The 2nd CENuM Workshop for Hadron Physics Inha University, Dec 18-19, 2023

Search for a Θ^+ pentaquark at J-PARC

Shin Hyung Kim (Korea University)

Θ+ Pentaquark

Exotic flavor quantum number S=+1 with a minimal quark content of $uudd\overline{s}$

Predicted by Diakonov et al.
 chiral soliton model

► First reported by LEPS Collaboration $\gamma n \rightarrow K^- \Theta^+ \rightarrow K^- K^+ n \text{ on } {}^{12}C$

 \rightarrow Good agreement between theory and experiment triggered investigation of the Θ + pentaquark.

Photoproduction of Θ⁺

T. Nakano et al., Phys. Rev. C, 79, 025210 (2009).

B. McKinnon et al., Phys. Rev. Lett., 96, 212001 (2006).

- LEPS and CLAS observed the peak near 1.54 GeV/c² at first but showed disagreement with higher statistics data later.
- Their experimental setups differed in K⁻ emission angle that ensures the production of S=+1 systems in photoproduction.

Null Results in CLAS?

 $\gamma d \to K^+ K^- pn$

A. I. Titov et al., Phys. Rev. C, 74, 055206 (2006).

- Interference for two subprocesses $\rightarrow \Theta^+$ signal enhanced by $\Lambda^*(1520)$
- Forward pK⁻ pair
 - → slow K can merge with a spectator N to produce a Θ⁺

- Λ*(1520) cut
- K- in central region

0.4 CLAS 0.2 TPC 30 70 80 10 20 **40** 50 60 A Theta [deg]

New Attempt for Θ⁺ Search at LEPS2

 $\gamma n \rightarrow K^{-}\Theta^{+} (\Theta^{+} \rightarrow K^{0}p; K^{0} \rightarrow \pi^{+}\pi^{-})$

 $\gamma p \longrightarrow \overline{K}^{*0} \Theta^+ (\overline{K}^{*0} \longrightarrow \overline{K}^- \pi^+)$

2.0 GeV

1.8 GeV

 $E_{\gamma}=2.4 \text{ GeV}$

Momentum [GeV/c]

1.4

1.2

0.8

0.6

LEPS2 spectrometer has a wider angular coverage for K⁻ detection, covering both of LEPS and CLAS acceptances.

Y

п

р

All final state particles can be reconstructed by LEPS2 detector. → No Fermi-motion correction is necessary.

γn→Θ+<mark>K</mark>-

EPS2

Forward RPC

M. Yosoi, EPJ Web Conf. 199, 01020 (2019).

р

n

p

 K^+

Recent Review on CLAS data

M. Amaryan, Eur. Phys. J. Plus 137, 684 (2022).

Current status of non-observation doesn't allow to dismiss its existence

• Direct formation: $K_L p \rightarrow K^+ n$ in Hall D at JLab

Hadronic Production of Θ+

 Hadron-induced reaction has larger production cross-section and production mechanism is more straightforward over photo-induced reaction.

- $K^+p \rightarrow K^+n\pi^+ \text{ or } K^0p\pi^+$
- $K^+p \rightarrow K^+n\pi^+ \text{ or } K^0p\pi^+$
 - ► Δ⁺, Δ⁺⁺ background

- π -p \rightarrow K+nK- or K⁰pK-
- π -p \rightarrow K+K-n
 - ► a₀(980) or **φ** background

Direct Formation of Θ+ on Nuclei

- Kinematic cuts to remove the effect of the rescattering of reaction products in nuclear matter.
 - M_⊖= 1537 ± 2 MeV
 - F_☉ = 0.36 ± 0.11 MeV

2nd CENuM Workshop / Shin Hyung Kim

kaon secondary interactions

in the detector material

 Γ_{Θ} <0.64 MeV at the 90% C.L.

for M_{Θ} = 1.539 MeV

Θ+ Search History Summary

A final attempt should be made for a definitive exclusion.

Direct Formation of Θ⁺ in KN Interaction

K⁰p reaction

 \bigcirc liquid hydrogen target: Free from the Fermi motion \times K⁰ beam: Hardly determine the momentum

► → K⁺n reaction with deuterium target

- The Θ^+ lies 110 MeV above KN threshold & 25 MeV below KN π threshold.
 - → A pion can barely be produced near the Θ^+ production threshold.
- → For K⁺d reaction near threshold, only the following processes are available:
 (1) K⁺d → K⁺d (coherent elastic scattering)
 - (2) $K^+d \rightarrow K^+np$ (incoherent breakup reaction)
 - (3) $K^+d \rightarrow K^0pp$ (incoherent charge-exchange breakup reaction)

$K^+d \rightarrow K^0pp$ for the Θ^+ Production

Prog. Theor. Exp. Phys., 2020, 063D03 (2020).

Feasibility study of the $K^+d \rightarrow K^0 pp$ reaction for the Θ^+ pentaquark

Takayasu Sekihara^{1,2,3,*}, Hyun-Chul Kim^{1,4,5}, and Atsushi Hosaka^{1,2}

• They predicts that the Θ^+ (M $_{\Theta}$ =1524 MeV, Γ_{Θ} =0.5 MeV) production cross section is of the order of a few hundred μ b to 1 mb at $p_{K+}\approx 0.40$ GeV/c where impulse scattering process is dominant, and drops to $\leq 1 \mu$ b at $p_{K+}\approx 0.85$ GeV/c at which two-step processes overtake the impulse one.

K+d→K⁰pp at 0.5 GeV/c Simulation

2nd CENuM Workshop / Shin Hyung Kim

K+d→K⁰pp at 0.5 GeV/c Simulation

$K+d \rightarrow K^{0}pp$ at 0.45 & 0.55 GeV/c

The lower K⁺ beam momentum,
 → the closer the Θ⁺ peak moves to the quasifree scattering peak.

 The higher K⁺ beam momentum,
 → the smaller chance the K⁺n center-ofmass energy has for the Θ⁺ formation.

New Proposal at J-PARC

► A dedicated experiment to search for Θ^+ in K⁺d → K⁰pp at p_{K+}=0.5 GeV/c (at J-PARC K1.8BR or K1.1BR) with Hyperon Spectrometer. 1-T superconducting

Hyperon Spectrometer

2nd CENuM Workshop / Shin Hyung Kim

Hyperon Spectrometer

2nd CENuM Workshop / Shin Hyung Kim

PID by Hyperon Spectrometer

• HypTPC dE/dx - $\sigma_{dE/dx}$ - $\sigma_{dE/dx}$ ~ 20% at 0.4 < p_T<0.45 GeV/c • HTOF Time-of-Flight flight length: 200~500 mm $\sigma_{\rm t}$ ~ 120 ps for π^-

Expected results

 We expect to collect hundreds of thousands of Θ⁺ events, assuming a cross section of 300 µb in 15-day beam time at J-PARC.

Yield Estimation

$$N = \sigma \times \frac{\rho \times L \times N_A}{A} \times N_{beam} \times Acc \times decay$$

- LD₂ Target: $\rho L=1.03$ g/cm², $N_A=6.022 \times 10^{23}$, A=2
- *K*⁺ Beam: *N_{beam}*=7 k/spill* (measured at 0.7 GeV/c at K1.8BR beamline)
- Detector Acceptance: *Acc*=0.5
- K⁰_S Decay: *decay*=0.5 (K⁰-K_S conversion) \times 0.692 (K_S $\rightarrow \pi^+\pi^-$)

	σ	N [/spill]	N [/1 hr]	N [/1 day]
$K^+d \rightarrow K^0pp$	6 mb	2.25	1.56k	34.4k
Θ^+	300 µb	0.11	78	1.87k

*Beam intensity drops by an order of magnitude at 0.5 GeV/c.
 We are considering using a degrader. → Background effects?

Recent Calculation of K+N Scattering

- KN scattering amplitude at low energies was revisited based on the chiral unitary approach to investigate the possibility of the existence of a S=+1 broad resonance in the I = 0 channel (Z*).
- The I=0 total cross sections

K. Aoki and D. Jido, Prog. Theor. Exp. Phys. 2019, 013D01

Y. Iizawa, D. Jido, and S. Hübsch, arXiv:2308.09397

 Solution 1 supports a dominant P₀₁ (1/2⁺, M=1617, Γ=305) amplitude, whereas Solution 2 predicts a large contribution from P₀₃ (3/2⁺, M=1678, Γ=403).

Summary

- We propose a direct formation of Θ⁺ in K⁺d → K⁰pp reactions at 0.5 GeV/c at J-PARC using the new Hyperon Spectrometer.
- Low energy K+N system is free from the resonances, so it will provide a good playground to study the nonperturbative QCD.

 \boldsymbol{V}

 K^+

π

p

Any ideas are welcome!

S=-1

S=0

S = +1