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Google Colab Notebook here!

https://colab.research.google.com/drive/1pr1tb-
qPGV6TnneKSxjyvq07IwkvNe2a#scrollTo=2-D-
0cy9Txf_&forceEdit=true&sandboxMode=true

Lecture notes about GNN from Stanford Univ.
https://web.stanford.edu/class/cs224w/
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0. PyTorch & GNN
• torch.nn.Module

class MyModule(nn.Module):
def	__init__(self):

”””
Define	layer	structure

”””
pass

def	forward(self,	x):
”””

Return	layer output
”””
pass
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0. PyTorch & GNN
• GNN

Many kinds of GNNs there are…
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1. Introduc,on
Jet flavor tagging
Tradi9onal methods
Neural networks
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1. Introduction
• Jet flavor tagging

: Iden'fying which flavor(bo6om, charm or light flavor) of parton
is responsible for the jet produc'on.
(light = u, d, s quark & gluon)

Physical phenomena vary depending on the flavor of quark.
e.g. dead cone effect, longer life'me of heavy-flavor hadrons

These can be studied through observables such as
DCA(track impact parameter), secondary ver'ces, momenta,
the number of jet cons'tuents, etc..
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ALICE Collabora,on, JHEP 01 (2022) 178

J. Shlomi et al., Eur.Phys.J.C (2021) 81:540
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1. IntroducEon
• Traditional methods

• IP (Impact parameter)

• SV (Secondary vertex)
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𝑆𝑑!" > 𝑆𝑑!"#$% 
→ b-jet candidate

𝑆𝐿!" > 𝑆𝐿!"#$% 
𝜎&' < 𝜎&'#() 
→ b-jet candidate

ALICE Collabora,on, op. cit.
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1. Introduction
• Neural network

: Many recent studies using NN for jet flavor tagging are ongoing,
and they show improved performances compared to previous methods.

Many different types of neural networks
: DNN, GNN, RNN, CNN(image), …

In this research…
→ Secondary vertex finding using Set2Graph NN,

and jet flavor tagging using Graph Neural Networks (GNN)

(Reference: J. Shlomi et al., Eur.Phys.J.C (2021) 81:540)
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1. IntroducEon
• Graph (discrete mathema9cs)

: Sets of Nodes connected by Edges.

In this research, A Graph represents A single Jet, Nodes correspond to Tracks(jet cons'tuents), 
and Edges correspond to Connec'ons between tracks origina'ng from same vertex.
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2. Neural network & dataset
Neural network structure
Vertex finding (Set2Graph NN)
Jet flavor tagging (GNN)
Dataset specification
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2. Neural network & dataset
• Neural network structure

• Vertex finding
: Set2Graph NN

→ Grouping of tracks origina'ng from a 
common (primary or secondary) vertex

• Jet flavor tagging
: GNN that takes hidden representa7ons 
of tracks and vertex predic7on by vertex 
finding module as input.

→ Jet flavor (b, c, or light jet)
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J. Shlomi et al., op. cit.

Vertex finding
(Set2Graph NN)

Jet flavor tagging

Target
: Clusters of tracks
  from a same vertex

Target
: Jet flavor (b, c, or light)
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2. Neural network & dataset
• Vertex finding

: Set2Graph NN

Input: Set of cons'tuent tracks
→ Output: Graph connec'ng tracks 
origina'ng from a common vertex.
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𝜙: set-to-set component
→ Deep sets network

𝛽: broadcasting layer
→ Node representations to edge representations
    (Pairs of track	𝑖 and track	𝑗)

𝜓: final edge classifier
→ Edge predic7on (MLP) ⏶ Matrix representaBon of an example output
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2. Neural network & dataset
• Jet flavor tagging

: GNN that takes vertex prediction result
of vertex finding module as input.

GNN (Graph Neural Networks)

Input
: Graph consisting of Nodes(features of 
tracks and a jet) and Edge prediction by 
the vertex finding module
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2. Neural network & dataset
• GNN structure (models/message_pass.py)
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2. Neural network & dataset
• GNN structure (models/message_pass.py)
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edge network

Linear            ReLU          Linear        ReLU

edge network output

edge representations



2. Neural network & dataset
• GNN structure (models/message_pass.py)
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sum in one direc-on

track representation

node network

Linear            ReLU          Linear        ReLU



2. Neural network & dataset
• GNN structure (models/message_pass.py)

Inha Univ. ML Winter School               Choi Changhwan 16February 6 2024

sum in one direction

Linear        ReLU Linear            ReLU          Linear       SoUmax

𝜎  

BatchNorm BatchNorm
jet features

soamax → argmax → jet flavor!



2. Neural network & dataset
• Training procedure

(1) Training (supervised learning) the 
vertex finding module with MC truth 
vertex information.

(2) Training jet flavor tagging neural 
networks (including trained vertex 
finding module inside).

* It is also possible to omit procedure (1).
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J. Shlomi et al., op. cit.

Vertex finding
(Set2Graph NN)

Jet flavor tagging

Target
: Clusters of tracks
  from a same vertex

Target
: Jet flavor (b, c, or light)Batch size: 1000

Optimizer: Adam (lr = 5×10!")
Loss function: Cross entropy
Early stopping: 20 epochs

Batch size: 2048
OpBmizer: Adam (lr = 10!#)
Loss funcBon: BCE and 𝐹$

∗

Early stopping: 20 epochs
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2. Neural network & dataset
• Dataset specifica9on

ALICE Run2 MC data
• PYTHIA 𝑝𝑝 collision, 𝑠 = 5.02 TeV, 𝑏2𝑏 (LHC18k6a), c ̅𝑐 (LHC18k6b), jet-jet (LHC18b8) events
• ALICE (Run2) full simula'on

Jets
• An'-𝑘* (𝑅 = 0.4), charged par'cle jets
• 10 < 𝑝*, ,-. < 100 GeV/𝑐
• 𝜂,-. < 0.5
• 2 ≤ 𝑛./(012(≤ 16)

Dataset size
• Training 500 k jets, valida'on 100 k jets, test 100 k jets (smaller dataset will be used for hands-on.)
• Dataset contains almost same numbers of b/c/light jets.
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2. Neural network & dataset
• Input proper9es

Jet proper?es
: 𝑝*, ,-., 𝜂,-., 𝜙,-., 𝑚,-.

(reconstructed) Track proper?es
: DCA!", DCA3, 𝑝*, cot 𝜃, 𝜙, 𝑞

◾ Input data
◾ Label data (=correct answer)
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3. Training result
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3. Training result
• Performance metrics
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• EfPiciency(𝑥) = (./5.6	8	!	∧	:/-;	8	!)
(./5.6	8	!)

 

→ How many truth x are found?

(Independent to the numbers of truth b/c/light jets)

• Purity(𝑥) = ./5.6	8	!	∧	:/-;	8	!
:/-;	8	!

= =0>0
=0>0?=1→0>1?=3→0>3

(𝜀&: b-jet efficiency, 𝜀'→&: fracBon of mis-tagged truth x-jets among b-jet candidates) 
→ How many of predicted x are true?

(Dependent to the numbers of truth b/c/light jets)

*Purity is calculated on the assump7on that jet cross-sec7on ra7o 
as constant b : c : l = 1 : 2 : 27. (in temporary)
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3. Training result
• Performance
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• B-jet efficiency is higher, purity is lower 
than previous SV method.

• Efficiency and purity are complementary, 
so both should be considered at the same 
'me.

→ The op'miza'on of working point
is needed to get higher purity b-jet result.

SV method (ALICE)

ALICE Collabora,on, op.cit.
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4. B-jet selec,on op,miza,on
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4. B-jet selecEon opEmizaEon
• B-jet tagging discriminant
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“if ( 𝑫𝒃 	> threshold ),
then it is a b-jet candidate.”
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4. B-jet selection optimization
• Efficiency and purity

(for the range 𝑝7, 9:; = 50~60 GeV/𝑐)
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• Both efficiency and purity are higher 
than SV method at high purity region.
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4. B-jet selection optimization
• ROC (Receiver Operating Characteristic) curve

(for the range 𝑝7, 9:; = 50~60 GeV/𝑐)
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4. B-jet selecEon opEmizaEon
• High purity working points
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(* Not the final results)
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