

Inha University, Republic of Korea & National University of Uzbekistan

Compact Stars in a Meson Mean Field Approach Ulugbek Yakhshiev

Talk @ 2nd CENuM Workshop in Hadron Physics December 18-19, 2023, Incheon

Collaborators

Hyun-Chul Kim, Inha University Namyoung Kim, Inha University Ghil-Seok Yang, Hoseo University

Content

- Prehistory
- Medium modifications
- Baryons in nuclear matter
- Nuclear matter
- Compact stars

How to construct a theoretical framework (model of ``nuclear physics")?

Our guiding principles are

- simplicity (easy to analyse, transparent, etc...) <=> e.g. a small number terms in the Lagrangian;
- relation to phenomenology in an attractive way as much as possible the peculiarities of strong interactions should be taken into account using as less as possible the number of parameters;
- universality <=> applicability to
 - hadron structure and spectrum studies (from light to heavy sector);
 - analysis of NN interactions;
 - nuclear many body problems <=> nucleonic systems (finite nuclei) and nuclear matter properties (EOS);
 - relation to mesonic atoms;
 - hadron structure changes in nuclear environment;
 - extreme density phenomena (e.g. neutron stars);
 - etc.

Two possible ways:

- to construct completely new approach;
- a bit fresh look to old ideas (e.g. putting a bit more phenomenological information).

Prehistory: Studies

The studies were performed and going on in direction of

a single baryon properties

- in separate state considering it as a structure-full system
- nucleon in the community of their partners (EM and EMT form factors)
- nucleon in finite nuclei
- hyperons in nuclear matter
- heavy particles in nuclear matter

as well as on the properties of the whole nucleonic systems

- infinite nuclear matter properties (volume and symmetry energy properties)
- matter under extreme conditions (e.g. neutron stars)
- matter with a strangeness
- neutron, proto-neutron, strange stars
- few/many nucleon systems (symmetric nuclei, mirror nuclei, rare isotopes, halo nuclei,...)
- nucleon knock-out reactions (lepton-nucleus scattering)
- possible changes in in-medium NN interactions
- etc

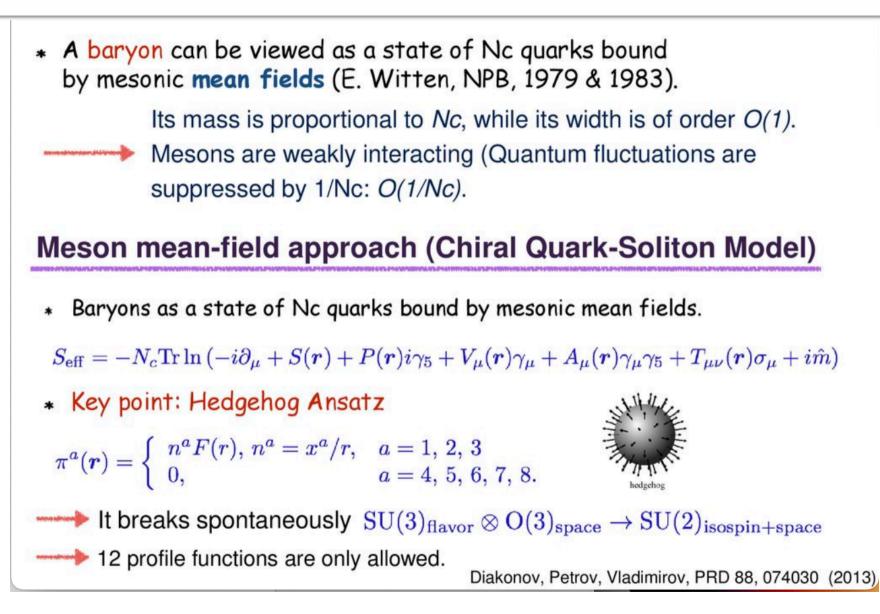
Two important phenomena in low energy region

- Quark confinement
- Chiral symmetry breaking

Two possible ways of development in chiral theories

- Topological approaches
- Non-topological approaches

Prehistory: Baryon



*This slide is obtained from H.C.Kim's presentation, which is available in the internet.

Prehistory: Baryon

Collective Hamiltonian

$$\begin{split} H = &M_{\rm cl} + \frac{1}{2I_1} \sum_{i=1}^3 \hat{J}_i^2 + \frac{1}{2I_2} \sum_{p=4}^7 \hat{J}_p^2 \\ &+ (m_{\rm d} - m_{\rm u}) \left(\frac{\sqrt{3}}{2} \alpha D_{38}^{(8)}(\mathcal{A}) + \beta \hat{T}_3 + \frac{1}{2} \gamma \sum_{i=1}^3 D_{3i}^{(8)}(\mathcal{A}) \hat{J}_i \right) \\ &+ (m_{\rm s} - \bar{m}) \left(\alpha D_{88}^{(8)}(\mathcal{A}) + \beta \hat{Y} + \frac{1}{\sqrt{3}} \gamma \sum_{i=1}^3 D_{8i}^{(8)}(\mathcal{A}) \hat{J}_i \right) + H_{\rm em} \end{split}$$

$$\alpha = -\left(\frac{2}{3}\frac{\Sigma_{\pi N}}{m_{\rm u} + m_{\rm d}} - \frac{K_2}{I_2}\right) \qquad \beta = -\frac{K_2}{I_2} \qquad \gamma = 2\left(\frac{K_1}{I_1} - \frac{K_2}{I_2}\right)$$

*For more details see the presentations of G.S.Yang in this conference.

Prehistory: Topological models

Structure

From what made a nucleon and, in particular, its core?

- The structure treatment depends on an energy scale
- At the limit of large number colours the core still has the mesonic content

Prehistory: Topological models

Shrinks

Swells

Stabilization mechanism

- Soliton has the finite size and the finite energy
- One needs at least two counter terms in the effective (mesonic) Lagrangian

Prototype: Skyrme model

[T.H.R. Skyrme, Pros.Roy.Soc.Lond. A260 (1961)]

Nonlinear chiral effective meson (pionic) theory

$$\mathcal{L} = \frac{F_{\pi}^2}{16} \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) - \frac{1}{16e^2} \operatorname{Tr} \left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^2$$
Shrinking term
Swelling term

<u>Hedgehog</u> solution (nontrivial mapping)

$$U = \exp\left\{\frac{i\overline{\tau}\ \overline{\pi}}{2F_{\pi}}\right\} = \exp\left\{i\overline{\tau}\ \overline{n}F(r)\right\}$$

What happens in the nuclear medium?

The possible medium effects

- Deformations (swelling or shrinking, multipole deformations) of nucleons
- Characteristic changes in: effective mass, charge distributions, all possible form factors
- NN interactions may change
- etc.

One should be able to describe all those phenomena

Soliton in the nuclear medium (phenomenological way)

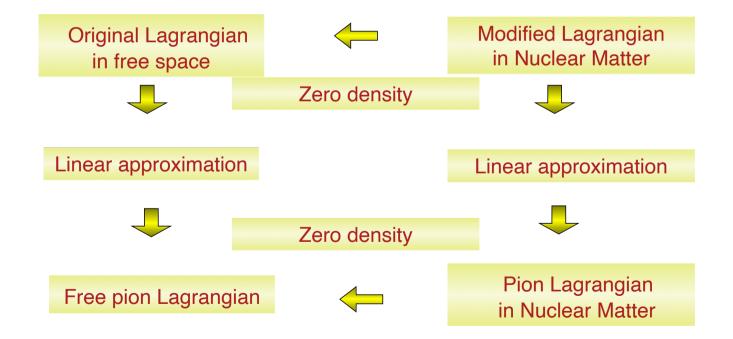
- Outer shell modifications (informations from pionic atoms)
- Inner core modifications, in particular, at large densities (nuclear matter properties)

Inner core modifications in the nuclear medium may be related to:

- vector meson properties in the nuclear medium
- nuclear matter properties at saturation density

Meson cloud modifications in the nuclear medium: Pion physics in the nuclear medium

- Modifications of the mesonic sector modifies the baryonic sector
- Lagrangian satisfies some limiting conditions



"Outer shell" modifications

- In free space three types of pions can be treated separately: isospin breaking
- In nuclear matter: three types of polarization operators

$$(\partial^{\mu}\partial_{\mu} + m_{\pi}^{2})\vec{\pi}^{(\pm,0)} = 0$$
$$(\partial^{\mu}\partial_{\mu} + m_{\pi}^{2} + \hat{\Pi}^{(\pm,0)})\vec{\pi}^{(\pm,0)} = 0$$
$$\hat{\Pi}^{0} = 2\omega U_{\text{opt}} = \chi_{s}(\rho, b_{0}, c_{0}) + \vec{\nabla} \cdot \chi_{p}(\rho, b_{0}, c_{0})\vec{\nabla}$$
$$\hat{\Pi}^{0} = (\hat{\Pi}^{-} + \hat{\Pi}^{+})/2, \qquad \hat{\Delta}\Pi = (\hat{\Pi}^{-} - \hat{\Pi}^{+})/2$$

 Optic potential approach: parameters 		$\pi ext{-atom}$	$T_{\pi}=50~{\rm MeV}$
from the pion-nucleon	$b_0 \left[m_\pi^{-1} \right]$	- 0.03	- 0.04
scattering (including the isospin	$b_1 [m_{\pi}^{-1}]$	- 0.09	- 0.09
dependents)	$c_0 [m_{\pi}^{-3}]$	0.23	0.25
	$c_1 [m_{\pi}^{-3}]$	0.15	0.16
	g'	0.47	0.47

"Outer shell" modifications in the Lagrangian [U.Meissner et al., EPJ A36 (2008)]

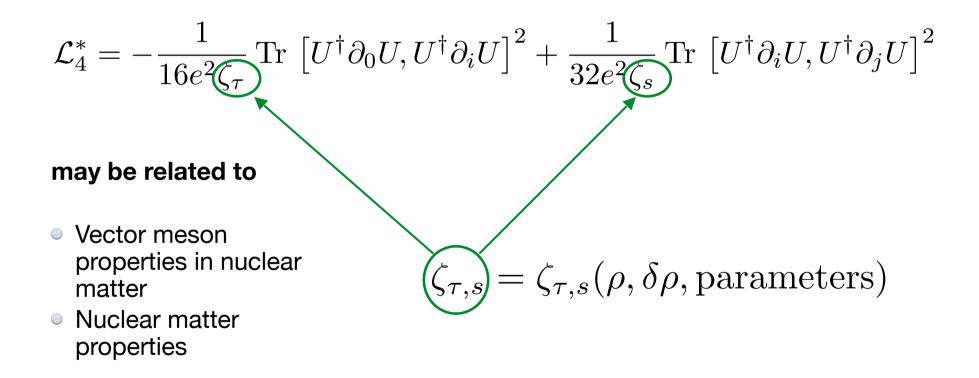
$$\mathcal{L}_{2}^{*} = \frac{F_{\pi}^{2}}{16} \underbrace{\alpha_{\tau}}_{\Gamma} \operatorname{Tr} \left(\partial_{0} U \partial_{0} U^{\dagger} \right) - \frac{F_{\pi}^{2}}{16} \underbrace{\alpha_{s}}_{\Gamma} \operatorname{Tr} \left(\partial_{i} U \partial_{i} U^{\dagger} \right)$$
$$\mathcal{L}_{m}^{*} = -\frac{F_{\pi}^{2} m_{\pi}^{2}}{16} \underbrace{\alpha_{m}}_{\Gamma} \operatorname{Tr} \left(2 - U - U^{\dagger} \right)$$

- Due to the nonlocality of optic potential the kinetic term is also modified
- Due to energy and momentum dependence of the optic potential parameters the following parts of the kinetic term are modified in different forms:
 - Temporal part
 - Space part

	$\pi\text{-}\mathrm{atom}$	$T_{\pi}=50~{\rm MeV}$
$b_0 [m_\pi^{-1}]$	- 0.03	- 0.04
$b_1 [m_{\pi}^{-1}]$	- 0.09	- 0.09
$c_0 [m_{\pi}^{-3}]$	0.23	0.25
$c_1 [m_{\pi}^{-3}]$	0.15	0.16
g'	0.47	0.47

 $\hat{\Pi}^0 = 2\omega U_{\text{opt}} = \chi_s(\rho, b_0, c_0) + \vec{\nabla} \cdot \chi_p(\rho, b_0, c_0) \vec{\nabla}$

"Inner core" modifications [UY & H.Ch. Kim, PRC83 (2011); UY, PRC88 (2013)]

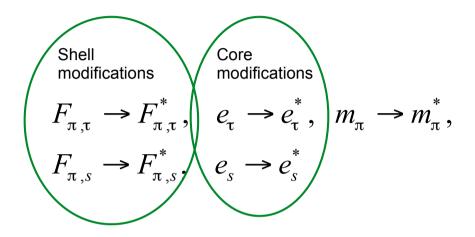


Final Lagrangian [UY, JKPS62 (2013); UY, PRC88 (2013)] $\left(\mathcal{L}_{2}^{*}\right) = \frac{F_{\pi}^{2}}{16} \alpha_{\tau} \operatorname{Tr}\left(\partial_{0}U\partial_{0}U^{\dagger}\right) - \frac{F_{\pi}^{2}}{16} \alpha_{s} \operatorname{Tr}\left(\partial_{i}U\partial_{i}U^{\dagger}\right)$ Separated into two parts $\mathcal{L}^* = \mathcal{L}^*_{\mathrm{sym}} + \mathcal{L}^*_{\mathrm{asym}}$ $\frac{1}{16e^2\zeta_{\tau}} \operatorname{Tr} \left[U^{\dagger} \partial_0 U, U^{\dagger} \partial_i U \right]^2 + \frac{1}{32e^2\zeta_{\tau}} \operatorname{Tr} \left[U^{\dagger} \partial_i U, U^{\dagger} \partial_j U \right]^2$ \mathcal{L}_4^* Isoscalar part $\mathcal{L}_{m}^{*} = -\frac{F_{\pi}^{2}m_{\pi}^{2}}{16} \alpha_{m} \operatorname{Tr} \left(2 - U - U^{+}\right)$ $\mathcal{L}^*_{\mathrm{sym}} = \mathcal{L}^*_2 + \mathcal{L}^*_4 + \mathcal{L}^*_m$ Isovector part $\mathcal{L}^*_{\mathrm{asym}} = \mathcal{L}^*_{\delta m} + \mathcal{L}^*_{\delta
ho}$ $\mathcal{L}_{\delta m}^* = -\frac{F_{\pi}^2}{32} \sum_{i=1}^{2} (m_{\pi^{\pm}}^2 - m_{\pi^0}^2) \operatorname{Tr}\left(\tau_a U\right) \operatorname{Tr}\left(\tau_a U^{\dagger}\right)$ **Nuclear** matter \bigcirc stabilization $(\mathcal{L}_{\delta\rho}^{*}) = -\frac{F_{\pi}^{2}}{16} m_{\pi} \alpha_{e} \varepsilon_{ab3} \operatorname{Tr}(\tau_{a} U) \operatorname{Tr}(\tau_{b} \partial_{0} U^{\dagger})$ **Asymmetric matter** 0 properties

Reparametrization

[UY, PRC88 (2013)]

- Five density dependent parameters
- Rearrangment (technical simplification to describe nuclear matter)



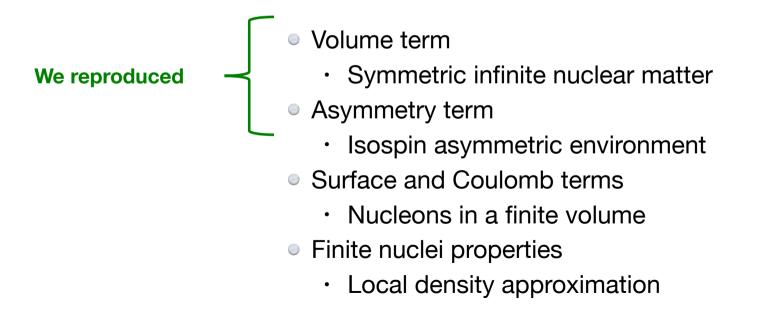
$$+C_1 \frac{\rho}{\rho_0} = f_1 \left(\frac{\rho}{\rho_0}\right) \equiv \sqrt{\frac{\alpha_p^0}{\gamma_s}}$$
$$+C_2 \frac{\rho}{\rho_0} = f_2 \left(\frac{\rho}{\rho_0}\right) \equiv \frac{\alpha_s^{00}}{(\alpha_p^0)^2 \gamma_s}$$
$$+C_3 \frac{\rho}{\rho_0} = f_3 \left(\frac{\rho}{\rho_0}\right) \equiv \frac{(\alpha_p^0 \gamma_s)^{3/2}}{\alpha_s^{02}}$$

$$\frac{\alpha_e}{\gamma_s} = f_4 \left(\frac{\rho}{\rho_0}\right) \frac{\rho_n - \rho_p}{\rho_0} = \frac{C_4 \frac{\rho}{\rho_0}}{1 + C_5 \frac{\rho}{\rho_0}} \frac{\rho_n - \rho_p}{\rho_0}$$

From the Bethe-Weizsacker formula

$$\varepsilon(A,Z) = -a_V + a_S \frac{(N-Z)^2}{A^2} + \mathbb{M}$$

The binding-energy-formula terms in the framework of present model can be obtained considering



The volume term and Symmetry energy

 At infinite nuclear matter approximation the binding energy per nucleon takes the form

$$\varepsilon(\lambda, \delta) = \varepsilon_V(\lambda) + \varepsilon_S \delta^2 + O(\delta^4) \equiv \varepsilon_V(\lambda) + \varepsilon_A(\lambda, \delta)$$

- \cdot λ is normalised nuclear matter density
- \cdot δ is asymmetry parameter
- ϵ_s is symmetry energy
- In our model
 - Symmetric matter
 - Asymmetric matter

$$\varepsilon_{V}(\lambda) = m_{N,s}^{*}(\lambda,0) - m_{N}^{\text{free}}$$

$$\varepsilon_{A}(\lambda,\delta) = \varepsilon(\lambda,\delta) - \varepsilon_{V}(\lambda)$$

$$= m_{N,s}^{*}(\lambda,\delta) - m_{N,s}^{*}(\lambda,0) + m_{N,V}^{*}(\lambda,\delta)\delta$$

Nuclear matter properties

Symmetric matter properties (pressure, compressibility and third derivative)

$$p = \rho_0 \lambda^2 \frac{\partial \varepsilon_V(\lambda)}{\partial \lambda} \bigg|_{\lambda=1}, \quad K_0 = 9\rho^2 \frac{\partial^2 \varepsilon_V(\lambda)}{\partial \rho^2} \bigg|_{\rho=\rho_0} \qquad Q = 27\lambda^3 \frac{\partial^3 \varepsilon_V(\lambda)}{\partial \lambda^3} \bigg|_{\lambda=1}$$

Symmetry energy properties (coefficient, slop and curvature)

$$\varepsilon_{s}(\lambda) = \varepsilon_{s}(1) + \frac{L_{s}}{3}(\lambda - 1) + \frac{K_{s}}{18}(\lambda - 1)^{2} + \mathbb{X}$$

The binding-energy-formula in a more general case

$$\varepsilon = \frac{E^* - E}{A} = \frac{Z\Delta M_p + N\Delta M_n + \sum_{s=1}^3 N_s \Delta M_s}{A}$$
$$= \Delta M_N \left(1 - \sum_{s=1}^3 \delta_s \right) + \frac{1}{2} \delta \Delta M_{np} + \sum_{s=1}^3 \delta_s \Delta M_s$$

$$M_{np} = M_n - M_p$$

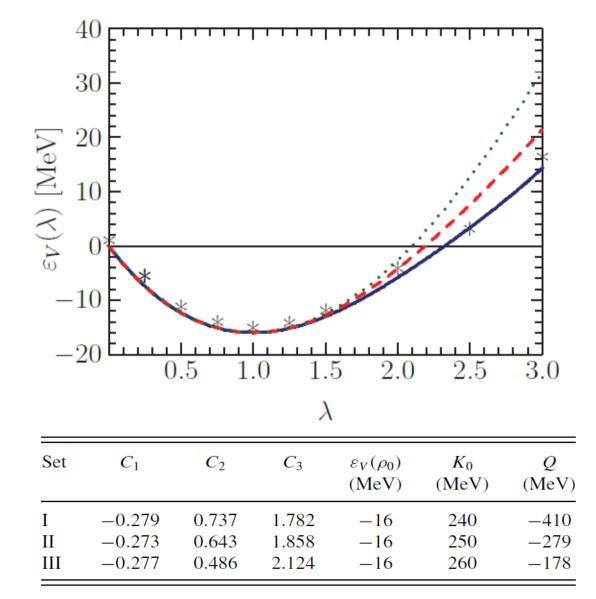
$$\Delta M_N = M_N^* - M_N$$

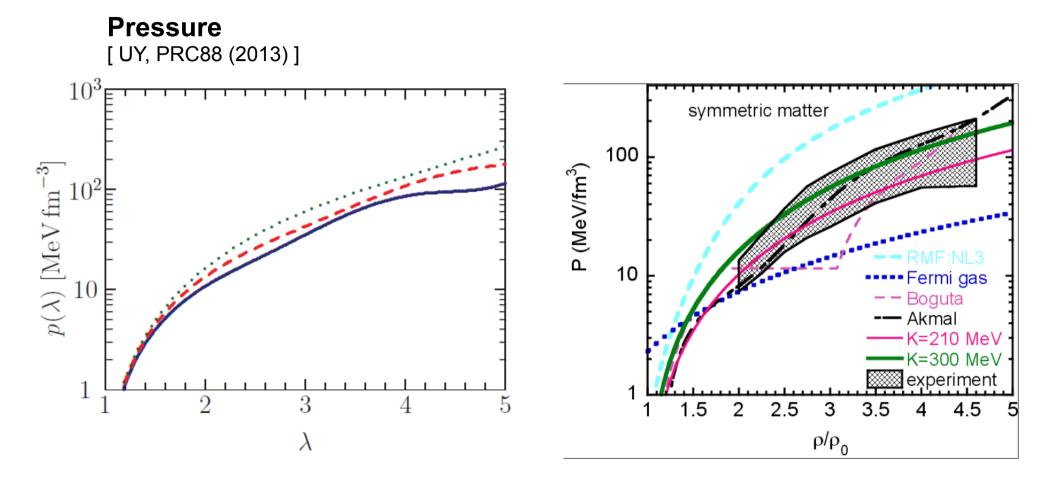
$$\delta = \frac{N - Z}{A}$$

Volume energy [UY, PRC88 (2013)]

- Set I solid
- Set II dashed
- Set III dotted

For comparison: Akmal-Pandharipande-Ravenhall (APR) predictions [PRC 58, 1804 (1998)] are given by stars. (From Arigonna 2 body interactions + 3 body interactions)





For comparison: Right figure from Danielewicz- Lacey-Lynch, Science 298, 1592 (2002). (Deduced from experimental flow data and simulations studies)

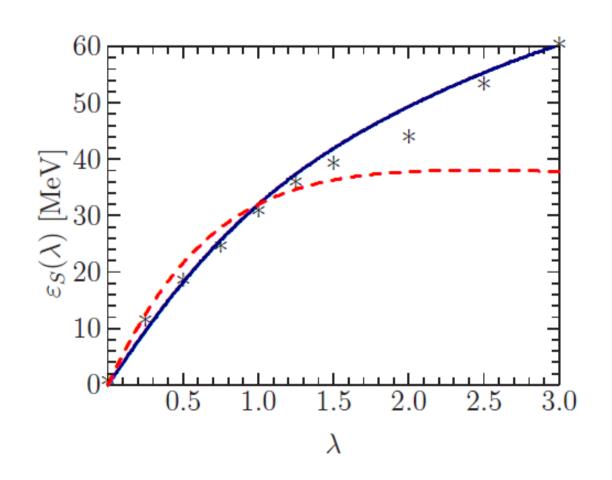
Symmetry energy

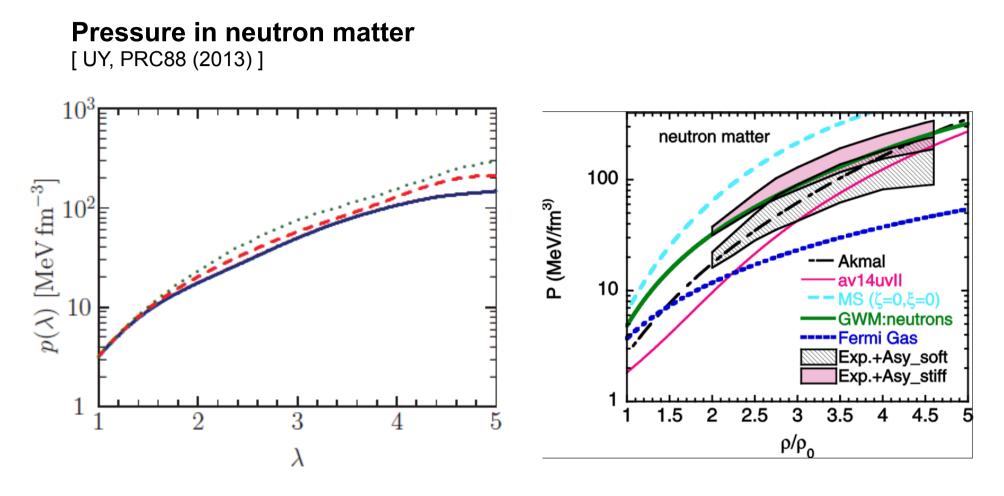
• Solid $L_s = 70 \text{ MeV}$

• Dashed
$$L_s = 40 \text{ MeV}$$

For comparison: Akmal-Pandharipande-Ravenhall (APR) predictions [PRC 58, 1804 (1998)] are given by stars. (From arigonna 2 body

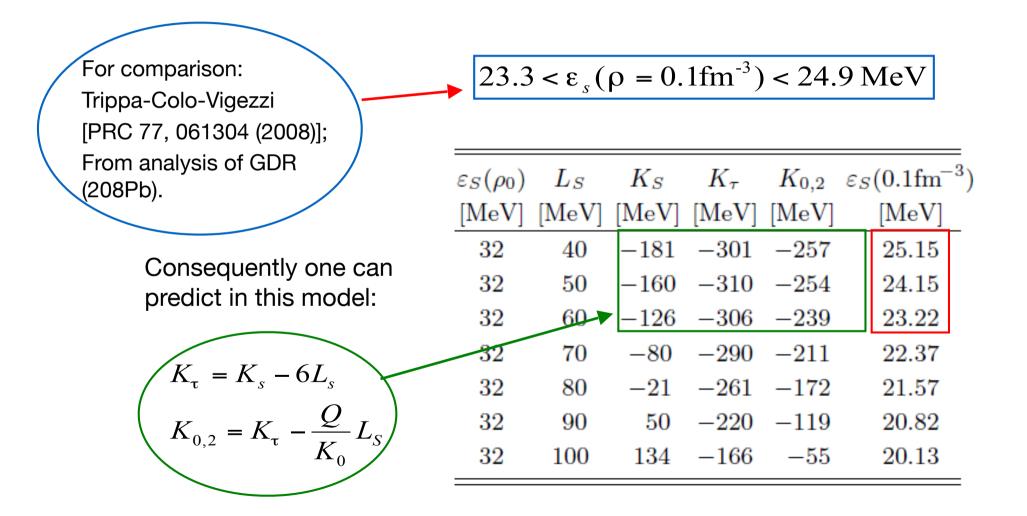
interactions + 3 body interactions)





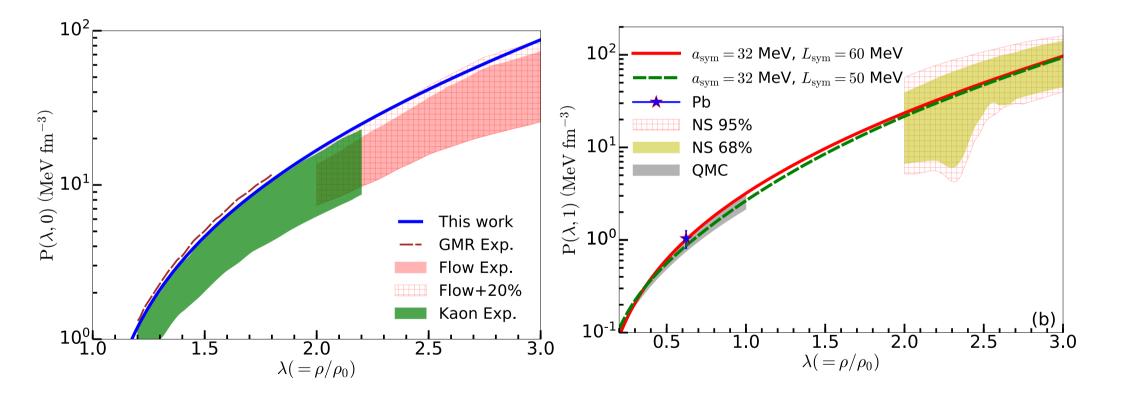
For comparison: Right figure from Danielewicz- Lacey-Lynch, Science 298, 1592 (2002). (Deduced from experimental flow data and simulations studies)

Low density behaviour of symmetry energy



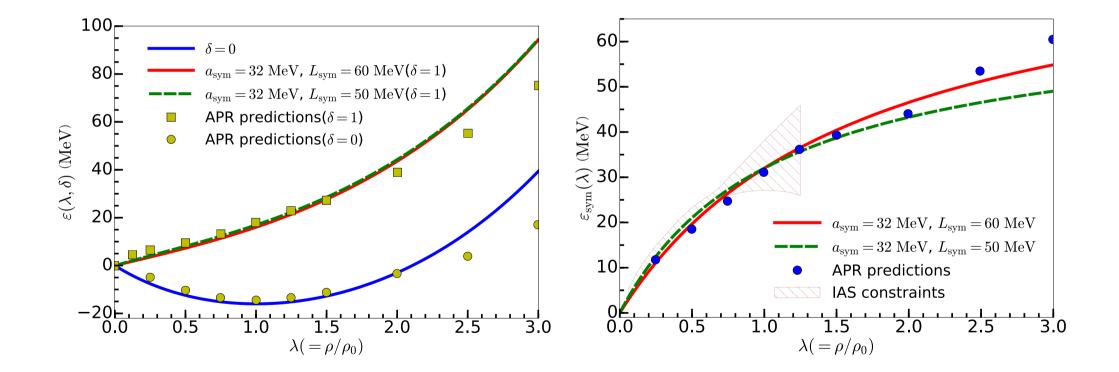
Nuclear matter (SU(3) model independent approach with hyperons)

Pressure [N.Y.Ghim, G.S.Yang, H.Ch.Kim, UY, PRC103 (2021)]



Nuclear matter (SU(3) model independent approach with hyperons)

Volume and symmetry energy [N.Y.Ghim, G.S.Yang, H.Ch.Kim, UY, PRC103 (2021)]



Neutron star properties

• TOV equations

$$-\frac{dP(r)}{dr} = \frac{G\mathcal{E}(r)\mathcal{M}(r)}{r^2} \left(1 - \frac{2G\mathcal{M}(r)}{r}\right)^{-1} \left(1 + \frac{P(r)}{\mathcal{E}(r)}\right) \left(1 + \frac{4\pi r^3 P(r)}{\mathcal{M}(r)}\right)$$

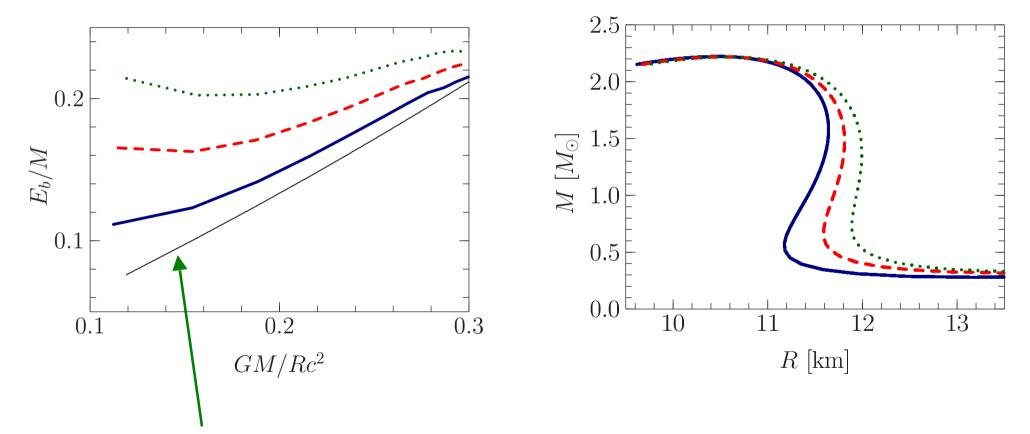
• Energy-pressure relation

$$P = P(\mathcal{E}) \qquad P(\lambda) = \rho_0 \lambda^2 \frac{\partial \varepsilon(\lambda, 1)}{\partial \lambda}, \\ \mathcal{E}(\lambda) = [\varepsilon(\lambda, 1) + m_N] \lambda \rho_0$$

Neutron star's mass

$$\mathcal{M}(r) = 4\pi \int_0^r \mathrm{d}r \, r^2 \mathcal{E}(r) \, .$$

Neutron star properties [UY, PLB749 (2015)]



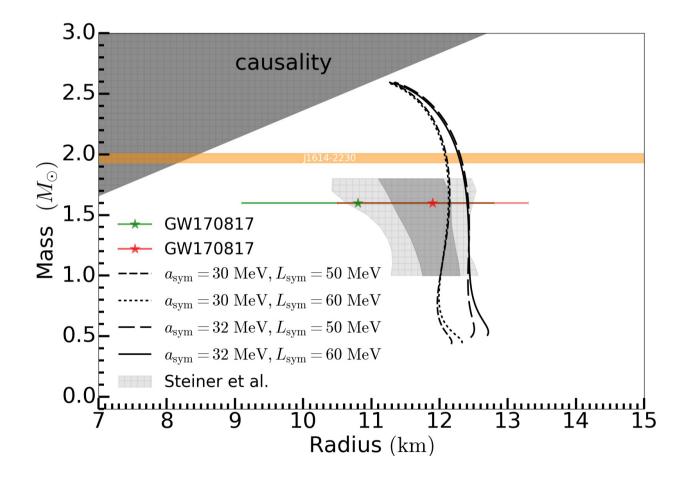
From Ref. [J.M. Lattimer & M. Prakash, Astrophys. J. 550 (2001)].

Neutron star properties [UY, PLB749 (2015)]

TABLE III: Properties of the neutron stars from the different sets of parameters (see Tables I and II for the values of parameters): n_c is central number density, ρ_c is central energy-mass density, R is radius of the neutron star, M_{max} is possible maximal mass, A is number of baryons in the star, E_b is binding energy of the star. In the left panel we represent the neutron star properties corresponding to the maximal mass M_{max} and in right panel approximately 1.4 solar mass neutron star properties. The last two lines are results from the Ref. [21].

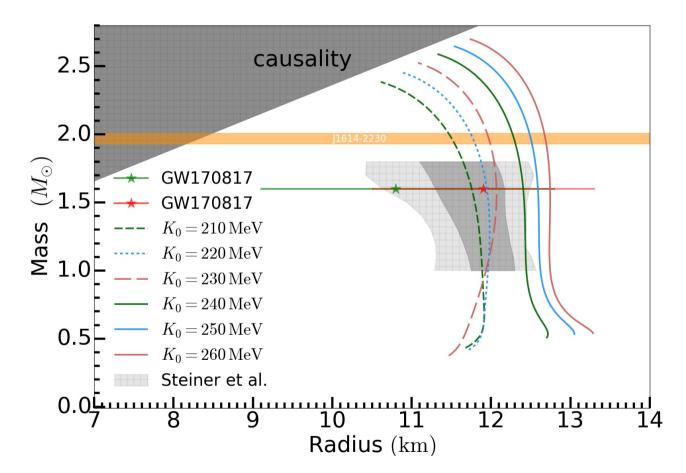
Set	n_c	$ ho_c$	R	$M_{\rm max}$	A	E_b	n_c	$ ho_c$	R	M	A	E_b
	$[\mathrm{fm}^{-3}]$	$[10^{15}\mathrm{g}]/\mathrm{cm}^3]$	$[\mathrm{km}]$	$[M_{\odot}]$	$[10^{57}]$	$[10^{53} \mathrm{erg}]$	$[\mathrm{fm}^{-3}]$	$[10^{15}\mathrm{g}/\mathrm{cm}^3]$	$[\mathrm{km}]$	$[M_{\odot}]$	$[10^{57}]$	$[10^{53} \mathrm{erg}]$
III-a	1.046	2.445	10.498	2.226	3.227	8.721	0.479	0.861	11.587	1.402	1.898	3.503
III-b	1.045	2.444	10.547	2.223	3.216	8.557	0.471	0.861	11.772	1.402	1.895	3.453
III-c	1.037	2.424	10.616	2.221	3.200	8.397	0.460	0.832	11.953	1.402	1.887	3.339
III-d	1.047	2.452	10.494	2.221	3.213	8.598	0.481	0.867	11.619	1.402	1.893	3.422
III-e	1.044	2.440	10.554	2.218	3.203	8.495	0.473	0.858	11.809	1.403	1.890	3.384
III-f	1.040	2.433	10.609	2.216	3.189	8.311	0.464	0.842	11.992	1.403	1.887	3.334
SLy230a [21]	1.15	2.69	10.25	2.10	2.99	7.07	0.508	0.925	11.8	1.4	1.85	2.60
SLy230b [21]	1.21	2.85	9.99	2.05	2.91	6.79	0.538	0.985	11.7	1.4	1.85	2.61

• Pure neutron matter ($K_0 = 240 \text{ MeV}$).



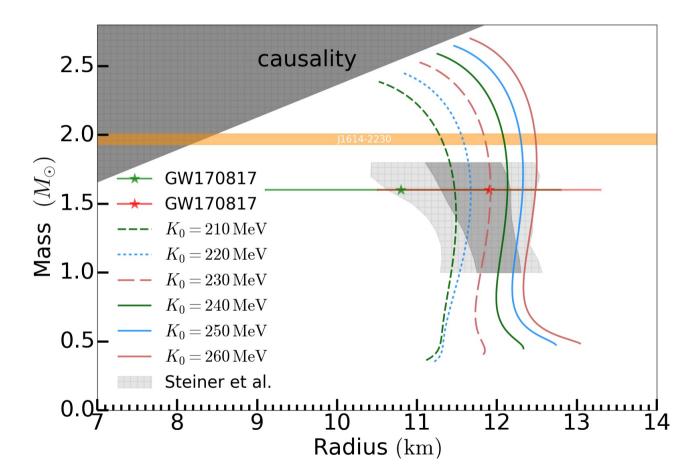
*N.Y.Ghim, G.S.Yang, H.Ch.Kim, UY, In preparation.

• Pure neutron matter ($a_{sym} = 32 \text{ MeV}$, $L_{sym} = 60 \text{ MeV}$)



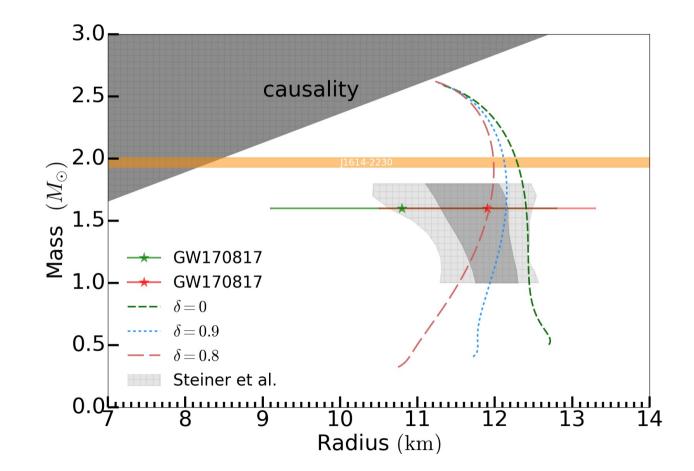
*N.Y.Ghim, G.S.Yang, H.Ch.Kim, UY, In preparation.

• Pure neutron matter ($a_{sym} = 32 \text{ MeV}$, $L_{sym} = 50 \text{ MeV}$)



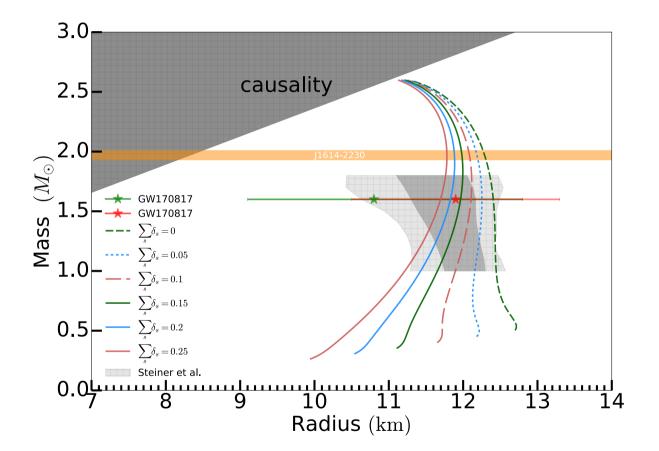
*N.Y.Ghim, G.S.Yang, H.Ch.Kim, UY, In preparation.

• Proto-neutron star ($K_0 = 240 \text{ MeV}$, $a_{\text{sym}} = 32 \text{ MeV}$, $L_{\text{sym}} = 60 \text{ MeV}$)



*N.Y.Ghim, G.S.Yang, H.Ch.Kim, UY, In preparation.

• Hyperon mixed neutron matter ($K_0 = 240 \text{ MeV}$, $a_{\text{sym}} = 32 \text{ MeV}$, $L_{\text{sym}} = 50 \text{ MeV}$)



*N.Y.Ghim, G.S.Yang, H.Ch.Kim, UY, In preparation.

Thank you very much for your attention!