ϕ－meson with K＊Σ－bound state

Sang－In SHIM（沈 相仁）

19th December 2023

Collaborated with Prof．Yongsun Kim and Seung－il Nam

Background and motivation

LHCb experiment confirmed P_{c}

$$
\begin{aligned}
P_{c}^{+}\left[\bar{D}^{*} \Sigma_{c}\right] & \longrightarrow J / \psi[c \bar{c}] p \\
& \longrightarrow \text { confirmed! }
\end{aligned}
$$

$$
P_{s}^{+}\left[K^{*} \Sigma\right] \longrightarrow \phi[s \bar{s}] p
$$

—>possible?

Attempt to find P_{s} from $K^{+} p \rightarrow K^{+} \phi p$

by Prof. S.-i Nam PRD103, 054040(2021)

Background and motivation

PHYSICAL REVIEW D 105, 114023 (2022)

Production of $\boldsymbol{P}_{\boldsymbol{c}}(\mathbf{4 3 1 2})$ state in electron-proton collisions
In Woo Park $\odot,{ }^{1}$ Sungtae Cho, ${ }^{2,3}$ Yongsun Kim $\odot,{ }^{4,3,{ }^{*}}$ and Su Houng Lee ${ }^{1, \uparrow}$

Electroproduction of J / ψ with P_{c}

Photo- or
electroproduction of ϕ-meson with P_{s} ?

Nucleon

Similar process for P_{s} is also possible

Pentaquark molecular $K^{*} \Sigma$ bound-state $P_{s}(2071,3 / 2-)$

PHYSICAL REVIEW D 83, 114041 (2011)
Vector meson-baryon dynamics and generation of resonances

K. P. Khemchandani, ${ }^{1, *}$ H. Kaneko, ${ }^{1, \dagger}$ H. Nagahiro, ${ }^{2,{ }^{, \dagger}}$ and A. Hosaka ${ }^{1, \S}$
${ }^{1}$ Research Center for Nuclear Physics (RCNP), Mihogaoka 10-1, Ibaraki 567-0047, Japan
${ }^{2}$ Department of Physics, Nara Women's University, Nara 630-8506, Japan (Received 15 April 2011; published 22 June 2011)

The purpose of this work is to study vector meson-octet baryon interactions with the aim to find dynamical generation of resonances in such systems. For this, we consider s-, t-, u-channel diagrams along with a contact interaction originating from the hidden local symmetry Lagrangian. We find the contribution from all these sources, except the s channel, to be important. The amplitudes obtained by solving coupled channel Bethe-Salpeter equations for systems with total strangeness zero, show the generation of one isospin $3 / 2$, spin $1 / 2$ resonance and three isospin $1 / 2$ resonances: two with spin $3 / 2$ and one with spin $1 / 2$. We identify these resonances with $\Delta(1900) S_{31}, N^{*}(2080) D_{13}, N^{*}(1700) D_{13}$, and $N^{*}(2090) S_{11}$, respectively.

We will investigate photo- and electroproduction including P_{s}

Theoretical formalism

Vector meson dominance (VMD) and Lagrangians for P_{s}

$$
\begin{aligned}
& \mathscr{L}_{\gamma N P_{s}}=e\left(\frac{i h_{1}}{2 m_{N}} \bar{N} \gamma^{\nu}-\frac{h_{2}}{\left(2 m_{N}\right)^{2}} \partial^{\nu} \bar{N}\right) F_{\mu \nu} P_{s}^{\mu}+H . c .+H . c . \\
& \mathscr{L}_{V N P_{s}}=-\frac{i g_{1}}{2 m_{N}} \bar{N}^{\nu} F_{\mu \nu}^{V} P_{s}^{\mu}-\frac{g_{2}}{\left(2 m_{N}\right)^{2}} \partial^{\nu} \bar{N} F_{\mu \nu}^{V} P_{s}^{\mu}+\frac{g_{3}}{\left(2 m_{N}\right)^{2}} \bar{N} \partial^{\nu} F_{\mu \nu}^{V} P_{s}^{\mu}+H . c .
\end{aligned}
$$

Here, we consider only the leading terms
g_{1} and $\Gamma_{P_{s}}=14 \mathrm{MeV}$
K. P. Khemchandani et al. PRD83.114041(2011)

Using VMD,

$$
e h_{1}=g_{1} \frac{e}{f_{V}} \frac{2 m_{N}\left(m_{N}+m_{P_{s}}\right)}{\left(m_{P_{s}^{2}}-m_{N}^{2}\right) m_{V}} \sqrt{\frac{6 m_{V}^{2} m_{P_{s}}^{2}+m_{N}^{4}-2 m_{N}^{2} m_{P_{s}}^{2}+m_{P_{s}}^{4}}{3 m_{P_{s}}^{2}+m_{N}^{2}}}
$$

Theoretical formalism

Vector meson dominance (VMD) and Lagrangians for P_{s}

$$
\begin{aligned}
& \mathscr{L}_{\gamma N P_{s}}=e\left(\frac{i h_{1}}{2 m_{N}} \bar{N} \gamma^{\nu}-\frac{h_{2}}{\left(2 m_{N}\right)^{2}} \partial^{\nu} \bar{N}\right) F_{\mu \nu} P_{s}^{\mu}+H . c .+ \text { H.c. } \\
& \mathscr{L}_{V N P_{s}}=-\frac{i g_{1}}{2 m_{N}} \bar{N}^{\nu} F_{\mu \nu}^{V} P_{s}^{\mu}-\frac{g_{2}}{\left(2 m_{N}\right)^{2}} \partial^{\nu} \bar{N} F_{\mu \nu}^{V} P_{s}^{\mu}+\frac{g_{3}}{\left(2 m_{N}\right)^{2}} \bar{N} \partial^{\nu} F_{\mu \nu}^{V} P_{s}^{\mu}+H . c .
\end{aligned}
$$

Here, we consider only the leading terms
g_{1} and $\Gamma_{P_{s}}=14 \mathrm{MeV}$
K. P. Khemchandani et al. PRD83.114041(2011)

Using VMD,
隹 $V(\rho, \omega, \phi)$

$e h_{1}=g_{1} \frac{e}{f_{l}}$| $M_{R}-i \Gamma / 2 \rightarrow\left(J^{\pi}\right)$ | $2071-i 7 \mathrm{MeV}\left(3 / 2^{-}\right)$ |
| :--- | :---: |
| Channels \downarrow | Couplings $\left(g^{i}\right)$ |
| ρN | $0.02-i 0.4$ |
| ωN | $-0.1-i 0.1$ |
| ϕN | $0.14+i 0.2$ |
| $K^{*} \Lambda$ | $-0.3+i 0.35$ |
| $K^{*} \Sigma$ | $2.4+i 0.3$ |

Theoretical formalism

Vector meson dominance (VMD) and Lagrangians for P_{s}

$$
\begin{aligned}
& \mathscr{L}_{\gamma N P_{s}}=e\left(\frac{i h_{1}}{2 m_{N}} \bar{N} \gamma^{\nu}-\frac{h_{2}}{\left(2 m_{N}\right)^{2}} \partial^{\nu} \bar{N}\right) F_{\mu \nu} P_{s}^{\mu}+H . c .+ \text { H.c. } \\
& \mathscr{L}_{V N P_{s}}=-\frac{i g_{1}}{2 m_{N}} \bar{N} \gamma^{\nu} F_{\mu \nu}^{V} P_{s}^{\mu}-\frac{g_{2}}{\left(2 m_{N}\right)^{2}} \partial^{\nu} \bar{N} F_{\mu \nu}^{V} P_{s}^{\mu}+\frac{g_{3}}{\left(2 m_{N}\right)^{2}} \bar{N} \partial^{\nu} F_{\mu \nu}^{V} P_{s}^{\mu}+H . c .
\end{aligned}
$$

Here, we consider only the leading terms Include only ϕ-meson to explain exp. data g_{1} and $\Gamma_{P_{s}}=4 \mathrm{Me} \rightarrow 28 \mathrm{MeV} \quad$ K. P. Khemchandani et al. PRD83.114041 (2011)

Using VMD,

$e h_{1}=g_{1} \frac{e}{f_{l}}$	$M_{R}-i \Gamma / 2 \rightarrow\left(J^{\pi}\right)$ Channels \downarrow	$\begin{gathered} 2071-i 7 \mathrm{MeV}\left(3 / 2^{-}\right) \\ \text {Couplings }\left(g^{i}\right) \end{gathered}$
	pN	-0.02-i0.4
	CN-	$-0.1-20.1$
	ϕN	$0.14+i 0.2$
)	$K^{*} \Lambda$	$-0.3+i 0.35$
-	$K^{*} \Sigma$	$2.4+i 0.3$

Other contributions for ϕ-photoproduction ${ }^{1,2}$

$\mathrm{C}=+1$ vector-like
Pomeron
Most dominant

AV Reggeon, PS, S t-channel

Nucleon and resonances

$$
N, N^{*}\left(2000,5 / 2^{+}\right), N^{*}\left(2300,1 / 2^{+}\right)
$$

- All contributions satisfy Ward-Takahashi identity
- Here, we consider only two nucleon resonances

Unknown parameters (phases \& cutoffs)

Phase factor $\quad e^{i \pi \beta}$
β : relative phase ($\beta_{円}=0$)

Form factors

$$
F_{\text {meson }}=\frac{\Lambda_{\text {meson }}^{2}-M_{\text {meson }}^{2}}{\Lambda_{\text {meson }}^{2}-t} \quad F_{N, s(u)}=\frac{\Lambda_{N}^{4}}{\Lambda_{N}^{4}+\left(s(u)-M_{N}^{2}\right)^{2}}
$$

TABLE I

	f_{1}	PS	S	N	$N^{*}\left(2000, \frac{5}{2}^{+}\right)$	$N^{*}\left(2300, \frac{1}{2}^{+}\right)$	P_{s}
phase β	1	0	$3 / 2$	1	1	$1 / 2$	1
1,2 cutoff $\Lambda(\mathrm{GeV})$	1.5	0.87	1.35	1.0	1.0	1.0	1.0

${ }^{1}$ A. I. Titov et al. PRC58, 2429(1998); 67, 065205(2003)
${ }^{2}$ Sang-ho Kim, Seung-il Nam PRC100.065208(2019); 101.065201(2020)

Result

Total cross section

- The exp. data can be explained by the Pomeron alone

Result

- The Pomeron and resonances seems to important

Differential cross section (1)
 compared with the CLAS data
 PRC 89, 055208; 90, 019901(2014)

Preliminary

Differential cross section (2)

compared with the CLAS data
PRC 89, 055208; 90, 019901(2014)

Preliminary

....... Pomeron
-- without resonances

- Total

Exp. data

Spin density matrix elements (SDMEs)

$$
\rho_{00}^{0} \propto \sum_{\lambda^{\gamma}}\left|\mathcal{M}_{\lambda^{\gamma}, \lambda^{\phi}}\right|_{\lambda^{\phi}=0}^{2}
$$

real photon
$\longrightarrow\left|\mathcal{M}_{\lambda \gamma=1, \lambda^{\phi}=0}\right|^{2}+\left|\mathcal{M}_{\lambda^{\gamma}=-1, \lambda^{\phi}=0}\right|^{2}$
nonzero ρ_{00}^{0} is an evidence of telicity flip $(\gamma \rightarrow \phi)$
ρ_{00}^{0} is Not Lorentz invariant

$$
\alpha_{H e l \rightarrow A d}=\theta_{\text {c.m. }}^{\phi}
$$

$z_{6,}$
$z_{\text {Hel }}$: direction of ϕ (SCHC)
s-channel helicity conservation
$Z_{A d}$: coincides with $\boldsymbol{Z}_{\text {chm. }}$
$\mathbf{z}_{\mathbf{G J}}$: direction of γ in $\boldsymbol{\phi}$ rest frame

Spin density matrix elements (SDMEs)

- ρ_{00}^{0} is underestimated in all three frames

Spin density matrix elements (SDMEs)

- The result show better agreement with data

Spin density matrix elements (SDMEs)

- The bump can be reproduced by P_{s}

Summary

- We investigate ϕ-photo- and electroproduction including a pentaquark molecular $\mathrm{K} \star \Sigma$ bound-state $\left(\mathrm{P}_{\mathrm{s}}\right)$ to explain experiments
- We confirmed that some behaviors of SDMEs can be explained by P_{s} contribution

Outlook

- Additional investigates for better understanding of P_{s} are in the process and will be appear soon

Outlook

Electroproduction ($Q^{2}>0$, virtual photon)

Outlook

PHYSICAL REVIEW D 105, 114023 (2022)

Production of $\boldsymbol{P}_{\boldsymbol{c}}(\mathbf{4 3 1 2})$ state in electron-proton collisions

In Woo Park $\odot,^{1}$ Sungtae Cho, ${ }^{2,3}$ Yongsun Kim $\odot,{ }^{4,3,{ }^{*}}$ and Su Houng Lee ${ }^{1,{ }^{\dagger}}$

Electron-Ion Collider (EIC)

Thank you for your attention!

Backup

FIG. 36. (Color online) Helicity conservation in the process $\gamma p \rightarrow V p^{\prime}$, where $V \in\{\rho, \omega, \phi, J / \psi, \ldots\}$ is a generic vector meson: (a) s-channel (SCHC in Helicity frame) (b) t-channel (TCHC in the Gottfried-Jackson frame). If the $I P$ couples like a 0^{+}object in (b), one would expect TCHC to hold. The $V=\phi$ data in (c) exhibits strong deviation from TCHC since $\rho_{00}^{0} \neq 0$, implying non-zero helicity flips. The filled arrows in (a) and (b) depict the spins of the incoming and outgoing vector particles.

