Heavy and light quark interaction in instanton liquid model

Speaker: Rakhimov Nurmukhammad, Korea University

In collaboration with M.Musakhanov(NUUz), H.-C.Kim(Inha Un.), U.Yakhshiev(Inha Un.), K.Hong(Inha Un.)

Reviews from the works of D.Diakonov, V.Petrov, P.Pobylitsa, E.Shuryak, I.Zahed, M.Musakhanov, others(see ref.s)

The 2nd CENuM Workshop for Hadron Physics, Inha U., Incheon, Dec. 18-19

Outline

☐ Introduction

- □ Light quarks in ILM
- □ Heavy quarks in ILM
- □ Heavy-light quarks interaction in ILM
- Conclusions and Future remarks

What are the instantons?

Tunneling trajectories in a double-well potential

Action density of YM instanton

- **I** Tunneling process in Minkowski space, pseudoparticle in Euclidean space
- Classical solutions, self-dual

□ Topologically charged $\frac{1}{32\pi^2} \int_x \tilde{F}F = \pm 1$, strong field inside $(F^2)^{1/4} \simeq 1.5 \ GeV$

The ensemble of instantons and anti-instantons

$$A_{\mu}(x) = \sum_{I}^{N_{+}} A^{I}_{\mu}(\xi_{I},x) + \sum_{ar{I}}^{N_{-}} A^{ar{I}}_{\mu}(\xi_{ar{I}},x), \qquad \xi = (
ho,z,U)$$

average size $\bar{\rho} \approx 0.3 fm$, separation $\bar{R} \approx 1 fm$

□ ρ̄/ R̄~1/3 a few percent of 4D space occupied
 □ Interactions are big enough exp |δS_{int}| ~ 20 ≫ 1

The ensemble of *I*'s & \overline{I} 's – Instanton Liquid Model

Motivation

- An analytical approach to non-perturbative QCD
- ❑ Lead to the formation of gluon condensate, provide a mechanism of spontaneous symmetry breaking, solution to U(1) problem
- Small packing parameter $\rho^4/R^4 \sim 0.01 0.03$ to develop perturbation theory
- Few number of input parameters and obtaining data without fitting

Quark observables in instanton vacuum

To compute an observable for a given configuration of instantons and anti-instantons, then average over the ensemble

➡ First, average over the ensemble, and obtain an effective theory written in terms of interacting quarks only. Then, compute observables from this effective theory

Light quarks in ILM

□ In the 1-instanton background:

- □ Spectrum contain zero & nonzero modes: $S^{I}(x,y) = -\frac{\phi_0(x)\phi_0^{\dagger}(y)}{im} + S^{nzm}(x,y)$
- \square $p \ll 1/\rho$:zero modes dominate, $p \rightarrow \infty$:free propagator
- □ Approximate Green's function: $S^{I}(x,y) \simeq -\frac{\phi_{0}(x)\phi_{0}^{\dagger}(y)}{im} + S_{0}(x,y)$

$$\Box \quad \text{Action:} \qquad \exp(-A^{I}[\psi^{\dagger},\psi]) = \exp\left(\int d^{4}x\psi^{\dagger}i\hat{\partial}\psi\right)\left(im - V_{I}[\psi^{\dagger},\psi]\right)$$

 $\Box \text{ In the background of } N_+ I' \text{s & } N_- \overline{I'} \text{s}$ $\exp(-A[\psi^{\dagger}, \psi]) = \prod_f^{N_f} \exp\left(\int d^4x \psi_f^{\dagger} i \hat{\partial} \psi_f\right) \prod_{I, \overline{I}} \left(im - V_I[\psi_f^{\dagger}, \psi_f]\right)$

Light quarks in ILM

Partition function: Z_{QCD} = ∫ DψDψ[†] ⟨exp (-A[ψ[†], ψ])⟩
 where ⟨...⟩ means averaging over IĪ ensemble
 Averaging over the ensemble ⇒ averaging over collective coordinates of each I & Ī

$$\int DA \to \int \prod_{I,\bar{I}} dz_I dU_I d\rho_I \ d_{\text{eff}}(\rho_I) \to \int \prod_{I,\bar{I}} dz_I dU_I \qquad \text{replace all (anti)instantons with average-size one}$$
size dist. func. $d_{\text{eff}}(\rho_I) \xrightarrow{\text{large } N_c} \delta(\rho_I - \bar{\rho})$
After averaging:
$$\mathcal{Z} = \int d\lambda_+ d\lambda_- \int D\psi_f D\psi_f^{\dagger} \exp\left(i\int d^4x \sum_{f=1}^{N_f} \psi_f^{\dagger} i\hat{\partial}\psi_f + i\lambda_+ Y_{N_f}^{(+)} + i\lambda_- Y_{N_f}^{(-)}\right)$$

 \square $N_c \to \infty$: saddle point λ_s defines dynamical quark mass M(k).

Instanton induced effective interaction

$$Y_{N_f}^{(\pm)} \sim \int d[k_f] d[l_f] \delta\left(\sum k_f - \sum l_f\right) dU \left[U^{\dagger}U\right]^{N_f} \prod_f^{N_f} \sqrt{M(k_f)} \psi_f^{\dagger}(k_f) \gamma_{\pm} \sqrt{M(l_f)} \psi_f(l_f)$$

 \square $N_f = 1$: mass term $Y_1^{(\pm)} \sim M(k)\psi^{\dagger}(k)\gamma_{\pm}\psi(k)$ NJL type Lagrangian \square $N_f = 2$: 4-fermion interaction $Y_2^{(+)} + Y_2^{(-)} \sim c_i \left(\sqrt{M(k)}\psi^{\dagger}(k)\Gamma_i\sqrt{M(l)}\psi(l)\right)^2, \quad \Gamma_i = (\mathbf{1}, \gamma_5, i\tau^a, i\tau^a\gamma_5, \cdots)$ Any N_f : $Y_{N_f}^{(\pm)} \stackrel{N_c \to \infty}{=} \left(\frac{2V}{N}\right)^{N_f - 1} \int d^4x \, \det J^{(\pm)}$ $J_{fg}^{(\pm)} = \int \frac{d^4k d^4l}{(2\pi)^8} e^{i(k-l)x} \sqrt{M(k)M(l)} \,\psi_f^{\dagger}(k) \gamma_{\pm} \psi^g(l)$

Instanton induced effective interaction

Diagrammatic interpretation:

form factor function $\sqrt{M(k\bar{\rho})}$ attached each quark leg

[t'Hooft 1976; D.Diakonov, V.Petrov 1986; M.Nowak 1991; R.Rapp, T.Schafer, E.Shuryak, M.Velkovysky 1999 and others]

Low energy QCD

QCD degrees of freedom with mas $\ll 1/\bar{\rho}$: light quarks and pseudoscalar mesons

$$Z = \int D\psi D\psi^{\dagger} \exp\left\{\int_{x} \psi^{\dagger} i\hat{\partial}\psi + \lambda \det\psi^{\dagger}\gamma_{\pm}\psi\right\}$$
$$\rightarrow \int D\pi^{A} D\psi D\psi^{\dagger} \exp\left\{\int_{x} \psi^{\dagger} \left(i\hat{\partial} + iMe^{i\pi^{A}\tau^{A}\gamma_{5}}\right)\psi\right\}$$

Cutoff is $1/\bar{\rho}$

Effective chiral Lagrangian

$$S_{\rm eff}[\pi] = -N_c {\rm Tr} \ln \left(i\partial + iM e^{i\pi^A \tau^A \gamma_5} \right)$$

[D.Diakonov, V.Petrov, P.Pobylitsa 1996-1990]

Effective interaction between dynamically massive quarks and massless pions

Heavy Quark Effective Theory

□ Static HQET Lagrangian : $\mathcal{L}_{\text{HQET}_0} = Q^{\dagger} i D_0 Q + \mathcal{O} \left(m_Q^{-1} \right)$ □ HQ symmetry: 1. Conservation of HQ spin $\frac{1 + \gamma_0}{2} Q = Q$

2. In leading order on m_0^{-1} , the results are the same for all HQ flavors

☐ Infinitely HQ interacts 0th component of gauge fields (in Minkowski space)

 \square HQ propagator: $w_A = (i\partial_0 + A_0)^{-1}$

$$w_A(\vec{x}, x_0; \vec{x}', x_0') = -i heta(x_0 - x_0')\delta^{(3)}(\vec{x} - \vec{x}')P\exp\left(-ig\int_{x_0'}^{x_0}d au A_a^0(\vec{x}, au)\lambda^a
ight)$$

[papers by H.Georgi, M.Wise, N.Isgur and others]

Heavy quark propagator in an instanton ensemble

$$\Box \quad \text{HQ propagator in instanton ensemble:} \quad \bar{w} = \left\langle \left(\theta^{-1} - \sum_{I} a_{I} \right)^{-1} \right\rangle$$

 $\Box \text{ In terms of single instanton propagators: } \bar{w} = \theta + \sum_{I} \langle w_{I} - \theta \rangle + \sum_{I \neq J} \langle w_{I} - \theta \rangle \theta^{-1} \langle w_{J} - \theta \rangle + \cdots$

Heavy quark in an instanton ensemble

In the ensemble of N/2 instantons and N/2 anti-instantons:

$$\bar{w}^{-1} - \theta^{-1} = \frac{N}{2} \left\langle (\bar{w} - a_{\bar{I}}^{-1})^{-1} \right\rangle + \frac{N}{2} \left\langle (\bar{w} - a_{\bar{I}}^{-1})^{-1} \right\rangle$$

$$\Box \quad \text{After averaging:} \quad \bar{w}^{-1} - \theta^{-1} = \frac{N}{2VN_c} \text{tr}_c \left(\int d^4 z_I (\bar{w} - a_{\bar{I}}^{-1})^{-1} + \int d^4 z_{\bar{I}} (\bar{w} - a_{\bar{I}}^{-1})^{-1} \right)$$

$$\Box \quad \text{Perturbative parameter:} \quad \frac{\bar{\rho}^4 N}{VN_c} = \frac{\bar{\rho}^4}{\bar{R}^4 N_c} \simeq 0.004$$

→ HQ propagator in the instanton ensemble:

$$\bar{w}^{-1} = \theta^{-1} - \frac{N}{2VN_c} \operatorname{tr}_c \left(\int d^4 z_I \theta^{-1} (w_I - \theta) \theta^{-1} + (I \to \bar{I}) \right) + \mathcal{O}\left(\left(\frac{N}{VN_c} \right)^2 \right)$$
[D.Diakonov, V.Petrov, P.Pobylitsa 1989]

Application of Pobylitsa equation

□ Direct instanton contribution to HQ mass:

$$\Delta M_Q^{\rm dir} = \frac{N}{2VN_c} \sum_{\pm} \int d^3 z_{\pm} \operatorname{tr}_c \left(1 - \operatorname{P} \exp\left(i \int d\tau A_{4,\pm}(\tau)\right) \Big|_{z_{4,\pm}=0} \right) \simeq 70 \,\,\mathrm{MeV}$$

☐ Instanton induced quark – anti-quark potential:

[D.Diakonov, V.Petrov, P.Pobylitsa 1989]

Heavy quark propagator in the presence of light quarks

QCD partition function:

$$\mathcal{Z}_{\text{QCD}} \sim \int D\psi^{\dagger} D\psi DQ_{\pm}^{\dagger} DQ_{\pm} \left\langle \exp\left(\int d^4x \left[\sum_{f}^{N_f} \psi_{f}^{\dagger} i \hat{\partial} \psi_{f} + Q_{\pm}^{\dagger} (\theta^{-1} - \sum_{I,\bar{I}} a_I) Q_{\pm}\right]\right) \prod_{f}^{N_f} \prod_{I,\bar{I}} (im_f - V_I[\psi_{f}^{\dagger}, \psi_{f}]) \right\rangle$$

Heavy quark propagator:

 $\square \text{ Pobylitsa eq. for HQ functional: } \bar{w}^{-1}[\psi^{\dagger},\psi] = \theta^{-1} - \frac{N}{2} \sum_{\pm} \left\langle \prod_{f}^{N_{f}} (-)V_{\pm}[\psi_{f}^{\dagger},\psi_{f}] \right\rangle^{-1} \Delta_{H,\pm}[\psi^{\dagger},\psi] + \mathcal{O}\left(\frac{N^{2}}{V^{2}}\right)$

where
$$\Delta_{H,\pm}[\psi^{\dagger},\psi] = \int d\zeta_{\pm} \prod_{f}^{N_{f}} (-)V_{\pm}[\psi_{f}^{\dagger},\psi_{f}]\theta^{-1}(w_{\pm}-\theta)\theta^{-1}$$

Heavy and light quarks interaction

QCD partition function can be rewritten as $\mathcal{Z}_{QCD} \sim \int D[\text{fermions}] \exp\left(-S_q - S_Q + \int d^4x \, Q^{\dagger} i\lambda \sum_{\pm} \Delta_{H,\pm} [\psi^{\dagger}, \psi] Q + [\text{sources}]\right)$ $S_{Qq} \sim \sum_{\pm} \int d[\zeta_{\pm}, k, l, x, y] \prod_{f}^{N_f} \sqrt{M(k_f)M(l_f)} \psi_f^{\dagger}(k_f) \psi_f(l_f) \, Q^{\dagger}(x) \langle x|\theta^{-1}(w_{\pm} - \theta)\theta^{-1}|y\rangle Q(y)$

 \Box Effective HQ & N_f light quarks interaction vertex

$$\int d[k_f] d[l_f] d[p] \delta^{(4)} \left(\sum k_f - \sum l_f + p \right) dU \left[U^{\dagger} U \right]_q^{N_f} \left[U^{\dagger} U \right]_Q \\ \times \sqrt{M(k_f)} \psi_f^{\dagger}(k_f) \gamma_{\pm} \sqrt{M(l_f)} \psi_f(l_f) \cdot Q_+^{\dagger}(p_1) \langle p_1 | \theta^{-1}(w_{\pm} - \theta) \theta^{-1} | p_2 \rangle Q_+(p_2)$$

After color integration leads to momentum dependent 'non-slashed' term

Heavy and light quarks interaction

Heavy-light quark interaction

 $\begin{array}{ll} \square \ N_{f} = 1 \text{ case:} \\ S_{Qq} \propto & \int \frac{d^{4}k_{1}d^{4}k_{2}}{(2\pi)^{8}} \frac{d^{4}p_{1}d^{4}p_{2}}{(2\pi)^{8}} (2\pi)^{4} \delta^{(4)} \left(k_{1} - k_{2} + p_{1} - p_{2}\right) \sqrt{M(k_{1})M(k_{2})} \frac{\Delta M_{Q}}{N/V} \\ & \times \left[\frac{N_{c}^{2}}{N_{c}^{2} - 1} \left(1 - \frac{1}{2N_{c}} \right) \left(\psi^{\dagger}(k_{1})\psi(k_{2}) \right) \left(Q^{\dagger}(p_{1})Q(p_{2}) \right) \\ & + \frac{N_{c}^{2}}{8(N_{c}^{2} - 1)} \left(1 - \frac{2}{N_{c}} \right) \sum_{i} \left(\psi^{\dagger}(k_{1})\Gamma_{i}Q(p_{1}) \right) \left(Q^{\dagger}(p_{2})\Gamma_{i}\psi(k_{2}) \right) \right] \\ & \text{where } \Gamma_{i} = \left(\mathbf{1}, \ \gamma_{5}, \ \gamma_{\mu}, \ i\gamma_{\mu}\gamma_{5}, \ \sigma_{\mu\nu}/\sqrt{2} \right) \\ \square \ N_{f} = 2 \text{ case, interaction terms:} \end{array}$

$$S_{Qq} \sim C_{SSS}(u^{\dagger}u)(d^{\dagger}d)(Q^{\dagger}Q) + C_{\Gamma\Gamma S}(u^{\dagger}\Gamma_{i}d)(d^{\dagger}\Gamma_{i}u)(Q^{\dagger}Q) + C_{\Gamma S\Gamma}(u^{\dagger}\Gamma_{i}Q)(d^{\dagger}d)(Q^{\dagger}\Gamma_{i}u) + C_{S\Gamma\Gamma}(u^{\dagger}u)(d^{\dagger}\Gamma_{i}Q)(Q^{\dagger}\Gamma_{i}d) + \cdots$$

Applications you will see in Mr. KiHoon Hong's talk (this workshop)

Heavy-light quark interaction

□ In $N_f \ge 2$ case many-fermion vertices can be linearized introducing integration over boson fileds

$$\mathcal{Z} \sim \int DU \int D\psi^{\dagger} D\psi \int DQ^{\dagger} DQ \exp\left\{\int \psi^{\dagger} i \hat{\partial} \psi + Q^{\dagger} \theta^{-1} Q + i M \psi^{\dagger} U \psi \Delta M_Q Q^{\dagger} Q\right\}$$

□ Integrating out light quark fields leads to effective HQ & light mesons interaction

Heavy quarkonium light quark interaction

- \Box Repeat the same procedure which was done for HQ propagator to obtain heavy $Q\bar{Q}$ functional
- Use perturbation theory over $\lambda = \rho^4 / R^4$ (Pobylitsa type equation)
- □ Write corresponding partition function and extract interaction action using saddle point method

$$S_{Q\bar{Q}q} \sim \int d[k]d[l]Q^{\dagger}(k_2)\bar{Q}^{\dagger}(l_2) V(|\vec{k}_2 - \vec{l}_2|, |\vec{k}_1 - \vec{l}_1|, \omega_k, \omega_l) Q(k_1)\bar{Q}(l_1) \cdots$$

FT $\left\{ V(|\vec{k}_2 - \vec{l}_2|, |\vec{k}_1 - \vec{l}_1|, 0, 0) \right\} \rightarrow V^{\text{dir}}(r)$

□ $N_f \ge 2$ case do bosonization procedure to linearize multi-fermion vertex. Integrating out light quark fields leads to heavy quarkonium and meson interaction

$$S_{Q\bar{Q}\pi} \sim F_{\pi Q}^2 \text{Tr} \left[\partial_{\mu} U \partial_{\mu} U^{\dagger} \right] Q^{\dagger} \bar{Q}^{\dagger} V Q \bar{Q}$$

Conclusions and Future remarks

- Instanton-induced multi light quark interaction is effective interaction of light quarks that a form factor $\sqrt{M(k)}$ attached each quark leg. In case of instanton induced heavy –light quark effective interaction heavy quarks also get a form factor ($\sqrt{\Delta M_0}$ -instanton generated dynamical contribution to the mass).
- Bosonization (integrating out light quark degrees of freedom) leads to heavy quark and light mesons effective interaction.
- Instantons generate heavy quarkonium light mesons effective interaction which is obtained through bosonization of heavy quark – anti-quark and light quarks interaction
- **Develop the calculations to real world case** $(N_f = 3)$.
- Develop to HQ and light diquark interaction.
- □ Add flavor number to HQ (N_f^q light and N_f^Q heavy quarks interaction).

Thanks for the attention